Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mutations in the Goat GDF9 Gene
2.1. Non-Synonymous SNPs within the Goat GDF9 Gene
2.1.1. V397I Mutation
2.1.2. Q320P Mutation
2.1.3. A240V Mutation
2.2. Synonymous SNPs within the Goat GDF9 Gene
2.2.1. L61L Mutation
2.2.2. N121N Mutation
2.2.3. L141L Mutation
2.3. Mutations in the Regulatory Region of the Goat GDF9 Gene
2.4. Other Mutations within the Goat GDF9 Gene
3. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Clark, S.; Mora García, M.B. A 100-YEAR REVIEW: Advances in goat milk research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A. Present status of the world goat populations and their productivity. Lohmann Inf. 2010, 45, 42–52. [Google Scholar]
- Lu, C.D.; Miller, B.A. Current status, challenges and prospects for dairy goat production in the Americas. Asian Australas. J. Anim. Sci. 2019, 32, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, D.M.; Gummow, B.; Gardiner, C.P.; Cavalieri, J.; Fitzpatrick, L.A.; Parker, A.J. A survey of the meat goat industry in Queensland and New South Wales. 2. Herd management, reproductive performance and animal health. Anim. Prod. Sci. 2016, 56, 1533–1544. [Google Scholar] [CrossRef]
- Naicy, T.; Venkatachalapathy, R.T.; Aravindakshan, T.V.; Raghavan, K.C.; Mini, M.; Shyama, K. Relative abundance of tissue mRNA and association of the single nucleotide polymorphism of the goat NGF gene with prolificacy. Anim. Reprod. Sci. 2016, 173, 42–48. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Panasiewicz, G.; Bieniek-Kobuszewska, M.; Lipka, A.; Majewska, M.; Jedryczko, R.; Szafranska, B. Novel effects of identified SNPs within the porcine Pregnancy-Associated Glycoprotein gene family (pPAGs) on the major reproductive traits in Hirschmann hybrid-line sows. Res. Vet. Sci. 2017, 114, 123–130. [Google Scholar] [CrossRef]
- Neupane, M.; Geary, T.W.; Kiser, J.N.; Burns, G.W.; Hansen, P.J.; Spencer, T.E.; Neibergs, H.L. Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle. PLoS ONE 2017, 12, e0188997. [Google Scholar] [CrossRef]
- Chen, M.Y.; Wang, J.; Liu, N.; Cui, W.B.; Dong, W.Z.; Xing, B.S.; Pan, C.Y. Pig SOX9: Expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight. Theriogenology 2019, 138, 94–101. [Google Scholar] [CrossRef]
- Bakhtiar, R.; Abdolmohammadi, A.; Hajarian, H.; Nikousefat, Z.; Kalantar-Neyestanaki, D. Investigation of the 5′ flanking region and exon 3 polymorphisms of IGF-1 gene showed moderate association with semen quality in Sanjabi breed rams. Theriogenology 2017, 104, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Sonika, A.; Rekha, S.; Maitra, A.; Tantia, M.S. Current status of molecular genetics research of goat fecundity. Small Rumin. Res 2015, 125, 34–42. [Google Scholar]
- Souza, C.J.; MacDougall, C.; Campbell, B.K.; McNeilly, A.S.; Baird, D.T. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1B (BMPRIB) gene. J. Endocrinol. 2001, 169, R1–R6. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Wu, X.Y.; Juengel, J.L.; Ross, I.K.; Lumsden, J.M.; Lord, E.A.; Dodds, K.G.; Walling, G.A.; McEwan, J.C.; O’Connell, A.R.; et al. Highly prolific Booroola sheep have a mutationin the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 2001, 64, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.H.; Galloway, S.M.; Ross, I.K.; Gregan, S.M.; Ward, J.; Nimbkar, B.V.; Ghalsasi, P.M.; Nimbkar, C.; Gray, G.D.; Subandriyo; et al. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biol. Reprod. 2002, 66, 1869–1874. [Google Scholar] [CrossRef]
- Mulsant, P.; Lecerf, F.; Fabre, S.; Schibler, L.; Monget, P.; Lanneluc, I.; Pisselet, C.; Riquet, J.; Monniaux, D.; Callebaut, I.; et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proc. Natl. Acad. Sci. USA 2001, 98, 5104–5109. [Google Scholar] [CrossRef]
- Fabre, S.; Pierre, A.; Pisselet, C.; Mulsant, P.; Lecerf, F.; Pohl, J.; Monget, P.; Monniaux, D. The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality. J. Endocrinol. 2003, 177, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.X.; Liu, Z.H.; Jiao, C.L.; He, Y.Q.; Fang, L.; Ye, S.C.; Chen, G.H.; Wang, J.Y. Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). J. Anim. Sci. 2007, 85, 598–603. [Google Scholar] [CrossRef]
- Polley, S.; De, S.; Batabyal, S.; Kaushik, R.; Yadav, P.; Arora, J.S.; Chattopadhyay, S.; Pan, S.; Brahma, B.; Datta, T.K.; et al. Polymorphism of fecundity genes (BMPR1B, BMP15 and GDF9) in the Indian prolific Black Bengal goat. Small Rumin. Res 2009, 85, 122–129. [Google Scholar] [CrossRef]
