Effect of Feeding Glycerin on Ruminal Environment and In Situ Degradability of Feedstuffs in Young Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Experimental Design
2.2. Sampling of Ruminal Fluid and Fermentation
2.3. DNA Extraction
2.4. Quantitative Real-Time PCR
2.5. In Situ Degradability of Substrates
2.6. Diet and Feedstuff Analysis
2.7. Statistical Analyses
3. Results
3.1. Diets and Ruminal Environment
3.2. Microbial Population
3.3. In Situ Degradability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, V.O.; Lopes, E.; Andrade, E.F.; Sousa, R.V.; Zangeronimo, M.G.; Pereira, L.J. Use of biodiesel co-products (glycerol) as alternative sources of energy in animal nutrition: A systematic review. Arch. Med. Vet. 2014, 46, 111–120. [Google Scholar] [CrossRef]
- Kijora, C.; Bergner, H.; Götz, K.P.; Bartelt, J.; Szakacs, J.; Sommer, A. Research note: Investigation on the metabolism of glycerol in the rumen of bulls. Arch. Anim. Nutr. 1998, 51, 341–348. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Huo, W.J.; Yang, W.Z.; Dong, K.H.; Huang, Y.X.; Guo, G. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livest. Sci. 2009, 121, 15–20. [Google Scholar] [CrossRef]
- Rigout, S.; Hurtaud, C.; Lemosquet, S.; Bach, A.; Rulquin, H. Lactational effect of propionic acid and duodenal glucose in cows. J. Dairy Sci. 2003, 86, 243–253. [Google Scholar] [CrossRef]
- Chanjula, P.; Pakdeechanuan, P.; Wattanasit, S. Effects of feeding crude glycerin on feedlot performance and carcass characteristics in finishing goats. Small Rumin. Res. 2015, 123, 95–102. [Google Scholar] [CrossRef]
- Whitney, M.; Hess, B.; Burgwald-Balstad, L.; Sayer, J.; Tsopito, C.; Talbott, C.; Hallford, D. Effects of supplemental soybean oil level on in vitro digestion and performance of prepubertal beef heifers. J. Anim. Sci. 2000, 78, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Pyatt, N.A.; Doane, P.H.; Cecava, M.J. Effect of crude glycerin in finishing cattle diets. J. Dairy Sci. 2007, 90, 412. [Google Scholar]
- Parsons, G.L.; Shelor, M.K.; Drouillard, J.S. Performance and carcass traits of finishing heifers fed crude glycerin. J. Anim. Sci. 2009, 87, 653–657. [Google Scholar] [CrossRef]
- Castagnino, P.S.; Dallantonia, E.E.; Fiorentini, G.; San Vito, E.; Messana, J.D.; Lima, L.O.; Simioni, T.A.; Berchielli, T.T. Changes in ruminal fermentation and microbial population of feedlot Nellore cattle fed crude glycerin and virginiamycin. Anim. Feed Sci. Technol. 2018, 242, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Tablas FEDNA de Composición y Valor Nutritivo de Alimentos Para la Fabricación de Piensos Compuestos; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2012. [Google Scholar]
- Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Necesidades Nutricionales Para Rumiantes de Cebo. Normas Fedna; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2008. [Google Scholar]
