The Effect of Tree Width on Thoracolumbar and Limb Kinematics, Saddle Pressure Distribution, and Thoracolumbar Dimensions in Sports Horses in Trot and Canter
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Saddles
2.3. Study Protocol
2.4. Kinematics—Inertial Measurement Units
- range of motion: maximum–minimum value over a stride cycle for x, y, and z displacement for trot and canter
- hip hike difference (HHD): difference between vertical upward movement amplitude of left and right tuber coxae during contra-lateral stance [21].
- Flexion-extension range of motion (ROM)—the body’s rotation about the transverse (lateral–lateral) axis.
- Axial rotation ROM—the body’s rotation about the longitudinal (craniocaudal) axis.
- Lateral bending—the body’s rotation about the vertical (dorsoventral) axis.
- Translational movement at T5, T18, and L3 was measured in millimetres in two directions:
- -
- Vertical direction—up and down movement of the whole horse.
- -
- Lateral–lateral direction—side to the side movement of the whole horse.
2.5. Kinetic Data—Pressure Distribution
2.6. Kinematics—Two-Dimensional Motion Capture
- Maximum carpal flexion (palmar angle between (3) lateral condyle of humerus, (4) lateral metacarpal condyles, and (5) distal aspect of the metacarpus over the LCL of the MCP joint).
- Maximum tarsal flexion (angle between lateral condyle of the femur, (10) talus, and (11) distal aspect of the metatarsus over the LCL of the MTP joint) during the swing phase.
- Maximum forelimb fetlock extension during stance (palmar angle between (4) LCL, (5) distal aspect of the metacarpus over the LCL of the MCP joint, and (6) origin of the LCL of the DIP joint)
- Maximum hindlimb fetlock extension during stance (palmar angle between (10) talus, (11) distal aspect of the metatarsus over the LCL of the MTP joint, and (12) origin of the LCL of the DIP joint).
2.7. Thoracolumbar Epaxial Musculature Dimensions and Height
2.8. Data Collection
- Maximum elbow flexion during the swing phase.
- Maximum MCP and MTP hyperextension during stance.
- Maximum carpal flexion during the swing phase.
- Maximum tarsal flexion during the swing phase.
- Craniocaudal, vertical, and mediolateral range of motion for T5, T13, T18, and L3 TS.
- Flexion and extension range of motion of T5, T13, T18, and L3 TS.
- Axial rotation range of motion of T5, T13, T18, L3 and TS.
- Lateral bending range of motion of T5, T13, T18, and L3 TS.
- Pressures beneath the cranial aspect of the saddle (kPa).
- Pressures beneath the caudal aspect of the saddle (kPa).
- Maximum overall force (N).
2.9. Statistical Analysis
Influence of Speed
3. Results
3.1. Horse Inclusion
3.2. Thoracolumbar Kinematics
3.2.1. Trot—Rotational and Translational Movement
3.2.2. Canter—Rotational and Translation Movement
3.2.3. Trot—Rotational and Translational Movement
3.3. Kinetic Data—Pressure Distribution
3.3.1. Trot
3.3.2. Canter
3.4. Kinematics—Two-Dimensional Motion Capture
3.5. Thoracolumbar Epaxial Musculature Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Byström, A.; Stalfelt, A.; Morgan, K.; Egenvall, A.; Von Peinen, K.; Roepstorff, L. Influence of girth strap placement and panel flocking material on the saddle pressure pattern during riding of horses. Equine Vet. J. 2010, 42, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Harman, J. Tack and Sadde Fit. Vet. Clin. Am. Equine Pract. 1999, 15, 247–261. [Google Scholar] [CrossRef]