- Ahlawat, S.; Sharma, R.; Maitra, A. Screening of indigenous goats for prolificacy associated DNA markers of sheep. Gene 2013, 517, 128–131. [Google Scholar] [CrossRef]
- Ahlawat, S.; Sharma, R.; Maitra, A.; Tantia, M.S.; Roy, M.; Mandakmalen, S. New genetic polymorphisms in Indian goat BMPR1B gene. Indian J. Anim. Sci. 2014, 84, 37–42. [Google Scholar]
- Chu, M.X.; Zhao, X.H.; Zhang, Y.J.; Jin, M.; Wang, J.Y.; Di, R.; Cao, G.L.; Feng, T.; Fang, L.; Ma, Y.H.; et al. Polymorphisms of BMPR-IB gene and their relationship with litter size in goats. Mol. Biol. Rep. 2010, 37, 4033–4039. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, S.; Sharma, R.; Roy, M.; Mandakmale, S.; Tantia, M.S.; Prakash, V. Association analysis of novel SNPs in BMPR1B, BMP15 and GDF9 genes with reproductive traits in Black Bengal goats. Small Rumin. Res 2015, 132, 92–98. [Google Scholar] [CrossRef]
- Davis, G.H.; Balakrishnan, L.; Ross, I.K.; Wilson, T.; Galloway, S.M.; Lumsden, B.M.; Hanrahan, J.P.; Mullen, M.; Mao, X.Z.; Wang, G.L.; et al. Investigation of the Booroola (FecB) and Inverdale (FecXI) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries. Anim. Reprod. Sci. 2006, 92, 87–96. [Google Scholar] [CrossRef]
- Monteagudo, L.V.; Ponz, R.; Tejedor, M.T.; Lavina, A.; Sierra, I. A 17 bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Anim. Reprod. Sci. 2009, 110, 139–146. [Google Scholar] [CrossRef]
- Tang, J.; Hu, W.; Di, R.; Liu, Q.; Wang, X.; Zhang, X.; Zhang, J.; Chu, M. Expression analysis of the prolific candidate genes, BMPR1B, BMP15, and GDF9 in Small Tail Han Ewes with three fecundity (FecB gene) genotypes. Animals 2018, 8, 166. [Google Scholar] [CrossRef]
- Zamani, P.; Abdoli, R.; Deljou, A.; Rezvan, H. Polymorphism and bioinformatics analysis of growth differentiation factor 9 gene in Lori sheep. Ann. Anim. Sci. 2015, 2, 337–348. [Google Scholar] [CrossRef]
- Zuo, B.; Qian, H.; Wang, Z.; Wang, X.; Nisa, N.; Bayier, A.; Ying, S.; Hu, X.; Gong, C.; Guo, Z.; et al. A study on BMPRIB genes of Bayanbulak Sheep. Asian Australas. J. Anim. Sci. 2013, 26, 36–42. [Google Scholar] [CrossRef]
- Hanrahan, J.P.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R.; Galloway, S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 2004, 70, 900–909. [Google Scholar] [CrossRef]
- Nicol, L.; Bishop, S.C.; Pong-Wong, R.; Bendixen, C.; Holm, L.E.; Rhind, S.M.; McNeilly, A.S. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 2009, 138, 921–933. [Google Scholar] [CrossRef] [Green Version]
- El Fiky, Z.A.; Hassan, G.M.; Nassar, M.I. Genetic polymorphism of growth differentiation factor 9 (GDF9) gene related to fecundity in two Egyptian sheep breeds. J. Assist. Reprod. Genet. 2017, 34, 1683–1690. [Google Scholar] [CrossRef]
- Abdoli, R.; Zamani, P.; Deljou, A.; Rezvan, H. Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes. Gene 2013, 524, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Vage, D.I.; Husdal, M.; Kent, M.P.; Klemetsdal, G.; Boman, I.A. A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genet. 2013, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.Y.; Di, R.; Tang, Q.Q.; Jin, H.H.; Chu, M.X.; Huang, D.W.; He, J.N.; Liu, Q.Y.; Hu, W.P.; Wang, X.Y. Tissue-specific mRNA expression profiles of GDF9, BMP15, and BMPR1B genes in prolific and non-prolific goat breeds. Czech J. Anim. Sci. 2015, 60, 452–458. [Google Scholar] [CrossRef]
- Pramod, R.K.; Sharma, S.K.; Singhi, A.; Pan, S.; Mitra, A. Differential ovarian morphometry and follicular expression of BMP15, GDF9 and BMPR1B influence the prolificacy in goat. Reprod. Domest. Anim. 2013, 48, 803–809. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.J. GDF-3 and GDF-9: Two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J. Biol. Chem. 1993, 268, 3444–3449. [Google Scholar]
- Hennet, M.L.; Combelles, C.M.H. The antral follicle: A microenvironment for oocyte differentiation. Int. J. Dev. Biol. 2012, 56, 819–831. [Google Scholar] [CrossRef]
- Peng, J.; Li, Q.; Wigglesworth, K.; Rangarajan, A.; Kattamuri, C.; Peterson, R.T.; Eppig, J.J.; Thompson, T.B.; Matzuk, M.M. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc. Natl. Acad. Sci. USA 2013, 110, E776–E785. [Google Scholar] [CrossRef] [Green Version]
- Dias, F.C.; Khan, F.M.I.R.; Adams, G.P.; Sirard, M.A.; Singh, J. Granulosa cell function and oocyte competence: Super-follicles, super-moms and super-stimulation in cattle. Anim. Reprod. Sci. 2014, 149, 80–89. [Google Scholar] [CrossRef]