- Taylor, K.A. A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotechnol. 1996, 56, 49–58. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [PubMed]
- Madrid, J.; Megías, M.D.; Hernández, F. Determination of short chain volatile fatty acids in silages from artichoke and orange by-products by capillary gas chromatography. J. Sci. Food Agric. 1999, 79, 580–584. [Google Scholar] [CrossRef]
- Abo El-Nor, S.; AbuGhazaleh, A.A.; Potu, R.B.; Hastings, D.; Khattab, M.S.A. Effects of differing levels of glycerol on rumen fermentation and bacteria. Anim. Feed Sci. Technol. 2010, 162, 99–105. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, Maryland, UK, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado. Métodos Oficiales de análisis de piensos o alimentos para animales y sus primeras materias. BOE 2000, 41, 7211–7215. [Google Scholar]
- Madrid, J.; Villodre, C.; Valera, L.; Orengo, J.; Martínez, S.; López, M.J.; Megías, M.D.; Hernández, F. Effect of crude glycerin on feed manufacturing, growth performance, plasma metabolites, and nutrient digestibility of growing-finishing pigs. J. Anim. Sci. 2013, 91, 3788–3795. [Google Scholar] [CrossRef]
- Mach, N.; Bach, A.; Devant, M. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. J. Anim. Sci. 2009, 87, 632–638. [Google Scholar] [CrossRef]
- Nagaraja, T.; Lechtenberg, K.F. Acidosis in feedlot cattle. Vet. Clin. North. Am. Food Anim. Pract. 2007, 23, 333–350. [Google Scholar] [CrossRef]
- Shin, J.H.; Wang, D.; Kim, S.C.; Adesogan, A.T.; Staples, C.R. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage-or cottonseed hull-based, low-fiber diets. J. Dairy Sci. 2012, 95, 4006–4016. [Google Scholar] [CrossRef]
- Hales, K.E.; Kraich, K.J.; Bondurant, R.G.; Meyer, B.E.; Luebbe, M.K.; Brown, M.S.; Cole, N.A.; MacDonald, J.C. Effects of glycerin on receiving performance and health status of beef steers and nutrient digestibility and rumen fermentation characteristics of growing steers. J. Anim. Sci. 2013, 91, 4277–4289. [Google Scholar] [CrossRef] [PubMed]
- Werner Omazic, A.; Kronqvist, C.; Zhongyan, L.; Martens, H.; Holtenius, K. The fate of glycerol entering the rumen of dairy cows and sheep. J. Anim. Physiol. Anim. Nutr. 2015, 99, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Lee, S.-M.; Cho, Y.-B.; Kam, D.-K.; Lee, S.-C.; Kim, C.-H.; Seo, S. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Anim. Feed Sci. Technol. 2011, 166, 269–274. [Google Scholar] [CrossRef]
- Avila, J.S.; Chaves, A.V.; Hernández-Calva, M.; Beauchemin, K.A.; McGinn, S.M.; Wang, Y.; Harstad, O.M.; McAllister, T.A. Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Feed Sci. Technol. 2011, 166, 265–268. [Google Scholar] [CrossRef]
