Gilt Management for Fertility and Longevity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Birth Traits that Determine the Efficiency of Replacement Gilt Production
2.1. Low Individual Birth Weight
2.2. Low Litter Birth Weight Phenotype
2.3. Sex Ratio
3. Effective Selection of the Most Fertile Gilts for Entry to the Breeding Herd
4. Effective Management Programs that Provide a Consistent Supply of Service Eligible Gilts
4.1. The Boar Effect
4.2. Implementation of an Effective Puberty Stimulation Program
5. Appropriate Management of Weight, Physiological Maturity, and a Positive Metabolic State at Breeding
5.1. Weight
5.2. Estrus at Breeding
5.3. A Positive Metabolic State at Breeding
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sasaki, Y.; Koketsu, Y. Sows having high lifetime efficiency and high longevity associated with herd productivity in commercial herds. Livest. Sci. 2008, 118, 140–146. [Google Scholar] [CrossRef]
- Koketsu, Y.; Tani, S.; Iida, R. Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porc. Health Manag. 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, G.A.; Cross, A.J.; Lents, C.A.; Miles, J.R.; Nonneman, D.J.; Rempel, L.A. 026 Genetic improvement of sow lifetime productivity. J. Anim. Sci. 2017, 95, 11–12. [Google Scholar] [CrossRef]
- Kang, J.-H.; Lee, E.-A.; Hong, K.-C.; Kim, J.-M. Regulatory gene network from a genome-wide association study for sow lifetime productivity traits. Anim. Genet. 2018, 49, 254–258. [Google Scholar] [CrossRef]
- Kraeling, R.R.; Webel, S.K. Current strategies for reproductive management of gilts and sows in North America. J. Anim. Sci. Biotechnol. 2015, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Ketchem, R.; Rix, M. National Hog Farmer. 9 February 2006. Available online: https://www.nationalhogfarmer.com/animal-well-being/does-gilt-performance-dictate-farm-success (accessed on 2 July 2019).
- Bortolozzo, F.P.; Bernardi, M.L.; Kummer, R.; Wentz, I. Growth, body state and breeding performance in gilts and primiparous sows. Soc. Reprod. Fertil. Suppl. 2009, 66, 281–291. [Google Scholar] [PubMed]
- Patterson, J.L.; Foxcroft, G.R. Troubleshooting reproductive issues. In Proceedings of the London Swine Conference, London, ON, Canada, 27–28 March 2018; pp. 107–117. [Google Scholar]
- Nikkila, M.T.; Stalder, K.J.; Mote, B.E.; Rothschild, M.F.; Gunsett, F.C.; Johnson, A.K.; Karricker, L.A.; Boggess, M.V.; Serenius, T.V. Genetic associations for gilt growth, compositional, and structural soundness traits with sow longevity and lifetime reproductive performance. J. Anim. Sci. 2013, 91, 1570–1579. [Google Scholar]
- Patterson, J.; Foxcroft, G. Gilt management for improved sow lifetime productivity. In Advances in Pork Production; University of Alberta: Banff, AB, Canada, 2019; Volume 30, pp. 145–162. [Google Scholar]
- Yuan, T.; Zhu, Y.; Shi, M.; Li, T.; Li, N.; Wu, G.; Bazer, F.W.; Zang, J.; Wang, F.; Wang, J. Within-litter variation in birth weight: Impact of nutritional status in the sow. J. Zhejiang Univ. Sci. B 2015, 16, 417–435. [Google Scholar] [CrossRef]
- Knox, R.V. Physiology and endocrinology symposium: Factors influencing follicle development in gilts and sows and management strategies used to regulate growth for control of estrus and ovulation1. J. Anim. Sci. 2019, 97, 1433–1445. [Google Scholar] [CrossRef]
- Magnabosco, D.; Pereira Cunha, E.C.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Impact of the Birth Weight of Landrace × Large White Dam Line Gilts on Mortality, Culling and Growth Performance until Selection for Breeding Herd. Acta Sci. Vet. 2015, 43, 1–8. [Google Scholar]
