Using Genetics to Evaluate the Success of a Feral Cat (Felis catus) Control Program in North-Western Australia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Diversity and F-Statistics
3.2. Effective Population Size
3.3. Population Structure, Migration, and Dispersal
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 2; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2006. [Google Scholar]
- Medina, F.M.; Bonnaud, E.; Vidal, E.; Tershy, B.R.; Zavaleta, E.S.; Donlan, C.J.; Keitt, B.S.; Le Corre, M.; Horwath, S.V.; Nogales, M. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 2011, 17, 3503–3510. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species. A selection from the Global Invasive Species Database; The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN): Auckland, New Zealand, 2000. [Google Scholar]
- Threat Abatement Plan for Predation by Feral Cats. Available online: http://www.environment.gov.au/biodiversity/threatened/tap-approved.html (accessed on 16 January 2017).
- Nogales, M.; Martín, A.; Tershy, B.R.; Donlan, C.J.; Veitch, D.; Puerta, N.; Wood, B.; Alonso, J. A review of feral cat eradication on islands. Conserv. Biol. 2004, 18, 310–319. [Google Scholar] [CrossRef]
- Woinarski, J.C.Z.; Burbidge, A.A.; Harrison, P.L. Ongoing unravelling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. USA 2015, 112, 4531–4540. [Google Scholar] [CrossRef] [PubMed]
- Possingham, H.; Jarman, P.; Kearns, A. Independent review of Western Shield—February 2003. Conserv. Sci. West. Aust. 2004, 5, 2–18. [Google Scholar]
- Department of Parks and Wildlife. Creating a Future for the Western Ground Parrot: Workshop Report; Burbidge, A., Comer, S., Lees, C., Page, M., Stanley, F., Eds.; Department of Parks and Wildlife: Perth, Australia, 2016.
- Comer, S.; Speldewinde, P.; Tiller, C.; Clausen, L.; Pinder, J.; Cowen, S.; Algar, D. Evaluating the efficacy of a landscape scale feral cat control program using camera traps and occupancy models. Sci. Rep. 2018, 8, 5335. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R. Genetics and extinction. Biol. Conserv. 2005, 126, 131–140. [Google Scholar] [CrossRef]
- Evans, S.R.; Sheldon, B.C. Interspecific patterns of genetic diversity in birds: Correlations with extinction risk. Conserv. Biol. 2008, 22, 1016–1025. [Google Scholar] [CrossRef]
- Roelke, M.E.; Martenson, J.S.; O’Brien, S.J. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr. Biol. 1993, 3, 340–350. [Google Scholar] [CrossRef]
- Keller, L.F.; Waller, D.M. Inbreeding effects in wild populations. Trends Ecol. Evol. 2002, 17, 230–241. [Google Scholar] [CrossRef]
- Briskie, J.V.; Mackintosh, M. Hatching failure increases with severity of population bottlenecks in birds. Proc. Natl. Acad. Sci. USA 2004, 101, 558–561. [Google Scholar] [CrossRef]
- Tompkins, D.M.; Mitchell, R.A.; Bryant, D.M. Hybridization increases measures of innate and cell-mediated immunity in an endangered bird species. J. Anim. Ecol. 2006, 75, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Hale, K.A.; Briskie, J.V. Decreased immunocompetence in a severely bottlenecked population of an endemic New Zealand bird. Anim. Conserv. 2007, 10, 2–10. [Google Scholar] [CrossRef]
- DeSalle, R.; Amato, G. The expansion of conservation genetics. Nature 2004, 5, 702–712. [Google Scholar] [CrossRef]
- Schwartz, M.K.; Luikart, G.; Waples, R.S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 2007, 22, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution in Mendelian populations. Genetics 1931, 16, 97–159. [Google Scholar] [PubMed]
- Fraser, E.J.; Macdonald, D.W.; Oliver, M.K.; Piertney, S.; Lambin, X. Using population genetic structure of an invasive mammal to target control efforts—An example of the American mink in Scotland. Biol. Conserv. 2013, 167, 35–42. [Google Scholar] [CrossRef]
- Veale, A.J.; Edge, K.A.; McMurtrie, P.; Fewster, R.M.; Clout, M.N.; Gleeson, D.M. Using genetic techniques to quantify reinvasion, survival and in situ breeding rates during control operations. Mol. Ecol. 2013, 22, 5071–5083. [Google Scholar] [CrossRef]
- Zalewski, A.; Zalewska, H.; Lunneryd, S.-G.; André, C.; Mikusiński, G. Reduced genetic diversity and increased structure in American mink on the Swedish coast following invasive species control. PLoS ONE 2016, 11, e0157972. [Google Scholar] [CrossRef]
- Hansen, H.; Hess, S.C.; Cole, D.; Banko, P. Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai’i. Wildl. Res. 2007, 34, 587–596. [Google Scholar] [CrossRef]
- Clausen, L.; Cowen, S.; Pinder, J.; Danks, A.; Thomas, A.; Bell, L.; Speldewinde, P.; Comer, S.; Algar, D. Fortescue Marsh Feral Cat Baiting Program (Christmas Creek Water Management Scheme) Year 5 Annual Report; Department of Parks and Wildlife: Perth, Australia, 2016.