- Lin, L.L.; Thomson, J.A. An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol. Lett. 1991, 84, 197–204. [Google Scholar] [CrossRef]
- Stewart, C.S.; Flint, H.J.; Bryant, M.P. The rumen bacteria. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewar, C.S., Eds.; Chapman & Hall: London, UK, 1997; pp. 10–72. [Google Scholar]
- McCain, A.R.; Bondurant, R.G.; Jolly, M.; Harding, J.L.; Fernando, S.C. Impact of Crude Glycerin Supplementation on Rumen and Duodenal Microbial Populations in Forage Diets; Nebraska Beef Cattle Reports 890; University of Nebraska–Lincoln: Lincoln, IN, USA, 12 February 2016. [Google Scholar]
- AbuGhazaleh, A.A.; Abo El-Nor, S.; Ibrahim, S.A. The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters. J. Anim. Physiol. Anim. Nutr. 2011, 95, 313–319. [Google Scholar] [CrossRef]
- Moon, C.D.; Pacheco, D.M.; Kelly, W.J.; Leahy, S.C.; Li, D.; Kopečný, J.; Attwood, G.T. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb nov, a butyrate-producing ruminal bacterium. Evol. Microbiol. 2008, 58, 2041–2045. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.C.; Purvis, H.T.; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; DeSilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef]
Item | Treatments 1 | |||
---|---|---|---|---|
0 G | 20 G | 40 G | 80 G | |
Ingredient, g/kg DM 2 | ||||
Concentrate | ||||
Barley grain | 363.0 | 342.6 | 323.0 | 303.5 |
Corn grain | 255.0 | 255.0 | 255.0 | 239.7 |
Corn Gluten feed | 136.0 | 136.0 | 136.0 | 130.9 |
Soybean meal 47% CP 3 | 36.6 | 40.4 | 44.6 | 53.3 |
Palm oil | 24.2 | 23.4 | 22.1 | 20.7 |
Glycerin 4 | 0.0 (0) | 17.0 (20) | 34.0 (40) | 68.0 (80) |
Calcium carbonate | 14.5 | 14.5 | 14.5 | 14.5 |
Urea | 4.3 | 4.3 | 4.3 | 4.3 |
Salt | 3.0 | 3.0 | 3.0 | 3.0 |
Sodium bicarbonate | 3.8 | 3.8 | 3.8 | 3.8 |
Magnesium oxide | 1.3 | 1.3 | 1.3 | 1.3 |
Vitamin-mineral premix 5 | 8.5 | 8.5 | 8.5 | 8.5 |
Forage | ||||
Barley straw | 150.0 | 150.0 | 150.0 | 150.0 |
Calculated composition 6 | ||||
CP (g/kg DM) | 128.0 | 128.0 | 128.1 | 128.9 |
Metabolizable energy (MJ/kg DM) | 11.0 | 11.0 | 11.0 | 11.0 |
Analysed composition (g/kg DM) | ||||
Ash | 70.1 | 68.8 | 68.3 | 64.3 |
CP | 125.4 | 131.8 | 126.7 | 130.9 |
Starch | 407.3 | 403.9 | 367.4 | 358.0 |
NDF 7 | 329.4 | 345.5 | 316.6 | 323.4 |
ADF 8 | 204.1 | 194.4 | 195.8 | 195.7 |
Glycerol | - | 15.1 | 35.1 | 69.8 |
Item | Corn Grain | Barley Grain | DDGS 1 | Soybean Meal | Barley Straw | Sugar Beet Pulp |
---|---|---|---|---|---|---|
Dry matter (DM; g/kg) | 867.0 | 889.1 | 896.5 | 882.5 | 918.5 | 902.5 |
Analysed composition (g/kg DM) | ||||||
Crude protein | 86.4 | 118.0 | 278.3 | 498.5 | 39.1 | 100.8 |
Ether extract | 39.4 | 18.7 | 95.9 | 20.9 | 16.3 | 11.6 |
Ash | 19.0 | 24.7 | 57.4 | 70.2 | 74.5 | 67.6 |
Neutral detergent fiber | 113.5 | 197.1 | 342.4 | 143.9 | 764.3 | 466.5 |