- Roehe, R.; Kalm, E. Estimation of genetic and environmental risk factors associated with pre-weaning mortality in piglets using generalized linear mixed models. Anim. Sci. 2000, 70, 227–240. [Google Scholar] [CrossRef]
- Almeida, F.; Dias, A.A.; Moreira, L.P.; Fiúza, A.T.L.; Chiarini-Garcia, H. Ovarian follicle development and genital tract characteristics in different birthweight gilts at 150 days of age. Reprod. Domest. Anim. 2017, 52, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Deligeorgis, S.G.; English, P.R.; Lodge, G.A.; Foxcroft, G.R. Interrelationships between growth, gonadotrophin secretion and sexual maturation in gilts reared in different litter sizes. Anim. Prod. 1985, 41, 393–401. [Google Scholar] [CrossRef]
- Vallet, J.L.; Miles, J.R.; Rempel, L.A.; Nonneman, D.J.; Lents, C.A. Relationships between day one piglet serum immunoglobulin immunocrit and subsequent growth, puberty attainment, litter size, and lactation performance. J. Anim. Sci. 2015, 93, 2722–2729. [Google Scholar] [CrossRef] [PubMed]
- Vallet, J.L.; Calderón-Díaz, J.A.; Stalder, K.J.; Phillips, C.; Cushman, R.A.; Miles, J.R.; Rempel, L.A.; Rohrer, G.A.; Lents, C.A.; Freking, B.A.; et al. Litter-of-origin trait effects on gilt development. J. Anim. Sci. 2016, 94, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Magnabosco, D.; Bernardi, M.L.; Wentz, I.; Cunha, E.C.P.; Bortolozzo, F.P. Low birth weight affects lifetime productive performance and longevity of female swine. Livest. Sci. 2016, 184, 119–125. [Google Scholar] [CrossRef]
- Edwards, S.A. Perinatal mortality in the pig: Environmental or physiological solutions? Livest. Prod. Sci. 2002, 78, 3–12. [Google Scholar] [CrossRef]
- Herpin, P.; Damon, M.; Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 2002, 78, 25–45. [Google Scholar] [CrossRef]
- Declerck, I.; Dewulf, J.; Sarrazin, S.; Maes, D. Long-term effects of colostrum intake in piglet mortality and performance. J. Anim. Sci. 2016, 94, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, K.M.D.; Baxter, E.M.; D’Eath, R.B.; Turner, S.P.; Arnott, G.; Roehe, R.; Ask, B.; Sandøe, P.; Moustsen, V.A.; Thorup, F.; et al. The welfare implications of large litter size in the domestic pig I: Biological factors. Anim. Welf. 2013, 22, 199–218. [Google Scholar] [CrossRef]
- Wiegert, J.G.; Garrison, C.; Knauer, M.T. 068 Characterization of birth weight and colostrum intake on piglet survival and piglet quality. J. Anim. Sci. 2017, 95, 32. [Google Scholar] [CrossRef]
- Bartol, F.F.; Wiley, A.A.; Miller, D.J.; Silva, A.J.; Roberts, K.E.; Davolt, M.L.P.; Chen, J.C.; Frankshun, A.-L.; Camp, M.E.; Rahman, K.M.; et al. Lactation biology symposium: Lactocrine signaling and developmental programming. J. Anim. Sci. 2013, 91, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.V.; Sbardella, P.E.; Bernardi, M.L.; Coutinho, M.L.; Vaz, I.S.; Wentz, I.; Bortolozzo, F.P. Effect of birth weight and colostrum intake on mortality and performance of piglets after cross-fostering in sows of different parities. Prev. Vet. Med. 2014, 114, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Robinson, O.W. Effects of Postnatal Maternal Environment on Reproduction of Gilts. J. Anim. Sci. 1976, 43, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Flowers, W.L. Effect of Neonatal Litter Size and Early Puberty Stimulation on Sow Longevity and Reproductive Performance. NPB 05-082 National Pork Board Reseach Report. Available online: https://www.pork.org/research/effect-of-neonatal-litter-size-and-early-puberty-stimulation-on-sow-longevity-and-reproductive-performance/ (accessed on 2 July 2019).
- Flowers, W.L.; North Carolina State University, Raleigh, NC, USA. Personal Communication, 2018.