- Meschan, E.M.; Peham, C.; Schobesberger, H.; Licka, T.F. The influence of the width of the saddle tree on the forces and the pressure distribution under the saddle. Vet. J. 2007, 173, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Greve, L.; Dyson, S.; Pfau, T. Alterations in thoracolumbosacral movement when pain causing lameness has been improved by diagnostic analgesia. Vet. J. 2017, 224, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greve, L.; Dyson, S.J. An investigation of the relationship between hindlimb lameness and saddle slip. Equine Vet. J. 2013, 45, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Peham, C.; Licka, T.; Schobesberger, H.; Meschan, E. Influence of the rider on the variability of the equine gait. Hum. Mov. Sci. 2004, 23, 663–671. [Google Scholar] [CrossRef]
- Dyson, S.; Carson, S.; Fisher, M. Saddle fitting, recognising an ill-fitting saddle and the consequences of an ill-fitting saddle to horse and rider. Equine Vet. Educ. 2015, 27, 533–543. [Google Scholar] [CrossRef]
- Rhodin, M.J.C.; Roethlisberger, H.; Wennerstrand, J.; Drevmo, S. The influence of head and neck position on kinematics of the back in riding horses at the walk and trot. Equine Vet. J. 2005, 37, 7–11. [Google Scholar] [CrossRef]
- Audgie, F.P.C.; Degueurce, C.; Denoix, J.; Geiger, D. Kinematics of the equine back: Flexion-extension movements in sound trotting horses. Equine Vet. J. 1999, 30, 201–213. [Google Scholar]
- Faber, M.; Johnston, C.; Schamhardt, H.C.; Weeren, P.R.; Roepstorff, L.; Barneveld, A. Three-dimensional kinematics of the equine spine during canter. Equine Vet. J. 2001, 33, 145–149. [Google Scholar] [CrossRef]
- Faber, M.; Schamhardt†, H.; Van Weeren, R.; Johnston, C.; Roepstorff, L.; Barneveld, A. Basic three-dimensional kinematics of the vertebral column of horses walking on a treadmill. Am. J. Vet. Res. 2000, 61, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, M.C.; Johnston, H.; Schamhardt, R.; van Weeren, L.; Roepstorff, L.; Barneveld, A. Basic three-dimensional kinematics of the vertebral column of horses during trotting on a treadmill. Am. J. Vet. Res. 2001, 62, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; O’Connor, K.A.; Kaiser, L.J. Force and pressure distribution beneath a conventional dressage saddle and a treeless dressage saddle with panels. Vet. J. 2014, 199, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Guire, R.; Weller, R.; Fisher, M.; Beavis, J. Investigation Looking at the Repeatability of 20 Society of Master Saddlers Qualified Saddle Fitters’ Observations During Static Saddle Fit. J. Equine Vet. Sci. 2017, 56, 1–5. [Google Scholar] [CrossRef]
- Murray, R.; Guire, R.; Fisher, M.; Fairfax, V. Reducing Peak Pressures Under the Saddle Panel at the Level of the 10th to 13th Thoracic Vertebrae May Be Associated with Improved Gait Features, Even When Saddles Are Fitted to Published Guidelines. J. Equine Vet. Sci. 2017, 54, 60–69. [Google Scholar] [CrossRef]
- Greve, L.; Dyson, S.J. The interrelationship of lameness, saddle slip and back shape in the general sports horse population. Equine Vet. J. 2014, 46, 687–694. [Google Scholar] [CrossRef]
- Certificate in Saddle Fitting, in Association with the Society of Master Saddlers; City and Guilds: London, UK; NPTC: Neath, UK; Available online: https://www.mastersaddlers.co.uk/news/SMS-Reviews-its-Saddle-Fitting-Training-in-Order-to-Maintain-its-High-Standards.php (accessed on 9 April 2019).