- Otsuka, F.; McTavish, K.J.; Shimasaki, S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol. Reprod. Dev. 2011, 78, 9–21. [Google Scholar] [CrossRef]
- Paulini, F. Expression of Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15(BMP15) and Their Effect on In Vitro Luteinization of Bovine Granulosan Cells. Master’s Thesis, School of Agronomy and Veterinary Medicine, UnB, Brasília, Brazil, 2010. [Google Scholar]
- Bodensteiner, K.J.; Clay, C.M.; Moeller, C.L.; Sawyer, H.R. Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol. Reprod. 1999, 60, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; van den Hurk, R.; van Tol, H.T.; Roelen, B.A.; Figueiredo, J.R. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol. Reprod. Dev. 2005, 70, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.M.C.V.; Chaves, R.N.; Rocha, R.M.P.; Lima, L.F.; Andrade, P.M.; Lopes, C.A.P.; Souza, C.E.A.; Moura, A.A.A.; Campello, C.C.; Bao, S.N. Dynamic medium containing growth differentiation factor-9 and FSH maintains survival and promotes in vitro growth of caprine preantral follicles after long-term in vitro culture. Reprod. Fertil. Dev. 2013, 25, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Yang, Q.; Wang, K.; Yan, H.L.; Pan, C.Y.; Chen, H.; Liu, J.W.; Zhu, H.J.; Qu, L.; Lan, X.Y. Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology 2019, 125, 115–121. [Google Scholar] [CrossRef]
- Shokrollahi, B.; Morammazi, S. Polymorphism of GDF9 and BMPR1B genes and their association with litter size in Markhoz goats. Reprod. Domest. Anim. 2018, 53, 971–978. [Google Scholar] [CrossRef]
- Ahlawat, S.; Sharma, R.; Roy, M.; Mandakmale, S.; Prakash, V.; Tantia, M.S. Genotyping of novel SNPs in BMPR1B, BMP15, and GDF9 genes for association with prolificacy in seven Indian goat breeds. Anim. Biotechnol. 2016, 27, 199–207. [Google Scholar] [CrossRef]
- Maitra, A.; Sharma, R.; Ahlawat, S.; Boranal, K.; Tantia, M.S. Fecundity gene SNPs as informative markers for assessment of Indian goat genetic architecture. Indian J. Anim. Res. 2016, 50, 349–356. [Google Scholar]
- An, X.P.; Hou, J.X.; Zhao, H.B.; Li, G.; Bai, L.; Peng, J.Y.; M Yan, Q.; Song, Y.X.; Wang, J.G.; Cao, B.Y. Polymorphism identification in goat GNRH1 and GDF9 genes and their association analysis with litter size. Anim. Genet. 2013, 44, 234–238. [Google Scholar] [CrossRef]
- Feng, T.; Geng, X.; Lang, X.Z.; Chu, M.X.; Cao, G.L.; Di, R.; Fang, L.; Chen, H.Q.; Liu, X.L.; Li, N. Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Mol. Biol. Rep. 2011, 38, 5189–5197. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, S.Q.; Zhou, X.B.; Zhang, R.; Li, Y.; Wang, X.L.; Chen, Y.L. A non-synonymous mutation in GDF9 is highly associated with litter size in cashmere goats. Anim. Genet. 2016, 47, 628–633. [Google Scholar] [CrossRef]
- Zhu, G.Q.; Wang, Q.I.; Kang, Y.G.; Lv, Y.Z.; Cao, B.Y. Polymorphisms in GDF9 gene and its relationship with litter size in five breeds of Black Goats. Iran. J. Appl. Anim. Sci. 2013, 3, 625–628. [Google Scholar]
- Wang, Y.C.; Zhang, X.H.; Chu, M.X. Polymorphisms of caprine GDF9 gene and their association with litter size in Henan dairy goat. J. Anim. Vet. Adv. 2013, 12, 1590–1596. (In Chinese) [Google Scholar]
- Tang, J.S.; Zhang, W.; Zhu, D.J.; Hui, W.Q.; Su, S.G.; Chen, S. Effects of GDF9 gene polymorphisms on serum levels of FSH and LH in goat ewes. Anim. Husb. Vet. Med. 2017, 49, 13–18. (In Chinese) [Google Scholar]
- Lu, X.Y.; Sun, W.; Lu, W.W.; Gao, W.; Yu, J.R.; Bao, J.J.; Wang, L.H.; Wang, Q.Z.; Li, Y.J.; Zhang, Z.J.; et al. Polymorphisms of FSH-β and GDF-9 genes and their relationships with prolificacy in Haimen goat and Xuhuai goat. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 2016, 37, 41–46. (In Chinese) [Google Scholar]
- Wang, B.C.; Zhang, Q.K.; Xu, J.J.; Chen, M.; Liu, K.D.; Li, Z.; Pan, Q.J. Polymorphism detection of GDF9 gene exon 2 in three China goat breeds. China Herbiv. Sci. Collect. Pap. 2014, S1, 132–136. (In Chinese) [Google Scholar]
- Ren, L.N.; Liu, S.G.; Hu, D.W.; Lan, C.; Tan, T.T.; Wang, J.J.; Chen, J.Q.; Ma, H.D.; Cheng, G.X. Polymorphism of growth differentiation factor 9 gene and its relationship with litter size of Chong-ming white goats. Anim. Husb. Vet. Med. 2012, 44, 25–29. (In Chinese) [Google Scholar]
- Dong, C.H.; Du, L.X. Research on polymorphism analysis of GDF9 gene related to reproduction trait of goat. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2011, 42, 227–237. (In Chinese) [Google Scholar]