- Foxcroft, G.R.; Dixon, W.T.; Dyck, M.K.; Novak, S.; Harding, J.C.S.; Almeida, F.C.R.L. Prenatal programming of postnatal development in the pig. Soc. Reprod. Fertil. Suppl. 2009, 66, 213–231. [Google Scholar] [PubMed]
- Smit, M.N.; Spencer, J.D.; Almeida, F.R.C.L.; Patterson, J.L.; Chiarini-Garcia, H.; Dyck, M.K.; Foxcroft, G.R. Consequences of a low litter birth weight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig. Anim. Int. J. Anim. Biosci. 2013, 7, 1681–1689. [Google Scholar] [CrossRef]
- Da Silva, C.L.A.; Mulder, H.A.; Broekhuijse, M.L.W.J.; Kemp, B.; Soede, N.M.; Knol, E.F. Relationship Between the Estimated Breeding Values for Litter Traits at Birth and Ovarian and Embryonic Traits and Their Additive Genetic Variance in Gilts at 35 Days of Pregnancy. Front. Genet. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Patterson, J.; Foxcroft, G.; Holden, N.; Allerson, M.; Hanson, A.; Triemert, E.; Bruner, L.; Pinilla, J.C. A Low Litter Birth Weight Phenotype Reduces the Retention Rate of Potential Replacement Gilts. J. Anim. Sci. 2018, 96, 62. [Google Scholar] [CrossRef]
- Seyfang, J.; Kirkwood, R.N.; Tilbrook, A.J.; Ralph, C.R. The sex ratio of a gilt’s birth litter can affect her fitness as a breeding female. Anim. Prod. Sci. 2018, 58, 1567–1574. [Google Scholar] [CrossRef]
- Rekiel, A.; Więcek, J.; Wojtasik, M.; Ptak, J.; Blicharski, T.; Mroczko, L. Effect of Sex Ratio in the Litter in Which Polish Large White and Polish Landrace Sows were Born on the Number of Piglets Born and Reared. Ann. Anim. Sci. 2012, 12, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Seyfang, J.; Ralph, C.R.; Hebart, M.L.; Tilbrook, A.J.; Kirkwood, R.N. Anogenital distance reflects the sex ratio of a gilt’s birth litter and predicts her reproductive success1. J. Anim. Sci. 2018, 96, 3856–3862. [Google Scholar] [CrossRef] [PubMed]
- Lamberson, W.R.; Blair, R.M.; Rohde Parfet, K.A.; Day, B.N.; Johnson, R.K. Effect of Sex Ratio of the Birth Litter on Subsequent Reproductive Performance of Gilts. J. Anim. Sci. 1988, 66, 595–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drickamer, L.C.; Arthur, R.D.; Rosenthal, T.L. Conception failure in swine: Importance of the sex ratio of a female’s birth litter and tests of other factors. J. Anim. Sci. 1997, 75, 2192–2196. [Google Scholar] [CrossRef] [PubMed]
- Drickamer, L.C.; Rosenthal, T.L.; Arthur, R.D. Factors affecting the number of teats in pigs. Reproduction 1999, 115, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Seyfang, J.; Plush, K.J.; Kirkwood, R.N.; Tilbrook, A.J.; Ralph, C.R. The sex ratio of a litter affects the behaviour of its female pigs until at least 16 weeks of age. Appl. Anim. Behav. Sci. 2018, 200, 45–50. [Google Scholar] [CrossRef]
- Fitzgerald, R. An Evaluation or Practices to Improve Sow Productive Lifetime and Producer Profitability. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2009. [Google Scholar]
- Bergman, P.; Gröhn, Y.T.; Rajala-Schultz, P.; Virtala, A.-M.; Oliviero, C.; Peltoniemi, O.; Heinonen, M. Sow removal in commercial herds: Patterns and animal level factors in Finland. Prev. Vet. Med. 2018, 159, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Stalder, K.J.; Lacy, R.C.; Cross, T.L.; Conatser, G.E. Financial impact of average parity of culled females in a breed-to-wean swine operation using replacement gilt net present value analysis. J. Swine Health Prod. 2003, 11, 69–74. [Google Scholar]
- Engblom, L.; Díaz, J.A.C.; Nikkilä, M.; Gray, K.; Harms, P.; Fix, J.; Tsuruta, S.; Mabry, J.; Stalder, K. Genetic analysis of sow longevity and sow lifetime reproductive traits using censored data. J. Anim. Breed. Genet. 2016, 133, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Gruhot, T.R.; Díaz, J.A.C.; Baas, T.J.; Dhuyvetter, K.C.; Schulz, L.L.; Stalder, K.J. An economic analysis of sow retention in a United States breed-to-wean system. J. Swine Health Prod. 2017, 25, 238–246. [Google Scholar]