Acid detergent fiber | 32.8 | 63.0 | 132.7 | 84.4 | 513.8 | 254.2 |
Acid detergent lignin | 8.6 | 12.3 | 33.4 | 4.20 | 84.3 | 18.8 |
Item | Treatments 1 | Hours after Feeding | SEM 2 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 G | 20 G | 40 G | 80 G | 0 h | 2 h | 4 h | 8 h | Treatment (G) | Hours (T) | GxT | ||
pH | 6.32 ab | 6.38 a | 6.14 b | 5.74 c | 6.73 a | 6.03 b | 5.74 c | 6.09 b | 0.183 | <0.001 | <0.001 | 0.164 |
NH3-N (mg/100 mL) | 3.39 a | 2.32 b | 3.51 a | 3.78 a | 3.82 b | 5.12 a | 2.08 c | 1.98 c | 0.385 | 0.019 | <0.001 | 0.089 |
Lactic acid (mg/100 mL) | 4.14 | 3.96 | 4.31 | 4.30 | 4.79 a | 4.52 a | 3.35 b | 4.04 ab | 0.402 | 0.919 | 0.012 | 0.388 |
Total VFA 3 (mM) | 105.2 a | 99.5 a | 100.6 a | 83.6 b | 85.5 b | 103.1 a | 99.5 a | 100.7 a | 4.67 | 0.001 | 0.009 | 0.082 |
Molar proportion (%) | ||||||||||||
Acetic acid | 60.5 a | 61.0 a | 58.3 b | 52.8 c | 62.9 a | 56.6 bc | 55.3 c | 57.8 b | 2.11 | <0.001 | <0.001 | 0.554 |
Propionic acid | 24.1 c | 26.7 b | 29.0 a | 29.7 a | 23.8 b | 28.4 a | 29.5 a | 27.6 a | 3.24 | <0.001 | <0.001 | 0.614 |
Butyric acid | 10.6 b | 9.14 c | 8.69 c | 13.1 a | 9.15 b | 10.8 a | 11.0 a | 10.5 ab | 1.46 | <0.001 | 0.027 | 0.630 |
Isobutyric acid | 0.52 | 0.36 | 0.43 | 0.27 | 0.62 a | 0.36 b | 0.24 b | 0.35 b | 0.073 | 0.062 | 0.005 | 0.052 |
Valeric acid | 1.94 c | 2.04 c | 2.67 b | 3.18 a | 1.88 c | 2.62 ab | 2.95 a | 2.39 bc | 0.408 | <0.001 | 0.003 | 0.966 |
Isovaleric acid | 2.22 a | 0.70 b | 0.80 b | 0.86 b | 1.50 | 1.11 | 0.80 | 1.17 | 0.381 | <0.001 | 0.280 | 0.963 |
Acetatic/propionic | 3.03 a | 2.55 b | 2.13 c | 1.96 c | 2.96 a | 2.20 b | 2.11 b | 2.40 b | 0.425 | <0.001 | <0.001 | 0.951 |
(Acetatic+butyric)/propionic | 3.62 a | 2.93 b | 2.46 c | 2.44 c | 3.41 a | 2.64 b | 2.55 b | 2.86 b | 0.542 | <0.001 | 0.003 | 0.948 |
DNA Copies/μL (log10) | Treatments 1 | Hours Post-Feeding | SEM 2 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 G | 20 G | 40 G | 80 G | 0 | 8 | Treatment (G) | Hour (T) | GxT | ||
Total bacteria | 10.03 | 10.13 | 9.45 | 9.47 | 10.10 | 9.93 | 0.071 | 0.778 | 0.240 | 0.967 |
Butyrivibrio fibrisolvens | 7.27 | 7.23 | 6.98 | 7.17 | 7.23 | 7.09 | 0.063 | 0.356 | 0.253 | 0.408 |
Butyrivibrio proteoclasticus | 3.87 | 3.92 | 3.52 | 3.24 | 3.87 | 3.40 | 0.196 | 0.514 | 0.230 | 0.951 |
Selenomonas ruminantium | 0.21 b | 1.24 b | 1.24 b | 2.53 a | 1.42 | 1.19 | 0.205 | 0.004 | 0.561 | 0.767 |
Item | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
0 G | 20 G | 40 G | 80 G | |||
Corn grain 3 | ||||||
a (%) | 33.0 | 29.5 | 27.2 | 27.6 | 1.01 | 0.220 |
b (%) | 64.3 | 67.5 | 70.8 | 70.3 | 1.20 | 0.236 |
c (h−1) | 0.067 | 0.070 | 0.063 | 0.074 | 0.005 | 0.791 |
Potential degradability 4 (%) | 97.4 | 97.0 | 98.0 | 97.9 | 0.76 | 0.858 |
Effective degradability 5 (%) | 66.6 | 65.2 | 63.0 | 65.7 | 1.03 | 0.692 |
Barley grain | ||||||