- Wu, Z.H.; Chu, M.X.; Li, X.W.; Fang, L.; Ye, S.C.; Liu, Z.H.; Chen, G.H. PCR-SSCP analysis on exon 2 of growth differentiation factor 9 gene in goats. Sci. Agric. Sin. 2006, 39, 802–808. (In Chinese) [Google Scholar]
- Mahmoudi, P.; Rashidi, A.; Rostamzadeh, J.; Razmkabir, M. Association between c.1189G> A single nucleotide polymorphism of GDF9 gene and litter size in goats: A meta-analysis. Anim. Reprod. Sci. 2019, 209, 106140. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ding, X.L.; Ying, S.J.; Wang, Z.Y.; Pang, X.S.; Wang, R.F.; Chen, Q.K.; Shi, J.F.; Zhang, H.; Wang, F. SSCP analysis on exon2 of GDF9 gene in local of Jiangsu province. Jiangsu Agric. Sci. 2008, 5, 51–53. (In Chinese) [Google Scholar]
- Arefnejad, B.; Mehdizadeh, Y.; Javanmard, A.; Zamiri, M.J.; Niazi, A. novel single nucleotide polymorphisms (SNPs) in two oogenesis specific genes (BMP15, GDF9) and their association with litter size in Markhoz goat (Iranian Angora). Iranian J. Appl. Anim. Sci. 2018, 8, 91–99. [Google Scholar]
- Brazil, D.F.; Rauscher, R.; Ignatova, Z. Timing during translation matters: Synonymous mutations in human pathologies influence protein folding and function. Biochem. Soc. Trans. 2018, 46, 937–944. [Google Scholar]
- Chu, M.X.; Wu, Z.H.; Feng, T.; Cao, G.; Fang, L.; Di, R.; Huang, D.W.; Li, X.; Li, N. Polymorphism of GDF9 gene and its association with litter size in goats. Vet. Res. Commun. 2011, 35, 329–336. [Google Scholar] [CrossRef]
- Thomas, N.; Venkatachalapathy, T.; Aravindakshan, T.; Raghavan, K.C. Molecular cloning, SNP detection and association analysis of 5′ flanking region of the goat IGF1 gene with prolificacy. Anim. Reprod. Sci. 2016, 167, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.H.; Zhang, S.H.; He, L.B.; Zhu, H.J.; Wang, Z.; Yan, H.L.; Huang, Y.Z.; Dang, R.H.; Lei, C.Z.; Chen, H.; et al. A 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat. Theriogenology 2019, 139, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.H.; Jiang, E.H.; Wang, K.; Pan, C.Y.; Chen, H.; Yan, H.L.; Zhu, H.J.; Liu, J.W.; Qu, L.; Lan, X.Y. Goat membrane associated ring-CH-type finger 1 (MARCH1) mRNA expression and association with litter size. Theriogenology 2019, 128, 8–16. [Google Scholar] [CrossRef]
- An, X.P.; Hou, J.; Gao, T.; Lei, Y.; Li, G.; Song, Y.; Wang, J.; Cao, B. Single-nucleotide polymorphisms g.151435C> T and g.173057T> C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats. Theriogenology 2015, 83, 1477–1483. [Google Scholar] [CrossRef]
- Chen, M.Y.; Yan, H.L.; Wang, K.; Cui, Y.; Chen, R.; Liu, J.W.; Zhu, H.J.; Qu, L.; Pan, C.Y. Goat SPEF2: Expression profile, indel variants identification and association analysis with litter size. Theriogenology. 2019, 139, 147–155. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, Q.; Wang, K.; Zhang, S.; Pan, C.; Chen, H.; Qu, L.; Yan, H.L.; Lan, X.Y. A novel 12-bp indel polymorphism within the GDF9 gene is significantly associated with litter size and growth traits in goats. Anim. Genet. 2017, 48, 735–736. [Google Scholar] [CrossRef]
- Yang, C.X.; Zi, X.D.; Wang, Y.; Yang, D.Q.; Ma, L.; Lu, J.Y.; Niu, H.R.; Xiao, X. Cloning and mRNA expression levels of GDF9, BMP15, and BMPR1B genes in prolific and non-prolific goat breeds. Mol. Reprod. Dev. 2012, 79, 2. [Google Scholar] [CrossRef]
- Dutta, R.; Das, B.; Laskar, S.; Kalita, D.J.; Borah, P.; Zaman, G.; Saikia, D.P. Polymorphism, sequencing and phylogenetic characterization of growth differentiation factor 9 (GDF9) gene in Assam Hill goat. Afr. J. Biotechnol. 2013, 12, 6894–6900. [Google Scholar]
- Ahlawat, S.; Sharma, R.; Maitra, A.; Roy, M.; Tantia, M.S. Designing, optimization and validation of tetra-primer ARMS PCR protocol for genotyping mutations in caprine Fec genes. Meta Gene 2014, 2, 439–449. [Google Scholar] [CrossRef] [PubMed]
SNP Locus | Rs of the SNP | Breed and Sample Size | Mutant allele Frequency | Effect of the Mutant Allele on the Litter Size Trait | p Values | Reference |
---|---|---|---|---|---|---|
g.1972T>C/ c.149T>C/p.L50P | - | Lezhi black goats, n = 6 | - | - | - | [70] |
- | Tibetan goats, n = 6 | - | - | - | ||
g.3665C>T/ c.719C>T/ p.A240V | rs637835524 | Henan dairy goats, n = 166 | 0.075 | Positive | p < 0.05 | [53] |
Yaoshan goats, n = 98 | 0.036 | - | - | |||
Taihang Black goats, n = 102 | 0.024 | - | - | |||
g.3665C>T/ c.719C>T/ p.A240V | rs637835524 | Jining Grey goats, n = 234 | 0.092 | - | p > 0.05 | [58] |
Lubei White goats, n = 90 | 0 | - | p > 0.05 | |||
Yimeng Black goats, n = 80 | 0.116 | - | p > 0.05 | |||