- Rouillard, A.; Skrzypek, G.; Dogramaci, S.; Turney, C.; Grierson, P.F. Impacts of high inter-annual variability of rainfall on a century of extreme hydrologic regime of northwest Australia. Hydrol. Earth Syst. Sci. 2015, 19, 2057–2078. [Google Scholar] [CrossRef]
- Fortescue. Fortescue Marshes Management Plan; Fortescue Metals Group Limited: Perth, Australia, 2009. [Google Scholar]
- Environment Australia. A Directory of Important Wetlands in Australia, 3rd ed.; Environment Australia: Canberra, Australia, 2001.
- Davis, R.A.; Metcalf, B.M. The Night Parrot (Pezoporus occidentalis) in northern Western Australia: A recent sighting from the Pilbara region. Emu 2008, 108, 233–236. [Google Scholar] [CrossRef]
- Tiller, C.; Comer, S.; Speldewinde, P.; Cowen, S.; Algar, D. Fortescue Marsh Feral Cat Baiting Program (Christmas Creek Water Management Scheme) Year 1, Annual Report; Department of Conservation and Environment: Perth, Australia, 2012.
- Trainor, C.R.; Knuckey, C.; Firth, R.S.C. New bird records from the Fortescue Marsh and nearby claypans, Pilbara bioregion, Western Australia. Aust. Field Ornithol. 2016, 33, 61–81. [Google Scholar] [CrossRef]
- SPRAT EPBC Migratory Lists in Species Profile and Threats Database. Available online: http://www.environment.gov.au/sprat/ (accessed on 16 January 2017).
- Algar, D.; Robertson, H.; Rummery, C. Proposed Management Plan for Baiting Feral Cats on the Fortescue Marsh (Christmas Creek Water Management Scheme); Department of Environment and Conservation: Perth, Australia, 2011.
- Menotti-Raymond, M.; David, V.A.; Lyons, L.A.; Schäffer, A.A.; Tomlin, J.F.; Hutton, M.K.; O’Brien, S.J. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 1999, 57, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Menotti-Raymond, M.A.; David, V.A.; Wachter, L.L.; Butler, J.M.; O’Brien, S.J. An STR forensic typing system for genetic individualisation of domestic cat (Felis catus) samples. J. Forensic. Sci. 2005, 50, 1061–1070. [Google Scholar] [PubMed]
- Kalinowski, S.T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 2005, 5, 187–189. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for the exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Barton, N.H.; Slatkin, M.A. Quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 1986, 56, 409–415. [Google Scholar] [CrossRef]
- Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139, 457–462. [Google Scholar]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, O. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Populations 1.2.31 Population Genetic Software (Individuals or Populations Distances, Phylogenetic Trees). Available online: http://bioinformatics.org/~tryphon/populations/ (accessed on 9 June 2019).
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Spencer, P.B.S.; Yurchenko, A.A.; David, V.A.; Scott, R.; Koepfli, K.-P.; Driscoll, C.; O’Brien, S.J.; Menotti-Raymond, M. The population origins and expansion of feral cats in Australia. J. Hered. 2015, 107, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Pierpaoli, M.; Birò, Z.S.; Hermann, M.; Hupe, K.; Fernández, M.; Ragni, B.; Szemethy, L.; Randi, E. Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol. Ecol. 2003, 12, 2585–2598. [Google Scholar] [CrossRef] [Green Version]
- Commonweath of Australia. Threat Abatement Plan for Predation by Feral Cats; Commonwealth of Australia: Canberra, Australia, 2015. [Google Scholar]
- Hedrick, P.W. Genetics of Populations, 2nd ed.; Jones and Barlett: Sudbury, MA, USA, 2011. [Google Scholar]
- Allendorf, F.W.; Luikart, G.H.; Aitken, S.N. Conservation and the Genetics of Populations, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Bengsen, A.J.; Algar, D.; Ballard, G.; Buckmaster, T.; Comer, S.; Fleming, P.J.S.; Friend, J.A.; Johnston, M.; McGregor, H.; Moseby, K.; et al. Feral cat home-range size varies predictably with landscape productivity and population density. J. Zool. 2015, 298, 112–120. [Google Scholar] [CrossRef]
