Ventilation Modulation and Nanoparticle Deposition in Respiratory and Olfactory Regions of Rabbit Nose
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Image-Based NZW Rabbit Model (Control Case)
2.3. Generation of Deformed Models with Expanded Nostril and Vestibule
2.4. Numercial Methods
3. Results
3.1. Multiscale Airflows in the Rabbit Noses
3.2. Spiral Vestibule and Particle Dynamics
3.3. Nanoparticle Deposition Fraction
3.4. Nanoparticle Deposition Distribution
4. Discussion
5. Conclusions
- Particles that reach the olfactory region come from a specific area in the nostril.
- The spiral multi-channel vestibule plays an essential role in regulating the partition of inhaled airflow into different parts of the nose.
- Enhanced olfactory deposition fractions were predicted by expanding either the nostril or the vestibule. Particles in the range of 5–50 nm are more sensitive to the geometry variation than other nanoparticles. The percentage variation in the olfactory dose in the left passage due to the geometry change can be as high as 40%.
- Exhaled aerosols occupy only the middle region of the nostril, which minimize the mixing with the aerosols close to the nostril boundary, allowing an undisruptive sampling of odorants.
- The results of this study will have implications in the study of the olfaction in rabbits and of inhalation dosimetry of inhaled submicron infectious agents.
Author Contributions
Funding
Conflicts of Interest
References
- Tellier, R.; Li, Y.; Cowling, B.J.; Tang, J.W. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 2019, 19, 101. [Google Scholar] [CrossRef] [PubMed]
- Smieszek, T.; Lazzari, G.; Salathé, M. Assessing the dynamics and control of droplet- and aerosol-transmitted influenza using an indoor positioning system. Sci. Rep. 2019, 9, 2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, W.E.; Swett, K.; Leng, I.; Peters, T.R. Exposure to Influenza Virus Aerosols During Routine Patient Care. J. Infect. Dis. 2013, 207, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Brosseau, L.M. Aerosol transmission of infectious disease. J. Occup. Environ. Med. 2015, 57, 501–508. [Google Scholar] [CrossRef]
- Balashazy, I.; Hofmann, W.; Heistracher, T. Local particle deposition patterns may play a key role in the development of lung cancer. J. Appl. Physiol. (1985) 2003, 94, 1719–1725. [Google Scholar] [CrossRef]
- Darquenne, C.; Fleming, J.S.; Katz, I.; Martin, A.R.; Schroeter, J.; Usmani, O.S.; Venegas, J.; Schmid, O. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Yang, T.; Talaat, K.; Wen, T.; Zhang, Y.; Klozik, S.; Peters, S. Visualization of local deposition of nebulized aerosols in a human upper respiratory tract model. J. Vis. 2018, 21, 225–237. [Google Scholar] [CrossRef]
- Zhou, Y.; Xi, J.; Simpson, J.; Irshad, H.; Cheng, Y.-S. Aerosol Deposition in a Nasopharyngolaryngeal Replica of a 5-Year-Old Child. Aerosol Sci. Techol. 2013, 47, 275–282. [Google Scholar] [CrossRef]
- El Taoum, K.K.; Xi, J.; Kim, J.W.; Berlinski, A. In vitro evaluation of aerosols delivered via the nasal route. Resp. Care 2015, 60, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Guo, M.; Xi, J.; Irshad, H.; Cheng, Y.-S. Nasal deposition in infants and children. J. Aerosol Med. 2014, 26, 110–116. [Google Scholar] [CrossRef]