- Pfau, T.; Witte, T.H.; Wilson, A.M. A method for deriving displacement data during cyclical movement using an inertial sensor. J. Exp. Biol. 2005, 208 Pt 13, 2503–2514. [Google Scholar] [CrossRef] [Green Version]
- Warner, S.M.; Koch, T.O.; Pfau, T. Inertial sensors for assessment of back movement in horses during locomotion over ground. Equine Vet. J. 2010, 42, 417–424. [Google Scholar] [CrossRef]
- Starke, S.D.; Witte, T.H.; May, S.A.; Pfau, T. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit. J. Biomech. 2012, 45, 1522–1528. [Google Scholar] [CrossRef]
- Pfau, T.; Spicer-Jenkins, C.; Smith, R.K.; Bolt, D.M.; Fiske-Jackson, A.; Witte, T.; Spicer-Jenkins, C.; Fiske-Jackson, A. Identifying optimal parameters for quantification of changes in pelvic movement symmetry as a response to diagnostic analgesia in the hindlimbs of horses. Equine Vet. J. 2014, 46, 759–763. [Google Scholar] [CrossRef]
- Pfau, T.; Jennings, C.; Mitchell, H.; Olsen, E.; Walker, A.; Egenvall, A.; Troster, S.; Weller, R.; Rhodin, M. Lungeing on hard and soft surfaces: Movement symmetry of trotting horses considered sound by their owners. Equine Vet. J. 2016, 48, 83–89. [Google Scholar] [CrossRef] [PubMed]
- De Cocq, P.; Van Weeren, P.; Back, W. Saddle pressure measuring: Validity, reliability and power to discriminate between different saddle-fits. Vet. J. 2006, 172, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.; Guire, R.; Fisher, M.; Fairfax, V. Girth pressure measurements reveal high peak pressures that can be avoided using an alternative girth design that also results in increased limb protraction and flexion in the swing phase. Vet. J. 2013, 198, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.; Guire, R.; Fisher, M.; Fairfax, V. A Bridle Designed to Avoid Peak Pressure Locations under the Headpiece and Noseband Is Associated with More Uniform Pressure and Increased Carpal and Tarsal Flexion, Compared with the Horse’s Usual Bridle. J. Equine Vet. Sci. 2015, 35, 947–955. [Google Scholar] [CrossRef]
- Murray, R.; Mackechnie-Guire, R.; Fisher, M.; Fairfax, V. Reducing peak pressures under the saddle at thoracic vertebrae 10–13 is associated with alteration in jump kinematics. Comp. Exerc. Physiol. 2018, 14, 239–247. [Google Scholar] [CrossRef]
- Mackechnie-Guire, R.; Mackechnie-Guire, E.; Fisher, M.; Mathie, H.; Bush, R.; Pfau, T.; Weller, R. Relationship Between Saddle and Rider Kinematics, Horse Locomotion, and Thoracolumbar Pressures in Sound Horses. J. Equine Vet. Sci. 2018, 69, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Willmott, A.P.; Dapena, J. The planarity of the stickface motion in the field hockey hit. J. Sports Sci. 2012, 30, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Greve, L.; Murray, R.; Dyson, S. Subjective analysis of exercise-induced changes in back dimensions of the horse: The influence of saddle-fit, rider skill and work quality. Vet. J. 2015, 206, 39–46. [Google Scholar] [CrossRef]
- Greve, L.; Dyson, S. A longitudinal study of back dimension changes over 1 year in sports horses. Vet. J. 2015, 203, 65–73. [Google Scholar] [CrossRef]
