Leptin Gene Polymorphism in Goats Fed with Diet at Different Energy Level: Effects on Feed Intake, Milk Traits, Milk Fatty Acids Composition, and Metabolic State
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Genetic Characterization
2.3. Sample Collection and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethics Statements
References
- Feuermann, Y.; Mabjeesh, S.J.; Shamay, A. Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 2004, 87, 2941–2946. [Google Scholar] [CrossRef]
- Liefers, S.; Veerkamp, R.; te Pas, M.; Delavaud, C.; Chilliard, Y.; Platje, M.; van der Lende, T. Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Anim. Genet. 2005, 36, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Jonas, E.; Martin, G.B.; Celi, P.; Soattin, M.; Thomson, P.C.; Raadsma, H.W. Association of polymorphisms in leptin and leptin receptor genes with circulating leptin concentrations, production and efficiency traits in sheep. Small Rum. Res. 2016, 136, 78–86. [Google Scholar] [CrossRef]
- Biziene, R.; Morkuniene, K.; Miseikiene, R.; Peciulaitiene, N.; Makstutiene, N.; Slyzius, E. Effect of single nucleotide polymorphism markers on the carcass and fattening traits in different pig populations. J. Anim. Feed Sci. 2018, 27, 255–272. [Google Scholar] [CrossRef]
- De Oliveira Peixoto, J.; Facioni Guimaraes, S.E.; Savio Lopes, P.; Menck Soares, M.A.; Vieira Pires, A.; Gualberto Barbosa, M.V.; De Almeida Torres, R.; De Almeida e Silva, M. Associations of leptin gene polymorphisms with production traits in pigs. J. Anim. Breed Gen. 2006, 123, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Hajihosseinlo, A.; Hashemi, A.; Sadeghi, S. Association between polymorphism in exon 3 of leptin gene and growth traits in the Makooei sheep of Iran. Livest. Res. Rural Dev. 2012, 24, 543–546. Available online: http://www.lrrd.org/lrrd24/9/haji24166.htm (accessed on 10 April 2019).
- Kawaguchi, F.; Okura, K.; Oyama, K.; Mannen, H.; Sasazaki, S. Identification of leptin gene polymorphisms associated with carcass traits and fatty acid composition in Japanese Black cattle. Anim. Sci. J. 2017, 88, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Banos, G.; Woolliams, J.A.; Woodward, B.W.; Forbes, A.B.; Coffey, M.P. Impact of Single Nucleotide Polymorphisms in Leptin, Leptin Receptor, Growth Hormone Receptor, and Diacylglycerol Acyltransferase (DGAT1) Gene Loci on Milk Production, Feed, and Body Energy Traits of UK Dairy Cows. J. Dairy Sci. 2008, 91, 3190–3200. [Google Scholar] [CrossRef] [Green Version]
- Giblin, L.; Butler, S.T.; Kearney, B.M.; Waters, S.M.; Callanan, M.J.; Berry, D.P. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genet. 2010, 11, 73. [Google Scholar] [CrossRef]
- De Matteis, G.; Scatà, M.C.; Grandoni, F.; Petrera, F.; Abeni, F.; Catillo, G.; Napolitano, F.; Moioli, B. Association analyses of single nucleotide polymorphisms in the leptin and leptin receptor genes on milk and morphological traits in Holstein cows. Open J. Anim. Sci. 2012, 2, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Pegolo, S.; Cecchinato, A.; Mele, M.; Conte, G.; Schiavon, S.; Bittante, G. Effect of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. J. Dairy Sci. 2016, 99, 4558–4573. [Google Scholar] [CrossRef] [PubMed]