- Gutting, B.W.; Nichols, T.L.; Channel, S.R.; Gearhart, J.M.; Andrews, G.A.; Berger, A.E.; Mackie, R.S.; Watson, B.J.; Taft, S.C.; Overheim, K.A.; et al. Inhalational anthrax (Ames aerosol) in naive and vaccinated New Zealand rabbits: Characterizing the spread of bacteria from lung deposition to bacteremia. Front. Cell Infect. Microbiol. 2012, 2, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twenhafel, N.A. Pathology of inhalational anthrax animal models. Vet. Pathol. 2010, 47, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Yee, S.B.; Hatkin, J.M.; Dyer, D.N.; Orr, S.A.; Pitt, M.L. Aerosolized Bacillus anthracis infection in New Zealand white rabbits: Natural history and intravenous levofloxacin treatment. Comp. Med. 2010, 60, 461–468. [Google Scholar] [PubMed]
- Zaucha, G.M.; Pitt, L.M.; Estep, J.; Ivins, B.E.; Friedlander, A.M. The pathology of experimental anthrax in rabbits exposed by inhalation and subcutaneous inoculation. Arch. Pathol. Lab. Med. 1998, 122, 982–992. [Google Scholar] [PubMed]
- Raabe, O.G.; Al-Bayati, M.A.; Teague, S.V.; Rasolt, A. Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory animals. Ann. Occup. Hyg. 1988, 32, 53–63. [Google Scholar] [CrossRef]
- Asgharian, B.; Price, O.; Kabilan, S.; Jacob, R.E.; Einstein, D.R.; Kuprat, A.P.; Corley, R.A. Development of a Zealand white rabbit deposition model to study inhalation anthrax. Inhal. Toxicol. 2016, 28, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabilan, S.; Suffield, S.R.; Recknagle, K.P.; Jacob, R.E.; Einstein, D.R.; Kuprat, A.P.; Carson, J.P.; Colby, S.M.; Saunders, J.H.; Hines, S.A.; et al. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways. J. Aerosol Sci. 2016, 99, 64–77. [Google Scholar] [CrossRef]
- Hess, B.M.; Thomas, D.G.; Weber, T.J.; Hutchison, J.R.; Straub, T.M.; Bruckner-Lea, C.J.; Powell, J.D.; Kabilan, S.; Corley, R.A. An integrated experimental-computational approach for predicting virulence in New Zealand white rabbits and humans following inhalation exposure to Bacillus anthracis spores. PLoS ONE 2019, 14, e0219160. [Google Scholar] [CrossRef]
- Poirier, E.Z.; Vignuzzi, M. Virus population dynamics during infection. Curr. Opin. Virol. 2017, 23, 82–87. [Google Scholar] [CrossRef]
- Xi, J.; Hu, Q.; Zhao, L.; Si, X. Molecular binding contributes to concentration dependent acrolein deposition in rat upper airways: CFD and molecular dynamics analyses. Int. J. Mol. Sci. 2018, 19, 997. [Google Scholar] [CrossRef]
- Levin, P.A.; Angert, E.R. Small but mighty: Cell size and bacteria. Cold Spring Harb. Perspect. Biol. 2015, 7, a019216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negus, V.E. Studies on the anatomy of the nose. J. Anat. 1954, 88, 558. [Google Scholar]
- Van Valkenburgh, B.; Smith, T.D.; Craven, B.A. Tour of a labyrinth: Exploring the vertebrate nose. Anat. Rec. 2014, 297, 1975–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craven, B.A.; Neuberger, T.; Paterson, E.G.; Webb, A.G.; Josephson, E.M.; Morrison, E.E.; Settles, G.S. Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anat. Rec. 2007, 290, 1325–1340. [Google Scholar] [CrossRef]
- Corley, R.A.; Minard, K.R.; Kabilan, S.; Einstein, D.R.; Kuprat, A.P.; Harkema, J.R.; Kimbell, J.S.; Gargas, M.L.; Kinzell, J.H. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models. Inhal. Toxicol. 2009, 21, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Corley, R.A.; Kabilan, S.; Kuprat, A.P.; Carson, J.P.; Minard, K.R.; Jacob, R.E.; Timchalk, C.; Glenny, R.; Pipavath, S.; Cox, T.; et al. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol. Sci. 2012, 128, 500–516. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.P.; Rumple, C.R.; Quigley, A.P.; Ranslow, A.N.; Neuberger, T.; Ryan, T.M.; Stecko, T.D.; Pang, B.; Van Valkenburgh, B.; Craven, B.A. Comparative anatomy and functional morphology of the mammalian nasal cavity. Integr. Comp. Biol. 2013, 53, E180. [Google Scholar]