- Martin, P.; Cheze, L.; Pourcelot, P.; Desquilbet, L.; Duray, L.; Chateau, H.; Henry, C. Effects of Large Saddle Panels on the Biomechanics of the Equine Back during Rising Trot: Preliminary Results. J. Equine Vet. Sci. 2017, 48, 15–22. [Google Scholar] [CrossRef]
- Heim, C.; Pfau, T.; Gerber, V.; Schweizer, C.; Doherr, M.; Schupbach-Regula, G.; Witte, S. Determination of vertebral range of motion using inertial measurement units in 27 Franches-Montagnes stallions and comparison between conditions and with a mixed population. Equine Vet. J. 2016, 48, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Cheze, L.; Pourcelot, P.; Desquilbet, L.; Duray, L.; Chateau, H. Effect of the rider position during rising trot on the horse’s biomechanics (back and trunk kinematics and pressure under the saddle). J. Biomech. 2016, 49, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Cheze, L.; Pourcelot, P.; Desquilbet, L.; Duray, L.; Chateau, H. Effects of the rider on the kinematics of the equine spine under the saddle during the trot using inertial measurement units: Methodological study and preliminary results. Vet. J. 2017, 221, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S. Kinematic evaluation of the back in the sport horse with back pain. Equine Vet. J. 2004, 36, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Licka, T.; Frey, A.; Peham, C. Electromyographic activity of the longissimus dorsi muscles in horses when walking on a treadmill. Vet. J. 2009, 180, 71–76. [Google Scholar] [CrossRef]
- Greve, L.; Pfau, T.; Dyson, S. Thoracolumbar movement in sound horses trotting in straight lines in hand and on the lunge and the relationship with hind limb symmetry or asymmetry. Vet. J. 2017, 220, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Cocq, P.; Prinsen, H.; Springer, N.C.N.; Weeren, P.R.; Schreuder, M.; Muller, M.; Leeuwen, J.L. The effect of rising and sitting trot on back movements and head-neck position of the horse. Equine Vet. J. 2009, 41, 423–427. [Google Scholar] [CrossRef]
- De Cocq, P.; Duncker, A.M.; Clayton, H.M.; Bobbert, M.F.; Muller, M.; Van Leeuwen, J.L. Vertical forces on the horse’s back in sitting and rising trot. J. Biomech. 2010, 43, 627–631. [Google Scholar] [CrossRef]
- Fruehwirth, B.; Peham, C.; Scheidl, M.; Schobesberger, H. Evaluation of pressure distribution under an English saddle at walk, trot and canter. Equine Vet. J. 2004, 36, 754–757. [Google Scholar] [CrossRef]
- Roepstorff, L.; Egenvall, A.; Rhodin, M.; Byström, A.; Johnston, C.; Weeren, P.R.; Weishaupt, M. Kinetics and kinematics of the horse comparing left and right rising trot. Equine Vet. J. 2009, 41, 292–296. [Google Scholar] [CrossRef]
- Van Beek, F.E.; De Cocq, P.; Timmerman, M.; Muller, M. Stirrup forces during horse riding: A comparison between sitting and rising trot. Vet. J. 2012, 193, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Persson-Sjodin, E.; Hernlund, E.; Pfau, T.; Andersen, P.H.; Rhodin, M. Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot. PLoS ONE 2018, 13, e0195341. [Google Scholar] [CrossRef] [PubMed]
- de Cocq, P.; van Weeren, P.R.; Back, W. Effects of girth, saddle and weight on movements of the horse. Equine Vet. J. 2004, 36, 758–763. [Google Scholar] [CrossRef]