g.3764C>T/ c.818C>T/ p.A273V | rs662668357 | Black Bengal goats, n = 158 | 026 | - | p > 0.05 | [23] |
g.3764C>T/ c.818C>T/ p.A273V | rs662668357 | Black Bengal goats, n = 110 | 0.34 | - | p > 0.05 | [47] |
Barbari, n = 49 | 0.082 | - | p > 0.05 | |||
Beetal, n = 28 | 0 | - | p > 0.05 | |||
Ganjam, n = 50 | 0.04 | - | p > 0.05 | |||
Jhakrana, n = 14 | 0 | - | p > 0.05 | |||
Osmanabadi, n = 41 | 0 | - | p > 0.05 | |||
Sangamneri, n = 50 | 0.04 | - | p > 0.05 | |||
g.3764C>T/ c.818C>T/ p.A273V | rs662668357 | Black Bengal goats, n = 158 | 0.256 | - | - | [48] |
Barbari, n = 50 | 0.06 | - | - | |||
Beetal, n = 28 | 0 | - | - | |||
Ganjam, n = 50 | 0.02 | - | - | |||
Jhakrana, n = 14 | 0 | - | - | |||
Osmanabadi, 41 | 0 | - | - | |||
Sangamneri, n = 50 | 0.02 | - | - | |||
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Markhoz goats, n = 120 | 0.623 | Positive | p < 0.05 | [61] |
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Markhoz goats, n = 164 | 0.686 | - | p > 0.05 | [46] |
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Black Bengal goats, n = 110 | 0.032 | - | p > 0.05 | [47] |
Barbari, n = 49 | 0.041 | - | p > 0.05 | |||
Beetal, n = 27 | 0 | - | p > 0.05 | |||
Ganjam, n = 50 | 0.04 | - | p > 0.05 | |||
Jhakrana, n = 13 | 0 | - | p > 0.05 | |||
Osmanabadi, n = 41 | 0.024 | - | p > 0.05 | |||
Sangamneri, n = 50 | 0.07 | - | p > 0.05 | |||
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Black Bengal goats, n = 158 | 0.035 | - | - | [48] |
Barbari, n = 50 | 0.040 | - | - | |||
Beetal, n = 28 | 0.018 | - | - | |||
Ganjam, n = 50 | 0.030 | - | - | |||
Jhakrana, n = 14 | 0.036 | - | - | |||
Osmanabadi, n = 41 | 0.024 | - | - | |||
Sangamneri, n = 50 | 0.070 | - | - | |||
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Jining Grey goats, n = 177 | 0.350 | Positive | p < 0.05 | [50] |
Guizhou White goats, n = 71 | 0.373 | - | p > 0.05 | |||
Boer goats, n = 47 | 0.70 | - | p > 0.05 | |||
Liaoning cashmere goats, n = 40 | 0.200 | - | p > 0.05 | |||
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Black Bengal goats, n = 158 | 0.040 | - | p > 0.05 | [23] |
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Lubei White goats, n = 90 | 0151 | - | p > 0.05 | [58] |
Yimeng Black goats, n = 80 | 0.182 | - | p > 0.05 | |||
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Yangtse River Delta White goats, n = 105 | 0.262 | - | - | [60] |
Huanghuai goats, n = 40 | 0.150 | - | - | |||
Boer goats, n = 35 | 0.086 | - | - | |||
g.3905A>C/ c.959A>C/ p.Q320P | rs645345606 | Shaanbei white cashmere goats, n = 1511 | 0.286 | Positive | p < 0.05 | [45] |
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Shaanbei white cashmere goats, n = 1511 | 0.523 | Negative | p < 0.05 | [45] |
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Markhoz goats, n = 164 | 0.314 | - | p > 0.05 | [46] |
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Xinong Saanen dairy goats, n = 241 | 0.290 | Positive | p < 0.05 | [49] |
Guanzhong dairy goats, n = 197 | 0290 | Positive | p < 0.05 | |||
Boer goats, n = 203 | 0.290 | Positive | p < 0.05 | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Jining Grey goats, n = 178 | 0.83 | - | p > 0.05 | [50] |
Guizhou White goats, n = 71 | 0.96 | - | - | |||
Continued in Table 1 | ||||||
Boer goats, n = 47 | 0.81 | - | - | |||
Liaoning cashmere goats, n = 40 | 0.64 | - | - | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Henan dairy goats, n = 168 | 0.83 | Positive | p < 0.05 | [53] |
Yaoshan goats, n = 98 | 0.92 | - | - | |||
Taihang Black goats, n = 102 | 0.89 | - | - | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Black Bengal goats, n = 110 | 0.92 | - | p > 0.05 | [47] |
Barbari, n = 49 | 0.90 | - | p > 0.05 | |||
Beetal, n = 28 | 0.64 | - | p > 0.05 | |||
Ganjam, n = 50 | 0.93 | - | p > 0.05 | |||
Jhakrana, n = 13 | 0.50 | - | p > 0.05 | |||
Osmanabadi, n = 41 | 0.99 | - | p > 0.05 | |||
Sangamneri, n = 50 | 0.78 | - | p > 0.05 | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Black Bengal goats, n = 158 | 0.89 | - | - | [48] |
Barbari, n = 50 | 0.90 | - | - | |||
Beetal, n = 28 | 0.61 | - | - | |||
Ganjam, n = 50 | 0.93 | - | - | |||
Jhakrana, n = 14 | 0.54 | - | - | |||
Osmanabadi, n = 41 | 0.84 | - | - | |||
Sangamneri, n = 50 | 0.78 | - | - | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Inner Mongolia cashmere goats, n = 761 | 0.68 | Positive | p < 0.05 | [51] |
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Big foot black goats, n = 96 | 0.57 | Negative | p < 0.05 | [52] |