- Ranslow, A.N.; Richter, J.P.; Neuberger, T.; Van Valkenburgh, B.; Rumple, C.R.; Quigley, A.P.; Pang, B.; Krane, M.H.; Craven, B.A. Reconstruction and morphometric analysis of the nasal airway of the white-tailed deer (Odocoileus virginianus) and implications regarding respiratory and olfactory airflow. Anat. Rec. 2014, 297, 2138–2147. [Google Scholar] [CrossRef]
- Schreider, J.P.; Raabe, O.G. Anatomy of the nasal-pharyngeal airway of experimental animals. Anat. Rec. 1981, 200, 195–205. [Google Scholar] [CrossRef]
- Gross, E.A.; Swenberg, J.A.; Fields, S.; Popp, J.A. Comparative morphometry of the nasal cavity in rats and mice. J. Anat. 1982, 135, 83–88. [Google Scholar]
- Kimbell, J.S.; Godo, M.N.; Gross, E.A.; Joyner, D.R.; Richardson, R.B.; Morgan, K.T. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Toxicol. Appl. Pharm. 1997, 145, 388–398. [Google Scholar] [CrossRef]
- Subramaniam, R.P.; Richardson, R.B.; Morgan, K.T.; Kimbell, J.S.; Guilmette, R.A. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 1998, 10, 473–502. [Google Scholar] [CrossRef]
- Smith, T.D.; Eiting, T.P.; Bonar, C.J.; Craven, B.A. Nasal morphometry in marmosets: Loss and redistribution of olfactory surface area. Anat. Rec. 2014, 297, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Colby, S.M.; Kabilan, S.; Jacob, R.E.; Kuprat, A.P.; Einstein, D.R.; Corley, R.A. Comparison of realistic and idealized breathing patterns in computational models of airflow and vapor dosimetry in the rodent upper respiratory tract. Inhal. Toxicol. 2016, 28, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.C.; Schum, G.M. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 1980, 42, 461–480. [Google Scholar] [CrossRef]
- Harris, A.J.; Squires, S.M.; Hockings, P.D.; Campbell, S.P.; Greenhill, R.W.; Mould, A.; Reid, D.G. Determination of surface areas, volumes, and lengths of cynomolgus monkey nasal cavities by ex vivo magnetic resonance imaging. J. Aerosol Med. Pulm. Drug Deliv. 2003, 16, 99–105. [Google Scholar] [CrossRef]
- Xi, J.; Zhang, Z.; Si, X. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. Int. J. Nanomed. 2015, 10, 1211–1222. [Google Scholar] [CrossRef] [Green Version]
- Kimbell, J.S.; Subramaniam, R.P. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhal. Toxicol. 2001, 13, 325–334. [Google Scholar] [CrossRef]
- Shi, H.; Kleinstreuer, C.; Zhang, Z. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J. Biomech. Eng. 2006, 128, 697–706. [Google Scholar] [CrossRef]
- Xi, J.; Berlinski, A.; Zhou, Y.; Greenberg, B.; Ou, X. Breathing resistance and ultrafine particle deposition in nasal–laryngeal airways of a newborn, an infant, a child, and an adult. Ann. Biomed. Eng. 2012, 40, 2579–2595. [Google Scholar] [CrossRef]
- Orhan, I.; Ormeci, T.; Aydin, S.; Altin, G.; Urger, E.; Soylu, E.; Yilmaz, F. Morphometric analysis of the maxillary sinus in patients with nasal septum deviation. Eur. Arch. Oto-Rhino-Laryngol. 2014, 271, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Si, X.; Zhou, Y.; Kim, J.; Berlinski, A. Growth of nasal and laryngeal airways in children: Implications in breathing and inhaled aerosol dynamics. Resp. Care 2014, 59, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schalken, A.P.M. Three types of pheromones in the domestic rabbit Oryctolagus cuniculus (L.). Chem. Sense 1976, 2, 139–155. [Google Scholar] [CrossRef]