- Glantz, M.; Lindmark Mansson, H.; Stalhammar, H.; Paulsson, M. Effect of polymorphisms in the leptin, leptin receptor, and acyl-coenzyme A: Diacylglycerol acyltransferase 1 (DGAT1) genes and genetic polymorphism of milk proteins on cheese characteristics. J. Dairy Sci. 2011, 94, 3295–3304. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, P.; Di Trana, A.; Celi, P.; Claps, S.; Rando, A. Comparison of goat, sheep, cattle and water buffalo leptin (LEP) genes and effects of the Intron 1 microsatellite polymorphism in goats. Anim. Prod. Sci. 2014, 54, 1258–1262. [Google Scholar] [CrossRef]
- Hernández, P.A.; Mendoza, G.D.; Castro, A.; Lara, A.; Plata, F.X.; Martínez, J.A.; Ferraro, S. Effects of grain level on lamb performance, ruminal metabolism and leptin mRNA expression in perirenal adipose tissue. Anim. Prod. Sci. 2017, 57, 2001–2006. [Google Scholar] [CrossRef]
- Bowling, A.T.; Stott, M.L.; Bickel, L. Silent blood chimerism in a mare confirmed by DNA marker analysis of hair bulbs. Anim. Genet. 1993, 24, 323–324. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 19th eds.; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Conrad, H.R.; Weiss, W.P.; Odwongo, W.O.; Shockey, W.L. Estimating net energy lactation from components of cells solubles and cell walls. J. Dairy Sci. 1984, 67, 427–436. [Google Scholar] [CrossRef]
- Luna, P.; Juàrez, M.; De La Fuenta, M.A. Validation of a Rapid Milk Fat Separation Method to Determine the Fatty Acid Profile by Gas Chromatography. J. Dairy Sci. 2005, 88, 3377–3381. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipids Res. 1982, 23, 1072–1075. [Google Scholar]
- Valenti, B.; Criscione, A.; Moltisanti, V.; Bordonaro, S.; De Angelis, A.; Marletta, D.; Di Paola, F.; Avondo, M. Genetic polymorphisms at candidate genes affecting fat content and fatty acid composition in Modicana cows: Effects on milk production traits in different feeding systems. Animal 2019, 13, 1332–1340. [Google Scholar] [CrossRef]
- Schennink, A.; Heck, J.M.L.; Bovenhuis, H.; Visker, M.H.P.W.; van Valenberg, H.J.F.; van Arendonk, J.A.M. Milk Fatty Acid Unsaturation: Genetic Parameters and Effects of Stearoyl-CoA Desaturase (SCD1) and Acyl CoA: Diacylglycerol Acyltransferase 1 (DGAT1). J. Dairy Sci. 2018, 91, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Moussavi, A.H.; Ahouei, M.; Nassiry, M.R.; Javadmanesh, A. Association of leptin polymorphism with production, reproduction and plasma glucose level in Iranian Holstein Cows. Asian-Austral. J. Anim. Sci. 2006, 19, 627–631. [Google Scholar] [CrossRef]
- Trakovicka, A.; Moravcikova, N.; Minarovic, T.; Alica Navratilova, A. SNPs analyses of the bovine LEP and PIT-1 genes by multiplex PCR-RFLP method and their effect on milk performance traits in Slovak Simmental cattle. J. Central Eur. Agric. 2015, 16, 65–75. [Google Scholar] [CrossRef]