Jintang black goats, n = 81 | 0.32 | Negative | p < 0.05 | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Black Bengal goats, n = 158 | 0.89 | - | p > 0.05 | [23] |
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Jining Grey goats, n = 109 | 0.93 | Positive | p < 0.05 | [59] |
Wendeng dairy goats, n = 40 | 0.31 | - | - | |||
Liaoning cashmere goats, n = 38 | 0.40 | - | - | |||
Beijing native goats, n = 31 | 0.68 | - | - | |||
Boer goats, n = 28 | 0.57 | - | - | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Anhui White goats, n = 67 | 0.72 | Negative | p < 0.05 | [54] |
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Haimen goats, n = 113 | 0.77 | - | p > 0.05 | [55] |
Xuhuai goats, n = 88 | 0.89 | - | p > 0.05 | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Laiwu Black goats, n = 32 | 0.86 | Positive | p < 0.05 | [56] |
Jining Grey goats, n = 60 | 0.92 | Positive | p < 0.05 | |||
Laoshan dairy goats, n = 55 | 0.40 | - | p > 0.05 | |||
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Chongming White goats, n = 75 | 0.80 | - | P >0.05 | [57] |
g.4135A>G/c.1189A>G/ p.V397I | rs637044681 | Jining Grey goats, n = 234 | 0.80 | - | p > 0.05 | [58] |
Lubei White goats, n = 90 | 0.68 | Negative | p < 0.05 | |||
Yimeng Black goats, n = 80 | 0.85 | Negative | p < 0.05 | |||
g.1902C>G/c.79C>G/ p.P27R | rs671913497 | - | - | - | - | - |
g.2077C>G/c.254C>G/ p.A85G | rs654628150 | - | - | - | - | - |
g.3556G>C/ c.610G>C/ p.E204Q | rs666975374 | - | - | - | - | - |
SNP Locus | Rs of the SNP | Breed and Sample Size | Mutant Allele Frequency | Effect of the Mutant Allele on the Litter Size Trait | p Values | Reference |
---|---|---|---|---|---|---|
g.1941C>T/ c.118C>T/p.G40G | - | Lezhi black goats, n = 6 | - | - | - | [70] |
- | Tibetan goats, n = 6 | - | - | - | ||
g.2006C>A/ c.183C>A/p.L61L | rs669811820 | Jining Grey goats, n = 224 | 0.61 | Negative | P < 0.05 | [63] |
Wendeng dairy goats, n = 40 | 0.84 | - | - | |||
Liaoning cashmere goats, n = 39 | 0.88 | - | - | |||
Beijing native goats, n = 40 | 0.91 | - | - | |||
Boer goats, n = 39 | 0.88 | - | - | |||
g.2006C>A/ c.183C>A/p.L61L | rs669811820 | Jining Grey goats, n = 234 | 0.33 | - | P > 0.05 | [58] |
Lubei White goats, n = 90 | 0.20 | - | P > 0.05 | |||
Yimeng Black goats, n = 80 | 0.35 | Negative | P < 0.05 | |||
g.2006C>A/ c.183C>A/p.L61L | rs669811820 | Anhui White goats, n = 68 | 0.618 | Negative | P < 0.05 | [54] |
g.2159C>T/c.336C>T/p.N112N | - | Jining Grey goats, n = 224 | 0.39 | Positive | P < 0.05 | [63] |
Wendeng dairy goats, n = 40 | 0.16 | - | - | |||
Liaoning cashmere goats, n = 39 | 0.12 | - | - | |||
Beijing native goats, n = 40 | 0.09 | - | - | |||
Boer goats, n = 39 | 0.12 | - | - | |||
g.2211G>A/c.387G>A/p.D129D | - | Assam hill goat, n = 92 | - | - | - | [71] |
g.3441C>A/c.495C>A/p.S165S | - | Assam hill goat, n = 92 | - | - | - | [71] |
g.3369G>A/ c.423G>A/p.L141L | rs650650729 | Jining Grey goats, n = 178 | 0.104 | - | P > 0.05 | [50] |
Guizhou White goats, n = 71 | 0.021 | - | P > 0.05 | |||
Boer goats, n = 47 | 0.192 | - | P > 0.05 | |||
Liaoning cashmere goats, n = 40 | 0.363 | - | P > 0.05 | |||
g.3369G>A/ c.423G>A/p.L141L | rs650650729 | Jining Grey goats, n = 109 | 0.087 | Negative | P < 0.05 | [59] |
Wendeng dairy goats, n = 40 | 0.313 | - | - | |||
Liaoning cashmere goats, n = 38 | 0.605 | - | - | |||
Beijing native goats, n = 31 | 0.097 | - | - | |||
Boer goats, n = 28 | 0.304 | - | - | |||
g.3369G>A/ c.423G>A/p.L141L | rs650650729 | Laiwu Black goats, n = 32 | 0.187 | - | P > 0.05 | [56] |
Jining Grey goats, n = 60 | 0.108 | Negative | P < 0.05 | |||
Laoshan dairy goats, n = 55 | 0.709 | - | P > 0.05 | |||
g.3597G>T/ c.651G>T/p.T217T | rs651511232 | - | - | - | - | - |
Number | Test Method | Country | Breeds | Sample Size | Minor Allele Frequency | Parity | p Values | Dominant Genotype | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | PCR-RFLP Sequencing | China | Shaanbei white cashmere goats | 1511 | A-0.477 | 1st | p < 0.05 | AG | |
2 | PCR-RFLP Sequencing | China | Xinong Saanen dairy goats | 241 | G-0.290 | 1st | p < 0.05 | AA, GA | [49] |
PCR-RFLP Sequencing | China | Xinong Saanen dairy goats | 241 | G-0.290 | 2nd | p < 0.05 | AA | ||
PCR-RFLP Sequencing | China | Xinong Saanen dairy goats | 241 | G-0.290 | 3rd | p < 0.05 | AA, GA | ||
PCR-RFLP Sequencing | China | Xinong Saanen dairy goats | 241 | G-0.290 | 4th | p > 0.05 | AA | ||
PCR-RFLP Sequencing | China | Xinong Saanen dairy goats | 241 | G-0.290 | Average | p < 0.05 | AA, GA | ||