- Schaal, B.; Coureaud, G.; Langlois, D.; Ginies, C.; Semon, E.; Perrier, G. Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 2003, 424, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Si, X.A.; Xi, J.; Kim, J.; Zhou, Y.; Zhong, H. Modeling of release position and ventilation effects on olfactory aerosol drug delivery. Resp. Physiol. Neurobiol. 2013, 186, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Talaat, M. Nanoparticle deposition in rhythmically moving acinar models with interalveolar septal apertures. Nanomaterials 2019, 9, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talaat, M.; Si, X.; Tanbour, H.; Xi, J. Numerical studies of nanoparticle transport and deposition in terminal alveolar models with varying complexities. Med. One 2019, 4, e190018. [Google Scholar]
- Xi, J.; Longest, P.W.; Martonen, T.B. Effects of the laryngeal jet on nano-and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J. Appl. Physiol. 2008, 104, 1761–1777. [Google Scholar] [CrossRef]
- Xi, J.; Yuan, J.E.; Yang, M.; Si, X.; Zhou, Y.; Cheng, Y.-S. Parametric study on mouth–throat geometrical factors on deposition of orally inhaled aerosols. J. Aerosol Sci. 2016, 99, 94–106. [Google Scholar] [CrossRef]
- Xi, J.; Wang, Z.; Si, X.A.; Zhou, Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. Eur. J. Pharm. Sci. 2018, 118, 113–123. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, W. Correlating exhaled aerosol images to small airway obstructive diseases: A study with dynamic mode decomposition and machine learning. PLoS ONE 2019, 14, e0211413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrall, K.D.; Woodstock, A.D.; Soelberg, J.J.; Gargas, M.L.; Kinzell, J.H.; Corley, R.A. A real-time methodology to evaluate the nasal absorption of volatile compounds in anesthetized animals. Inhal. Toxicol. 2009, 21, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Kasa, W.; Thwaites, C.J. The effects of elevated temperature and humidity on rectal temperature and respiration rate in the New Zealand white rabbit. Int. J. Biometeorol. 1990, 34, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Si, X.; Kim, J.W.; Berlinski, A. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J. Aerosol Sci. 2011, 42, 156–173. [Google Scholar] [CrossRef]
- Xi, J.; Longest, P.W. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. J. Biomech. Eng. 2008, 130, 011008. [Google Scholar] [CrossRef]
- Xi, J.; Si, X.; Kim, J.; Su, G.; Dong, H. Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound. Med. Biol. Eng. Comput. 2014, 52, 567–577. [Google Scholar] [CrossRef]
- Si, X.; Xi, J.; Kim, J. Effect of laryngopharyngeal anatomy on expiratory airflow and submicrometer particle deposition in human extrathoracic airways. Open J. Fluid Dyn. 2013, 3, 286. [Google Scholar] [CrossRef] [Green Version]
- Longest, P.W.; Xi, J. Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 2007, 38, 111–130. [Google Scholar] [CrossRef]
- Longest, P.W.; Xi, J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci. Tech. 2007, 41, 380–397. [Google Scholar] [CrossRef]
- Xi, J.; Longest, P. Effects of improved near-wall modeling on micro-particle deposition in oral airway geometries. In Proceedings of the ASME 2007 Summer Bioengineering Conference, Keystone, CO, USA, 20–24 June 2007; pp. 111–112. [Google Scholar]