- Chilliard, Y.; Delavaud, C.; Bonnet, M. Leptin expression in ruminants: Nutritional and physiological regulations in relation with energy metabolism. Domest. Anim. Endocrinol. 2005, 29, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Pagano, R.I.; Pennisi, P.; Valenti, B.; Lanza, M.; Di Trana, A.; Di Gregorio, P.; De Angelis, A.; Avondo, M. Effect of CSN1S1 genotype and its interaction with diet energy level on milk production and quality in Girgentana goats fed ad libitum. J. Dairy Res. 2010, 77, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals; Academic Press: New York, NY, USA, 1997; ISBN 9780080529196. [Google Scholar]
- Dunshea, F.R.; Bell, A.W. Relations between plasma non-esterified fatty acid metabolism and body fat mobilization in primiparous lactating goats. Br. J. Nutr. 1989, 62, 51–61. [Google Scholar] [CrossRef]
- McNamara, J.P. Regulation of adipose tissue metabolism in support of lactation. J. Dairy Sci. 1991, 74, 706–719. [Google Scholar] [CrossRef]
- Sari, A. The relationship between leptin and fatty acid. J. Mol. Biomark. Diagn. 2013, 4, 139. [Google Scholar] [CrossRef]
- Li, C.; Sun, D.; Zhang, S.; Wang, S.; Wu, X.; Zhang, Q.; Liu, L.; Li, Y.; Qiao, L. Genome Wide Association Study Identifies 20 Novel Promising Genes Associated with Milk Fatty Acid Traits in Chinese Holstein. PLoS ONE 2014, 9, e96186. [Google Scholar] [CrossRef]
- Marchitelli, C.; Contarini, G.; De Matteis, G.; Crisà, A.; Pariset, L.; Scatà, M.C.; Catillo, G.; Napolitano, F.; Moioli, B. Milk fatty acid variability: Effect of some candidate genes involved in lipid synthesis. J. Dairy Res. 2013, 80, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and Animal Factors Influencing Milk Fat Composition. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Vrankovic, L.; Aladrovic, J.; Octenjak, D.; Bijelic, D.; Cvetnic, L.; Stojevic, Z. Milk fatty acid composition as an indicator of energy status in Holstein dairy cows. Arch. Anim. Breed. 2017, 60, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Pandit, R.; Beerens, S.; Adan, R.A.H. Role of leptin in energy expenditure: The hypothalamic perspective. Am. J. Physiol. Reg. Integr. Comp. Physiol. 2017, 312, R938–R947. [Google Scholar] [CrossRef] [PubMed]
- Orrù, L.; Cifuni, G.F.; Piasentier, E.; Corazzin, M.; Bovolenta, S.; Moioli, B. Association analyses of single nucleotide polymorphisms in the LEP and SCD1 genes on the fatty acid profile of muscle fat in Simmental bulls. Meat Sci. 2011, 87, 344–348. [Google Scholar] [CrossRef]
- Cohen, P.; Miyazaki, M.; Socci, N.D.; Hagge-Greenberg, A.; Liedtke, W.; Soukas, A.A.; Sharma, R.; Hudgins, L.C.; Ntambi, J.M.; Friedman, J.M. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 2002, 297, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Valenti, B.; Pagano, R.I.; Pennisi, P.; Lanza, M.; Avondo, M. Polymorphism at αs1-casein locus. Effect of genotype x diet interaction on milk fatty acid composition in Girgentana goats. Small Rum. Res. 2010, 94, 210–213. [Google Scholar] [CrossRef]
LE | HE | |
---|---|---|
Ingredients % | ||
Pelleted alfalfa hay | 98.0 | 65.0 |
Maize meal | - | 16.0 |
Barley meal | - | 8.0 |
Soybean meal | - | 3.0 |