- Goudet, J.; Perrin, N.; Waser, P. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol. Ecol. 2002, 11, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Hurni, H. Daylength and breeding in the domestic cat. Lab. Anim. 1981, 15, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.; Coman, B.J. Ecology of the Feral Cat, Felis catus (L.), in South-Eastern Australia II.* Reproduction. Aust. Wildl. Res. 1982, 9, 111–119. [Google Scholar] [CrossRef]
- Brook, L.A.; Johnson, C.N.; Ritchie, E.G. Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J. Appl. Ecol. 2012, 49, 1278–1286. [Google Scholar] [CrossRef]
- Wang, Y.; Fisher, D.O. Dingoes affect activity of feral cats, but do not exclude them from the habitat of an endangered macropod. Wildl. Res. 2013, 39, 611–620. [Google Scholar] [CrossRef]
Marker | Genbank Accession No. | Repeat Motif | Primer Sequence (5’ to 3’) |
---|---|---|---|
FCA126 | AF130532 | (CA)24 | F—GCCCCTGATACCCTGAATG |
R—CTATCCTTGCTGGCTGAAGG | |||
F146 | AY988112 | (GTT)9 | F—TTACGGTCTCTCCACAAGTC |
R—GAACCAGGTGATGAGAACTG | |||
F164 | AY988113 | (AAAC)9 | F—CTATATGACAACTGAGAACT |
R—AGATGATACAGGTAGAGGTC | |||
F27 | AY988114 | (GAAA)14 | F—CAGATCACAGTCTTACTGAT |
R—CATTAAATGAGGAAGTACTG | |||
F49 | AY988118 | (TTG)8 | F—GTCGAATGCTTAACTGACT |
R—GACATCTGGTCAGTTTCCTC | |||
FCA728 | AY988129 | (GGAA)11 | F—TTCAGCTTTTCCTCCTGACAA |
R—CCTGCCTGTATTCCTCACAA | |||
FCA730 | AY988131 | (GATA)10 | F—ATTGGGAATTGTAGCCAAGG |
R—CTCCAAGTGGATGGAGCATT | |||
FCA735 | AY988136 | (CCAT)6/(AC)15 | F—TCAAGGCCAATTGTAGAGCA |
R—TTCCATTCTCTATGGAATAGTCAGT | |||
FCA744 | AY988145 | (GATA)9 | F—CATTGGGCCTACAGCCTACT |
R—TCAACACCCTCACACCAATG | |||
FCA747 | AY988147 | (GATA)10 | F—GCCTCTTTGGCAACCATTAG |
R—TCTTGGAATTACTCCTGGTAAACA | |||
FCA1059 | AY988153 | (GAAA)9 | F—TGAAAAGCATATGCAAAAGTTGA |
R—TCTCCAAATTCCTATCTCACAAC |
Locus | Fortescue Marsh (n = 65) | Fortescue Camps (n = 14) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
HE | HO | FIS | AL | AR | HE | HO | FIS | AL/AR | FST | |
FCA735 | 42.43 | 44 | −0.037 2 | 4 | 3.96 | 9.04 | 11 | −0.228 | 3 | −0.009 |
FCA728 | 38.79 | 37 | 0.047 | 6 | 4.60 | 7.96 | 10 | −0.268 | 3 | −0.014 |
FCA730 | 52.29 | 53 | 0.014 | 9 | 6.64 | 9.33 | 8 | 0.148 | 5 | 0.049 |
FCA126 | 48.94 | 49 | −0.001 | 7 | 5.53 | 9.78 | 11 | −0.130 | 6 | 0.055 |
FCA1059 | 48.69 | 42 | 0.138 | 6 | 5.51 | 11.22 | 11 | 0.021 | 5 | −0.004 |
F146 | 44.40 | 42 | 0.055 | 4 | 3.78 | 10.19 | 10 | 0.019 | 4 | −0.006 |
F27 | 53.77 | 48 | 0.108 | 11 | 7.90 | 11.26 | 7 | 0.387 | 7 | 0.012 |
FCA744 | 41.17 | 44 | −0.069 | 5 | 4.49 | 7.59 | 3 | 0.614 1 | 3 | −0.008 |
F164 | 49.24 | 51 | −0.036 | 6 | 5.57 | 11.22 | 11 | 0.021 | 6 | 0.015 |
FCA747 | 50.42 | 44 | 0.128 | 7 | 5.81 | 10.00 | 11 | −0.104 | 6 | 0.016 |
F49 | 35.63 | 40 | −0.124 | 3 | 3.00 | 5.89 | 3 | 0.500 | 3 | 0.007 |
Mean | 45.98 | 44.91 | 0.018 | 6.18 | 5.16 | 9.41 | 8.73 | 0.036 2 | 4.64 | 0.012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cowen, S.; Clausen, L.; Algar, D.; Comer, S. Using Genetics to Evaluate the Success of a Feral Cat (Felis catus) Control Program in North-Western Australia. Animals 2019, 9, 1050. https://doi.org/10.3390/ani9121050
Cowen S, Clausen L, Algar D, Comer S. Using Genetics to Evaluate the Success of a Feral Cat (Felis catus) Control Program in North-Western Australia. Animals. 2019; 9(12):1050. https://doi.org/10.3390/ani9121050
Chicago/Turabian StyleCowen, Saul, Lucy Clausen, Dave Algar, and Sarah Comer. 2019. "Using Genetics to Evaluate the Success of a Feral Cat (Felis catus) Control Program in North-Western Australia" Animals 9, no. 12: 1050. https://doi.org/10.3390/ani9121050
APA StyleCowen, S., Clausen, L., Algar, D., & Comer, S. (2019). Using Genetics to Evaluate the Success of a Feral Cat (Felis catus) Control Program in North-Western Australia. Animals, 9(12), 1050. https://doi.org/10.3390/ani9121050