- Kim, J.; Xi, J.; Si, X.; Berlinski, A.; Su, W.C. Hood nebulization: Effects of head direction and breathing mode on particle inhalability and deposition in a 7-month-old infant model. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 209–218. [Google Scholar] [CrossRef]
- Allen, M.D.; Raabe, O.G. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci. Technol. 1985, 4, 269–286. [Google Scholar] [CrossRef]
- Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Kutter, J.S.; Spronken, M.I.; Fraaij, P.L.; Fouchier, R.A.M.; Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol. 2018, 28, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Salvaggio, J.E. Inhaled particles and respiratory disease. J. Allergy Clin. Immunol. 1994, 94, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Le Gros Clark, W.E. Observations on the structure and organization of olfactory receptors in the rabbit. Yale J. Biol. Med. 1956, 29, 83–95. [Google Scholar]
- Xi, J.; Si, X.A.; Kim, J.; Zhang, Y.; Jacob, R.E.; Kabilan, S.; Corley, R.A. Anatomical details of the rabbit nasal passages and their implications in breathing, air conditioning, and olfaction. Anat. Rec. 2016, 299, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Staymates, M.E.; MacCrehan, W.A.; Staymates, J.L.; Kunz, R.R.; Mendum, T.; Ong, T.-H.; Geurtsen, G.; Gillen, G.J.; Craven, B.A. Biomimetic sniffing improves the detection performance of a 3D printed nose of a dog and a commercial trace vapor detector. Sci. Rep. 2016, 6, 36876. [Google Scholar] [CrossRef]
- Kepecs, A.; Uchida, N.; Mainen, Z.F. The sniff as a unit of olfactory processing. Chem. Senses 2005, 31, 167–179. [Google Scholar] [CrossRef]
- Talaat, K.; Xi, J. Computational modeling of aerosol transport, dispersion, and deposition in rhythmically expanding and contracting terminal alveoli. J. Aerosol Sci. 2017, 112, 19–33. [Google Scholar] [CrossRef]
- Shusterman, R.; Smear, M.C.; Koulakov, A.A.; Rinberg, D. Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 2011, 14, 1039–1044. [Google Scholar] [CrossRef]
- Xi, J.; Yang, T. Variability in oropharyngeal airflow and aerosol deposition due to changing tongue positions. J. Drug Deliv. Sci. Technol. 2019, 49, 674–682. [Google Scholar] [CrossRef]
- Lu, J.; Xi, J.; Langenderfer, J.E. Sensitivity analysis and uncertainty quantification in pulmonary drug delivery of orally inhaled pharmaceuticals. J. Pharm. Sci. 2017, 106, 3303–3315. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, J.; Talaat, M.; Si, X.; Dong, H.; Donepudi, R.; Kabilan, S.; Corley, R. Ventilation Modulation and Nanoparticle Deposition in Respiratory and Olfactory Regions of Rabbit Nose. Animals 2019, 9, 1107. https://doi.org/10.3390/ani9121107
Xi J, Talaat M, Si X, Dong H, Donepudi R, Kabilan S, Corley R. Ventilation Modulation and Nanoparticle Deposition in Respiratory and Olfactory Regions of Rabbit Nose. Animals. 2019; 9(12):1107. https://doi.org/10.3390/ani9121107
Chicago/Turabian StyleXi, Jinxiang, Mohamed Talaat, Xiuhua Si, Haibo Dong, Ramesh Donepudi, Senthil Kabilan, and Richard Corley. 2019. "Ventilation Modulation and Nanoparticle Deposition in Respiratory and Olfactory Regions of Rabbit Nose" Animals 9, no. 12: 1107. https://doi.org/10.3390/ani9121107
APA StyleXi, J., Talaat, M., Si, X., Dong, H., Donepudi, R., Kabilan, S., & Corley, R. (2019). Ventilation Modulation and Nanoparticle Deposition in Respiratory and Olfactory Regions of Rabbit Nose. Animals, 9(12), 1107. https://doi.org/10.3390/ani9121107