7Carob pulp | - | 3.0 |
Corn gluten meal | - | 3.0 |
Vitamin-mineral premix | 2.0 | 2.0 |
Chemical composition | ||
Dry matter % | 89.0 | 87.0 |
Crude protein % dry matter (DM) | 15.7 | 15.8 |
Neutral detergent fiber % DM | 55.2 | 45.0 |
Lignin % DM | 12.8 | 7.0 |
Crude lipids % DM | 1.8 | 2.5 |
Ash % DM | 8.8 | 8.2 |
NEl1 kcal/kg DM | 1151.1 | 1404.1 |
Goat Production Parameters and Intake | Leptin Genotype (G) | Diet Energy Level (E) | p-Value | SEM | ||||
---|---|---|---|---|---|---|---|---|
H | L | LE | HE | G | E | G × E | ||
Milk yield g/day | 1053.7 | 974.2 | 891.9 | 1136.0 | 0.637 | 0.156 | 0.823 | 69.4 |
Fat % | 3.23 | 3.27 | 3.45 | 3.06 | 0.836 | 0.057 | 0.482 | 0.10 |
Protein % | 3.45 | 3.70 | 3.60 | 3.55 | 0.127 | 0.778 | 0.642 | 0.07 |
Lactose % | 4.29 | 4.32 | 4.29 | 4.31 | 0.709 | 0.837 | 0.942 | 0.04 |
Dry matter intake g/day | 2529.3 | 2518.6 | 2519.2 | 2528.7 | 0.532 | 0.577 | 0.250 | 10.1 |
Leptin Genotype (G) | Diet Energy Level (E) | p-Value | SEM | |||||
---|---|---|---|---|---|---|---|---|
H | L | LE | HE | G | E | G × E | ||
Glucose (mg/100 mL) | 47.1 | 48.3 | 48.6 | 46.9 | 0.707 | 0.576 | 0.877 | 1.17 |
NEFA1 (mmol/L) | 0.12 | 0.14 | 0.16. | 0.11. | 0.562 | 0.206 | 0.348 | 0.02 |
BHBA2 (mmol/L) | 0.35 | 0.33 | 0.24 a | 0.44 b | 0.770 | 0.010 | 0.675 | 0.03 |
Cholesterol (mg/100 mL) | 65.2 | 60.8 | 60.6 | 66.4 | 0.423 | 0.429 | 0.502 | 2.37 |
Triglycerides (mg/100 mL) | 12.0 | 12.1 | 11.7 | 12.4 | 0.938 | 0.735 | 0.766 | 0.95 |
Urea (mg/100 mL) | 51.4 | 50.8 | 53.3 | 48.9 | 0.885 | 0.260 | 0.714 | 1.70 |
Total protein (g/100 mL) | 7.1 | 7.5 | 7.5 | 7.1 | 0.298 | 0.226 | 0.738 | 0.15 |
Albumin (g/L) | 26.6 | 27.1 | 27.0 | 26.7 | 0.162 | 0.491 | 0.477 | 0.21 |
Globulin (g/L) | 44.7 | 48.1 | 48.2 | 44.2 | 0.378 | 0.264 | 0.693 | 1.54 |
Calcium (mg/100 mL) | 7.94 | 8.03 | 8.16 | 7.81 | 0.830 | 0.360 | 0.725 | 0.14 |
Phosphorus (mg/100 mL) | 3.7 | 3.8 | 3.7 | 3.9 | 0.860 | 0.482 | 0.955 | 0.10 |
Magnesium (mg/100 mL) | 3.0 | 3.5 | 3.2 | 3.3 | 0.052 | 0.517 | 0.224 | 0.09 |
Fatty Acid Chain Size Examined | Leptin Genotype (G) | Diet Energy Level (E) | p-Value | SEM | ||||
---|---|---|---|---|---|---|---|---|
H | L | LE | HE | G | E | G × E | ||
4:0 | 2.4 a | 2.7 b | 2.5 | 2.6 | 0.005 | 0.141 | 0.110 | 0.06 |
6:0 | 2.7 | 2.7 | 2.6 | 2.8 | 0.748 | 0.152 | 0.545 | 0.05 |
8:0 | 2.8 | 2.9 | 2.7 a | 3.0 b | 0.516 | 0.017 | 0.210 | 0.07 |
9:0 | 0.12 | 0.13 | 0.14 | 0.12 | 0.337 | 0.238 | 0.175 | 0.01 |
10:0 | 11.4 | 11.2 | 10.5 a | 12.2 b | 0.634 | <0.001 | 0.017 | 0.24 |
11:0 | 0.25 | 0.23 | 0.22 | 0.27 | 0.417 | 0.064 | 0.559 | 0.01 |
12:0 | 6.2 | 6.4 | 5.8 a | 6.9 b | 0.545 | 0.006 | 0.054 | 0.20 |
12:1 c9 | 0.21 | 0.23 | 0.19 a | 0.25 b | 0.433 | 0.038 | 0.230 | 0.01 |
13:0 | 0.11 | 0.13 | 0.13 | 0.11 | 0.089 | 0.051 | 0.208 | 0.01 |
14:0 | 13.7 | 12.7 | 12.7 | 13.7 | 0.089 | 0.076 | 0.441 | 0.24 |
14:1 c9 | 0.10 | 0.12 | 0.15 a | 0.08 b | 0.133 | <0.001 | 0.222 | 0.01 |
15iso | 0.22 | 0.26 | 0.30 a | 0.19 b | 0.123 | 0.001 | 0.634 | 0.02 |
15anteiso | 0.23 | 0.21 | 0.22 | 0.22 | 0.340 | 0.962 | 0.508 | 0.01 |