- Buchner, H.; Savelberg, H.; Schamhardt, H.; Merkens, H.; Barneveld, A. Kinematics of treadmill versus overground locomotion in horses. Vet. Q. 1994, 16 (Suppl. S2), 87–90. [Google Scholar] [CrossRef]
- Belock, B.; Kaiser, L.; Lavagnino, M.; Clayton, H. Comparison of pressure distribution under a conventional saddle and a treeless saddle at sitting trot. Vet. J. 2012, 193, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Nyikos, S.; Von Rechenberg, B.; Werner, D.; Müller, J.; Buess, C.; Keel, R.; Kalpen, A.; Vontobel, H.-D.; Von Plocki, K.A.; Auer, J.A. Measurements of saddle pressure in conjunction with back problems in horses. Pferdeheilkund. Equine Med. 2005, 21, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Von Peinen, K.; Weishaupt, M.A.; Wiestner, T.; Von Rechenberg, B. Relationship between saddle pressure measurements and clinical signs of saddle soreness at the withers. Equine Vet. J. 2010, 42, 650–653. [Google Scholar] [CrossRef]
- Serra Braganca, F.M.; Rhodin, M.; Wiestner, T.; Hernlund, E.; Pfau, T.; van Weeren, P.R.; Weishaupt, M.A. Quantification of the effect of instrumentation error in objective gait assessment in the horse on hindlimb symmetry parameters. Equine Vet. J. 2018, 50, 370–376. [Google Scholar] [CrossRef]
- Kotschwar, A.; Baltacis, A.; Peham, C. The influence of different saddle pads on force and pressure changes beneath saddles with excessively wide trees. Vet. J. 2010, 184, 322–325. [Google Scholar] [CrossRef] [PubMed]
Horse ID | Correct Saddle Fit | Wide Saddle Fit | Narrow Saddle Fit |
---|---|---|---|
1 | Medium 1 | Wide 2 | Narrow 3 |
2 | Wide 3 | Ex Wide 1 | Medium 2 |
3 | Medium 2 | Wide 3 | Narrow 1 |
4 | Medium 1 | Wide 2 | Narrow 3 |
5 | Medium 3 | Wide 1 | Narrow 2 |
6 | Medium 2 | Wide 3 | Narrow 1 |
7 | Medium 1 | Wide 2 | Narrow 3 |
8 | Medium 3 | Wide 1 | Narrow 2 |
9 | Medium 2 | Wide 3 | Narrow 1 |
10 | Medium 1 | Wide 2 | Narrow 3 |
11 | Medium 3 | Wide 1 | Narrow 2 |
12 | Medium 2 | Wide 3 | Narrow 1 |
13 | Medium 1 | Wide 2 | Narrow 3 |
Location of Pressure | Correct Mean ± SD | Wide Mean ± SD | Narrow Mean ± SD | p-Value | Post Hoc: Bonferroni |
---|---|---|---|---|---|
Cranial Region Peak Pressure (kPa) | 36.3 ± 6.9 | 39.4 ± 7.1 | 36.3 ± 7.2 | 0.003 | narrow-wide, p = 0.002 |
Caudal Region Peak Pressure (kPa) | 26.5 ± 2.7 | 25.9 ± 3.6 | 30.2 ± 2.3 | 0.003 | correct-narrow, p = 0.01 narrow-wide, p = 0.01 |
Cranial Region Maximum Overall Force (N) | 803.3 ± 165.9 | 840.6 ± 158.3 | 777.8 ± 168.5 | 0.11 | - |
Caudal Region Maximum Overall Force (N) | 660.0 ± 145.5 | 641.3 ± 144.8 | 713.1 ± 160.8 | 0.02 | narrow-wide, p = 0.002 |
Overall Force (N) | 1463.4 ± 310.8 | 1482.0 ± 298.2 | 1490.0 ± 329.3 | - | - |
Cranial Region Mean Pressure (kPa) | 14.01.5 | 14.5 ± 1.3 | 12.8 ± 2.2 | 0.0001 | correct-wide, p = 0.03 narrow-wide, p = 0.001 |
Caudal Region Mean Pressure (kPa) | 9.1 ± 0.3 | 11.9 ± 3.1 | 11.0 ± 2.6 | 0.001 | correct-narrow, p = 0.002 correct-wide, p = 0.02 |
Location of Pressure | Correct Mean ± SD | Wide Mean ± SD | Narrow Mean ± SD | p-Value | Post hoc: Bonferroni |
---|---|---|---|---|---|
Cranial Region Peak Pressure (kPa) | 44.43 ± 8.85 | 46.06 ± 8.71 | 42.36 ± 7.46 | p = 0.04 | correct-wide p = 0.003 |