PCR-RFLP Sequencing | China | Guanzhong dairy goats | 197 | G-0.290 | 1st | p < 0.05 | |||
PCR-RFLP Sequencing | China | Guanzhong dairy goats | 197 | G-0.290 | 2nd | p < 0.05 | AA | ||
PCR-RFLP Sequencing | China | Guanzhong dairy goats | 197 | G-0.290 | 3rd | p < 0.05 | AA, GA | ||
PCR-RFLP Sequencing | China | Guanzhong dairy goats | 197 | G-0.290 | 4th | p > 0.05 | AA | ||
PCR-RFLP Sequencing | China | Guanzhong dairy goats | 197 | G-0.290 | Average | p < 0.05 | AA, GA | ||
PCR-RFLP Sequencing | China | Boer goats | 203 | G-0.290 | 1st | p < 0.05 | |||
PCR-RFLP Sequencing | China | Boer goats | 203 | G-0.290 | 2nd | p < 0.05 | AA | ||
PCR-RFLP Sequencing | China | Boer goats | 203 | G-0.290 | 3rd | p < 0.05 | AA, GA | ||
PCR-RFLP Sequencing | China | Boer goats | 203 | G-0.290 | 4th | p > 0.05 | AA | ||
PCR-RFLP Sequencing | China | Boer goats | 203 | G-0.290 | Average | p < 0.05 | AA, GA | ||
3 | PCR-RFLP Sequencing | China | Jining Grey goats | 178 | A-0.171 | 1st | p > 0.05 | GG | [50] |
PCR-RFLP Sequencing | China | Guizhou White goats | 71 | A-0.032 | |||||
PCR-RFLP Sequencing | China | Boer goats | 41 | A-0.192 | |||||
PCR-RFLP Sequencing | China | Liaoning cashmere goats | 40 | A-0.363 | |||||
4 | PCR-RFLP Sequencing | China | Henan dairy goats | 168 | A-0.173 | 1st | p < 0.05 | GA | [53] |
PCR-RFLP Sequencing | China | Yaoshan goats | 98 | A-0.082 | |||||
PCR-RFLP Sequencing | China | Taihang Black goats | 102 | A-0.113 | |||||
5 | PCR-RFLP | India | Black Bengal goats | 110 | A-0.180 | 1st | p > 0.05 | GA | [47] |
PCR-RFLP | India | Black Bengal goats | 110 | A-0.180 | 2nd | p > 0.05 | AA | ||
PCR-RFLP | India | Black Bengal goats | 110 | A-0.180 | 3rd | p > 0.05 | AA | ||
PCR-RFLP | India | Barbari | 49 | A-0.102 | 1st | p > 0.05 | GA | ||
PCR-RFLP | India | Barbari | 49 | A-0.102 | 2nd | p > 0.05 | GA | ||
PCR-RFLP | India | Barbari | 49 | A-0.102 | 3rd | p > 0.05 | GA | ||
PCR-RFLP | India | Beetal | 28 | A-0.357 | 1st | p > 0.05 | GG | ||
PCR-RFLP | India | Beetal | 28 | A-0.357 | 2nd | p > 0.05 | GG | ||
PCR-RFLP | India | Beetal | 28 | A-0.357 | 3rd | p > 0.05 | GG | ||
PCR-RFLP | India | Ganjam | 50 | A-0.070 | 1st | p > 0.05 | GG | ||
PCR-RFLP | India | Ganjam | 50 | A-0.070 | 2nd | p > 0.05 | GG | ||
PCR-RFLP | India | Ganjam | 50 | A-0.070 | 3rd | p > 0.05 | GG | ||
PCR-RFLP | India | Jhakrana | 13 | A-0.500 | 1st | p > 0.05 | |||
PCR-RFLP | India | Jhakrana | 13 | A-0.500 | 2nd | p > 0.05 | |||
PCR-RFLP | India | Jhakrana | 13 | A-0.500 | 3rd | p > 0.05 | |||
PCR-RFLP | India | Osmanabadi | 41 | A-0.012 | 1st | p > 0.05 | GA | ||
PCR-RFLP | India | Osmanabadi | 41 | A-0.012 | 2nd | p > 0.05 | GG | ||
PCR-RFLP | India | Osmanabadi | 41 | A-0.012 | 3rd | p > 0.05 | GA | ||
PCR-RFLP | India | Sangamneri | 50 | A-0.220 | 1st | p > 0.05 | GA | ||
PCR-RFLP | India | Sangamneri | 50 | A-0.220 | 2nd | p > 0.05 | GA | ||
PCR-RFLP | India | Sangamneri | 50 | A-0.220 | 3rd | p > 0.05 | GG | ||
6 | PCR-RFLP | India | Black Bengal goats | 158 | A-0.108 | [48] | |||
PCR-RFLP | India | Barbari | 50 | A-0.100 | |||||
PCR-RFLP | India | Beetal | 28 | A-0.393 | |||||
PCR-RFLP | India | Ganjam | 50 | A-0.070 | |||||
PCR-RFLP | India | Jhakrana | 14 | A-0.464 | |||||
PCR-RFLP | India | Osmanabadi | 41 | A-0.159 | |||||
PCR-RFLP | India | Sangamneri | 50 | A-0.220 | |||||
7 | PCR-RFLP Sequencing | China | Inner Mongolia cashmere goats | 761 | A-0.320 | 1st | p < 0.05 | GG | [51] |
PCR-RFLP Sequencing | China | Inner Mongolia cashmere goats | 761 | A-0.320 | 2nd | p < 0.05 | GG | ||
PCR-RFLP Sequencing | China | Inner Mongolia cashmere goats | 761 | A-0.320 | 3rd | p > 0.05 | GG | ||
PCR-RFLP Sequencing | China | Inner Mongolia cashmere goats | 761 | A-0.320 | 4th | p < 0.05 | GG | ||
PCR-RFLP Sequencing | China | Inner Mongolia cashmere goats | 761 | A-0.320 | 5th | p < 0.05 | GG | ||
PCR-RFLP Sequencing | China | Inner Mongolia cashmere goats | 761 | A-0.320 | 6th | p < 0.05 | GG | ||
PCR-RFLP Sequencing | China | Inner Mongolia cashmere goats | 761 | A-0.320 | Average | p < 0.05 | GG | ||
8 | PCR-SSCP | China | Big foot black goats | 96 | A-0.430 | p < 0.05 | AA, GA | [52] | |
PCR-SSCP | China | Jintang black goats | 81 | G-0.320 | p < 0.05 | AA, GA | |||
9 | PCR-RFLP | India | Black Bengal goats | 158 | A-0.110 | p > 0.05 | GA | [23] | |
10 | PCR-SSCP Sequencing | China | Jining Grey goats | 109 | A-0.073 | 1st | p < 0.05 | GG | [59] |
PCR-SSCP Sequencing | China | Wendeng dairy goats | 40 | G-0.313 | |||||