15:0 | 1.1 | 1.2 | 1.5 a | 0.8 b | 0.107 | <0.001 | 0.734 | 0.08 |
16:0 | 29.0 a | 24.7 b | 27.3 | 26.3 | <0.001 | 0.314 | 0.181 | 0.57 |
17iso | 0.30 a | 0.36 b | 0.39 a | 0.26 b | 0.022 | <0.001 | 0.144 | 0.02 |
16:1 c9 | 0.69 | 0.63 | 0.71 | 0.61 | 0.243 | 0.058 | 0.130 | 0.02 |
17anteiso | 0.41 | 0.49 | 0.54 a | 0.36 b | 0.069 | 0.001 | 0.431 | 0.03 |
17:0 | 0.73 | 0.73 | 0.93 a | 0.57 b | 0.440 | <0.001 | 0.934 | 0.05 |
17:1 c9 | 0.30 | 0.33 | 0.40 a | 0.23 b | 0.417 | 0.001 | 0.193 | 0.02 |
18:0 | 5.4 a | 6.7 b | 6.5 | 5.6 | 0.019 | 0.104 | 0.213 | 0.24 |
18:1 t9 | 0.20 | 0.22 | 0.21 | 0.21 | 0.452 | 0.857 | 0.671 | 0.01 |
18:1 t11 | 0.11 | 0.11 | 0.12 | 0.10 | 0.935 | 0.251 | 0.458 | 0.01 |
18:1 c9 | 13.3 a | 15.3 b | 14.8 | 13.7 | 0.009 | 0.134 | 0.198 | 0.38 |
18:1 c11 | 0.36 a | 0.44 b | 0.45 a | 0.35 b | 0.002 | <0.001 | 0.088 | 0.02 |
18:2 c9c12 | 4.0 | 4.7 | 3.6 a | 5.1 b | 0.110 | 0.001 | 0.063 | 0.25 |
18:3 c9c12c15 | 1.5 | 1.8 | 2.1 a | 1.1 b | 0.150 | <0.001 | 0.914 | 0.16 |
18:2 c9t11 | 1.1 | 1.2 | 1.1 | 1.1 | 0.434 | 0.668 | 0.528 | 0.05 |
18:2 t10c12 | 0.07 | 0.11 | 0.07 | 0.10 | 0.184 | 0.284 | 0.515 | 0.01 |
20:4 n-3 | 0.34 a | 0.42 b | 0.39 | 0.37 | 0.030 | 0.548 | 0.476 | 0.02 |
Σ SFA | 76.3 a | 73.8 b | 75.1 | 75.2 | 0.050 | 0.993 | 0.322 | 0.48 |
Σ MUFA | 15.0 a | 17.3 b | 16.9 | 15.4 | 0.009 | 0.068 | 0.151 | 0.43 |
Σ PUFA | 7.1 a | 8.2 b | 7.3 | 7.9 | 0.030 | 0.278 | 0.153 | 0.24 |
Σ trans total | 0.55 | 0.56 | 0.57 | 0.54 | 0.874 | 0.661 | 0.714 | 0.03 |
14:1/14 1 | 0.75 a | 0.99 b | 1.18 a | 0.56 b | 0.042 | <0.001 | 0.107 | 0.09 |
AI 2 | 4.1 a | 3.3 b | 3.6 a | 3.9 b | 0.006 | 0.205 | 0.882 | 0.13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avondo, M.; Di Trana, A.; Valenti, B.; Criscione, A.; Bordonaro, S.; De Angelis, A.; Giorgio, D.; Di Gregorio, P. Leptin Gene Polymorphism in Goats Fed with Diet at Different Energy Level: Effects on Feed Intake, Milk Traits, Milk Fatty Acids Composition, and Metabolic State. Animals 2019, 9, 424. https://doi.org/10.3390/ani9070424
Avondo M, Di Trana A, Valenti B, Criscione A, Bordonaro S, De Angelis A, Giorgio D, Di Gregorio P. Leptin Gene Polymorphism in Goats Fed with Diet at Different Energy Level: Effects on Feed Intake, Milk Traits, Milk Fatty Acids Composition, and Metabolic State. Animals. 2019; 9(7):424. https://doi.org/10.3390/ani9070424
Chicago/Turabian StyleAvondo, Marcella, Adriana Di Trana, Bernardo Valenti, Andrea Criscione, Salvatore Bordonaro, Anna De Angelis, Daniela Giorgio, and Paola Di Gregorio. 2019. "Leptin Gene Polymorphism in Goats Fed with Diet at Different Energy Level: Effects on Feed Intake, Milk Traits, Milk Fatty Acids Composition, and Metabolic State" Animals 9, no. 7: 424. https://doi.org/10.3390/ani9070424
APA StyleAvondo, M., Di Trana, A., Valenti, B., Criscione, A., Bordonaro, S., De Angelis, A., Giorgio, D., & Di Gregorio, P. (2019). Leptin Gene Polymorphism in Goats Fed with Diet at Different Energy Level: Effects on Feed Intake, Milk Traits, Milk Fatty Acids Composition, and Metabolic State. Animals, 9(7), 424. https://doi.org/10.3390/ani9070424