Caudal Region Peak Pressure (kPa) | 31.07 ± 2.86 | 31.07 ± 3.38 | 30.05 ± 3.67 | p = 0.08 | - |
Cranial Region Maximum Overall Force (N) | 832.16 ± 107.46 | 819.15 ± 109.63 | 759.46 ± 113.40 | p = 0.001 | correct-narrow p = 0.002 |
Caudal Region Maximum Overall Force (N) | 627.39 ± 66.72 | 611.01 ± 42.86 | 647.39 ± 65.92 | p = 0.04 | - |
Cranial Region Mean Pressure (kPa) | 15.48 ± 2.31 | 14.82 ± 2.06 | 14.82 ± 2.06 | p = 1.3 | - |
Caudal Region Mean Pressure (kPa) | 11.42 ± 0.78 | 11.26 ± 0.73 | 11.45 ± 1.12 | p = 1.32 | - |
Kinematic Parameters | Correct Mean ± SD (°) | Wide Mean ± SD (°) | Narrow Mean ± SD (°) | p-Value | Post hoc: Bonferroni |
---|---|---|---|---|---|
Elbow Flexion (swing phase) | 103.9 ± 10.8 | 101.4 ± 3.6 | 100.0 ± 4.5 | 0.39 | - |
Maximum carpal flexion (swing phase) | 92.3 ± 7.9 | 91.4 ± 6.7 | 89.8 ± 6.7 | 0.03 | - |
Maximum front fetlock hyperextension—(stance phase) | 111.2 ± 7.3 | 113.7 ± 11.4 | 109.6 ± 6.3 | 0.31 | - |
Maximum hip flexion (swing phase) | 99.8 ± 12.9 | 100.0 ± 11.5 | 101.9 ± 8.1 | 0.62 | - |
Maximum tarsal flexion (swing phase) | 119.9 ± 10.4 | 119.7 ± 9.3 | 116.7 ± 9.0 | 0.03 | narrow-wide, p = 0.01 |
Maximum hind fetlock hyperextension (stance phase) | 113.7 ± 6.0 | 113.5 ± 7.4 | 114.5 ± 5.7 | 0.66 | - |
Measuring Sites on the Thoracic Region | Correct Mean ± SD (cm) | Wide Mean ± SD (cm) | Narrow Mean ± SD (cm) | p-Value | Post hoc: Bonferroni |
---|---|---|---|---|---|
T10 (3 cm) | 8.14 ± 1.6 | 8.2 ± 1.1 | 8.0 ±1.0. | 0.47 | |
T10 (15 cm) | 30.9 ± 1.9 | 32.0 ± 2.9 | 31.4 ± 1.9 | 0.07 | |
T13 (3 cm) | 13.6 ± 1.7 | 11.2 ± 1.7 | 13.7 ± 1.9 | 0.03 | Correct—wide, p = 0.02 |
T13 (15 cm) | 46.2 ± 1.6 | 46.2 ± 1.9 | 45.7 ± 1.9 | 0.24 | |
T18 (3 cm) | 21.3 ± 2.5 | 21.3 ± 2.6 | 19.3 ± 2.2 | 0.03 | Correct—narrow, p = 0.04 |
T18 (15 cm) | 52.7 ± 21.1 | 52.3 ± 2.3 | 52.9 ± 2.0 | 0.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacKechnie-Guire, R.; MacKechnie-Guire, E.; Fairfax, V.; Fisher, D.; Fisher, M.; Pfau, T. The Effect of Tree Width on Thoracolumbar and Limb Kinematics, Saddle Pressure Distribution, and Thoracolumbar Dimensions in Sports Horses in Trot and Canter. Animals 2019, 9, 842. https://doi.org/10.3390/ani9100842
MacKechnie-Guire R, MacKechnie-Guire E, Fairfax V, Fisher D, Fisher M, Pfau T. The Effect of Tree Width on Thoracolumbar and Limb Kinematics, Saddle Pressure Distribution, and Thoracolumbar Dimensions in Sports Horses in Trot and Canter. Animals. 2019; 9(10):842. https://doi.org/10.3390/ani9100842
Chicago/Turabian StyleMacKechnie-Guire, Russell, Erik MacKechnie-Guire, Vanessa Fairfax, Diana Fisher, Mark Fisher, and Thilo Pfau. 2019. "The Effect of Tree Width on Thoracolumbar and Limb Kinematics, Saddle Pressure Distribution, and Thoracolumbar Dimensions in Sports Horses in Trot and Canter" Animals 9, no. 10: 842. https://doi.org/10.3390/ani9100842
APA StyleMacKechnie-Guire, R., MacKechnie-Guire, E., Fairfax, V., Fisher, D., Fisher, M., & Pfau, T. (2019). The Effect of Tree Width on Thoracolumbar and Limb Kinematics, Saddle Pressure Distribution, and Thoracolumbar Dimensions in Sports Horses in Trot and Canter. Animals, 9(10), 842. https://doi.org/10.3390/ani9100842