PCR-SSCP Sequencing | China | Liaoning cashmere goats | 38 | G-0.395 | |||||
PCR-SSCP Sequencing | China | Beijing native goats | 31 | A-0.323 | |||||
PCR-SSCP Sequencing | China | Boer goats | 28 | A-0.429 | |||||
11 | PCR-SSCP Sequencing | China | Anhui White goats | 67 | A-0.284 | 1st | p < 0.05 | AA | [54] |
12 | PCR-SSCP Sequencing | China | Haimen goats | 113 | A-0.230 | 1st | p > 0.05 | GA | [55] |
PCR-SSCP Sequencing | China | Xuhuai goats | 88 | A-0.110 | 1st | p > 0.05 | |||
13 | PCR-SSCP Sequencing | China | Laiwu Black goats | 32 | A-0.141 | 1st | p < 0.05 | GG | [56] |
PCR-SSCP Sequencing | China | Jining Grey goats | 60 | A-0.083 | 1st | p < 0.05 | GG | ||
PCR-SSCP Sequencing | China | Laoshan dairy goats | 55 | A-0.600 | 1st | p > 0.05 | GA | ||
14 | PCR-SSCP Sequencing | China | Chongming goats | 75 | A-0.200 | 1st | p > 0.05 | GA | [57] |
15 | PCR-SSCP Sequencing | China | Lubei White goats | 90 | A-0.325 | 1st | p < 0.05 | AG, GG | [58] |
PCR-SSCP Sequencing | China | Yimeng Black goats | 80 | A-0.148 | 1st | p < 0.05 | AA | ||
16 | PCR-RFLP | Iran | Markhoz goats | 164 | G-0.314 | 1st | p > 0.05 | [46] |
Number | Country | Breeds | Sample Size | Minor Allele Frequency | Parity | p Values | Dominant Genotype | Reference |
---|---|---|---|---|---|---|---|---|
1 | China | Shaanbei white cashmere goats | 1511 | C-0.286 | 1st | p < 0.05 | AC, CC | [45] |
2 | India | Black Bengal goats | 110 | C-0.032 | 1st | p > 0.05 | AC | [47] |
India | Black Bengal goats | 110 | C-0.032 | 2nd | p > 0.05 | AA | ||
India | Black Bengal goats | 110 | C-0.032 | 3rd | p > 0.05 | AC | ||
India | Barbari | 49 | C-0.041 | 1st | p > 0.05 | AA | ||
India | Barbari | 49 | C-0.041 | 2nd | p > 0.05 | AA | ||
India | Barbari | 49 | C-0.041 | 3rd | p > 0.05 | AA | ||
India | Beetal | 27 | C-0 | 1st | p > 0.05 | AA | ||
India | Beetal | 27 | C-0 | 2nd | p > 0.05 | AA | ||
India | Beetal | 27 | C-0 | 3rd | p > 0.05 | AA | ||
India | Ganjam | 46 | C-0.040 | 1st | p > 0.05 | AA | ||
India | Ganjam | 46 | C-0.040 | 2nd | p > 0.05 | AA | ||
India | Ganjam | 46 | C-0.040 | 3rd | p > 0.05 | AA | ||
India | Jhakrana | 13 | C-0 | 1st | p > 0.05 | |||
India | Jhakrana | 13 | C-0 | 2nd | p > 0.05 | |||
India | Jhakrana | 13 | C-0 | 3rd | p > 0.05 | |||
India | Osmanabadi | 39 | C-0.024 | 1st | p > 0.05 | AA | ||
India | Osmanabadi | 39 | C-0.024 | 2nd | p > 0.05 | AA | ||
India | Osmanabadi | 39 | C-0.024 | 3rd | p > 0.05 | AA | ||
India | Sangamneri | 43 | C-0.070 | 1st | p > 0.05 | AA | ||
India | Sangamneri | 43 | C-0.070 | 2nd | p > 0.05 | AA | ||
India | Sangamneri | 43 | C-0.070 | 3rd | p > 0.05 | AA | ||
3 | India | Black Bengal goats | 158 | C-0.035 | [48] | |||
India | Barbari | 50 | C-0.040 | |||||
India | Beetal | 28 | C-0.018 | |||||
India | Ganjam | 50 | C-0.030 | |||||
India | Jhakrana | 14 | C-0.036 | |||||
India | Osmanabadi | 41 | C-0.024 | |||||
India | Sangamneri | 50 | C-0.070 | |||||
4 | China | Jining Grey goats | 177 | C-0.350 | 1st | p < 0.5 | AC, CC | [50] |
China | Guizhou White goats | 71 | C-0.373 | |||||
China | Boer goats | 47 | C-0.170 | |||||
China | Liaoning cashmere goats | 40 | C-0.200 | |||||
5 | India | Black Bengal goats | 158 | C-0.040 | p > 0.05 | AC | [23] | |
6 | China | Lubei White goats | 90 | C-0.151 | p > 0.05 | CC | [58] | |
China | Yimeng Black goats | 80 | C-0.182 | p > 0.05 | AA | |||
7 | China | Yangtse River Delta White goats | 105 | C-0.262 | [60] | |||
China | Huanghuai goats | 40 | C-0.150 | |||||
China | Boer goats | 35 | C-0.086 | |||||
8 | Iran | Markhoz goats | 120 | A-0.377 | p < 0.05 | AC | [61] | |
9 | Iran | Markhoz goats | 164 | A-0.314 | p > 0.05 | AA | [46] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, Q.; Zhang, S.; Zhang, X.; Pan, C.; Chen, H.; Zhu, H.; Lan, X. Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive? Animals 2019, 9, 886. https://doi.org/10.3390/ani9110886
Wang X, Yang Q, Zhang S, Zhang X, Pan C, Chen H, Zhu H, Lan X. Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive? Animals. 2019; 9(11):886. https://doi.org/10.3390/ani9110886
Chicago/Turabian StyleWang, Xinyu, Qing Yang, Sihuan Zhang, Xiaoyu Zhang, Chuanying Pan, Hong Chen, Haijing Zhu, and Xianyong Lan. 2019. "Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive?" Animals 9, no. 11: 886. https://doi.org/10.3390/ani9110886
APA StyleWang, X., Yang, Q., Zhang, S., Zhang, X., Pan, C., Chen, H., Zhu, H., & Lan, X. (2019). Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive? Animals, 9(11), 886. https://doi.org/10.3390/ani9110886