a (%) | 30.5 | 27.8 | 27.4 | 30.3 | 0.45 | 0.057 |
b (%) | 58.7 | 62.4 | 61.5 | 60.7 | 0.64 | 0.237 |
c (h−1) | 0.394 | 0.368 | 0.380 | 0.407 | 0.054 | 0.994 |
Potential degradability (%) | 89.2 | 90.3 | 89.0 | 91.0 | 0.47 | 0.266 |
Effective degradability (%) | 80.6 | 78.8 | 79.3 | 82.4 | 1.10 | 0.456 |
DDGS 6 | ||||||
a (%) 7 | 53.9 a | 52.4 ab | 53.3 a | 47.7 b | 0.71 | 0.037 |
b (%) | 34.7 | 29.0 | 27.7 | 28.6 | 1.92 | 0.624 |
c (h−1) | 0.032 b | 0.032 b | 0.045 b | 0.091 a | 0.006 | 0.016 |
Potential degradability (%) | 88.3 | 81.7 | 81.0 | 79.4 | 1.85 | 0.160 |
Effective degradability (%) | 64.6 | 63.5 | 64.4 | 67.7 | 1.34 | 0.954 |
Soybean meal | ||||||
a (%) | 26.9 | 26.7 | 26.8 | 26.3 | 0.63 | 0.979 |
b (%) | 71.2 | 69.5 | 72.6 | 71.3 | 1.02 | 0.784 |
c (h−1) | 0.038 | 0.046 | 0.061 | 0.065 | 0.004 | 0.278 |
Potential degradability (%) | 98.1 | 96.3 | 99.4 | 97.6 | 0.71 | 0.440 |
Effective degradability (%) | 54.8 | 57.3 | 62.3 | 62.8 | 1.50 | 0.363 |
Barley straw | ||||||
a (%) | 12.8 b | 11.8 b | 11.9 b | 16.8 a | 0.30 | 0.001 |
b (%) | 30.9 | 27.6 | 27.0 | 27.3 | 1.74 | 0.901 |
c (h−1) | 0.018 | 0.017 | 0.009 | 0.021 | 0.005 | 0.177 |
Potential degradability (%) | 43.7 | 53.3 | 38.9 | 44.1 | 4.92 | 0.719 |
Effective degradability (%) | 21.8 | 22.1 | 15.7 | 23.4 | 2.17 | 0.514 |
Sugar beet pulp | ||||||
a (%) | 3.06 | 7.91 | 8.57 | 13.1 | 1.40 | 0.230 |
b (%) | 96.3 | 92.2 | 87.9 | 84.3 | 2.32 | 0.436 |
c (h−1) | 0.057 | 0.034 | 0.044 | 0.053 | 0.005 | 0.410 |
Potential degradability (%) | 99.4 | 100.1 | 96.4 | 97.4 | 0.96 | 0.590 |
Effective degradability (%) | 49.6 | 40.9 | 45.1 | 51.4 | 2.15 | 0.358 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid, J.; Martínez, S.; Villodre, C.; López, M.J.; Alcázar, J.; Orengo, J.; Ramis, G.; Hernández, F. Effect of Feeding Glycerin on Ruminal Environment and In Situ Degradability of Feedstuffs in Young Bulls. Animals 2019, 9, 359. https://doi.org/10.3390/ani9060359
Madrid J, Martínez S, Villodre C, López MJ, Alcázar J, Orengo J, Ramis G, Hernández F. Effect of Feeding Glycerin on Ruminal Environment and In Situ Degradability of Feedstuffs in Young Bulls. Animals. 2019; 9(6):359. https://doi.org/10.3390/ani9060359
Chicago/Turabian StyleMadrid, Josefa, Silvia Martínez, Carmen Villodre, Miguel J. López, Juan Alcázar, Juan Orengo, Guillermo Ramis, and Fuensanta Hernández. 2019. "Effect of Feeding Glycerin on Ruminal Environment and In Situ Degradability of Feedstuffs in Young Bulls" Animals 9, no. 6: 359. https://doi.org/10.3390/ani9060359
APA StyleMadrid, J., Martínez, S., Villodre, C., López, M. J., Alcázar, J., Orengo, J., Ramis, G., & Hernández, F. (2019). Effect of Feeding Glycerin on Ruminal Environment and In Situ Degradability of Feedstuffs in Young Bulls. Animals, 9(6), 359. https://doi.org/10.3390/ani9060359