- Li, Q.; Yuan, X.; Chen, Z.; Zhang, A.; Zhang, Z.; Zhang, H.; Li, J. Heritability estimates and effect on lifetime reproductive performance of age at puberty in sows. Anim. Reprod. Sci. 2018, 195, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Roongsitthichai, A.; Cheuchuchart, P.; Chatwijitkul, S.; Chantarothai, O.; Tummaruk, P. Influence of age at first estrus, body weight, and average daily gain of replacement gilts on their subsequent reproductive performance as sows. Livest. Sci. 2013, 151, 238–245. [Google Scholar] [CrossRef]
- Engblom, L.; Lundeheim, N.; Dalin, A.-M.; Andersson, K. Sow removal in Swedish commercial herds. Livest. Sci. 2007, 106, 76–86. [Google Scholar] [CrossRef]
- Foxcroft, G.; Patterson, J. Optimizing breeding management in a competitive world: Gilt and sow aspects. In Proceedings of the AASV 41st Annual Meeting, Omaha, NE, USA, 6–9 March 2010; pp. 3–16. [Google Scholar]
- Patterson, J.; Triemert, E.; Gustafson, B.; Werner, T.; Holden, N.; Pinilla, J.C.; Foxcroft, G. Validation of the use of exogenous gonadotropins (PG600) to increase the efficiency of gilt development programs without affecting lifetime productivity in the breeding herd. J. Anim. Sci. 2016, 94, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Serenius, T.; Stalder, K.J. Length of productive life of crossbred sows is affected by farm management, leg conformation, sow’s own prolificacy, sow’s origin parity and genetics. Anim. Int. J. Anim. Biosci. 2007, 1, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Wijesena, H.R.; Lents, C.A.; Riethoven, J.J.; Trenhaile-Grannemann, M.D.; Thorson, J.F.; Keel, B.N.; Miller, P.S.; Spangler, M.L.; Kachman, S.D.; Ciobanu, D.C. Genomics Symposium: Using genomic approaches to uncover sources of variation in age at puberty and reproductive longevity in sows. J. Anim. Sci. 2017, 95, 4196–4205. [Google Scholar] [CrossRef] [PubMed]
- Knauer, M.T.; Cassady, J.P.; Newcom, D.W.; See, M.T. Phenotypic and genetic correlations between gilt estrus, puberty, growth, composition, and structural conformation traits with first-litter reproductive measures. J. Anim. Sci. 2011, 89, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Sterning, M.; Rydhmer, L.; Eliasson-Selling, L. Relationships between age at puberty and interval from weaning to estrus and between estrus signs at puberty and after the first weaning in pigs. J. Anim. Sci. 1998, 76, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.L.; Beltranena, E.; Foxcroft, G.R. The effect of gilt age at first estrus and breeding on third estrus on sow body weight changes and long-term reproductive performance. J. Anim. Sci. 2010, 88, 2500–2513. [Google Scholar] [CrossRef] [PubMed]
- Tart, J.K.; Johnson, R.K.; Bundy, J.W.; Ferdinand, N.N.; McKnite, A.M.; Wood, J.R.; Miller, P.S.; Rothschild, M.F.; Spangler, M.L.; Garrick, D.J.; et al. Genome-wide prediction of age at puberty and reproductive longevity in sows. Anim. Genet. 2013, 44, 387–397. [Google Scholar] [CrossRef]
- Knauer, M.; Stalder, K.J.; Serenius, T.; Baas, T.J.; Berger, P.J.; Karriker, L.; Goodwin, R.N.; Johnson, R.K.; Mabry, J.W.; Miller, R.K.; et al. Factors associated with sow stayability in 6 genotypes. J. Anim. Sci. 2010, 88, 3486–3492. [Google Scholar] [CrossRef]
- Saito, H.; Sasaki, Y.; Koketsu, Y. Associations between Age of Gilts at First Mating and Lifetime Performance or Culling Risk in Commercial Herds. J. Vet. Med. Sci. 2011, 73, 555–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tani, S.; Koketsu, Y. Factors for Culling Risk due to Pregnancy Failure in Breeding-Female Pigs. J. Agric. Sci. 2016, 9, 109–117. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Buurman, J.; Huirne, R.B.; Willemse, A.H.; Vernooy, J.C.; van den Broek, J.; Verheijden, J.H. Evaluation of optimal age at first conception in gilts from data collected in commercial swine herds. J. Anim. Sci. 1994, 72, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Koketsu, Y.; Takahashi, H.; Akachi, K. Longevity, Lifetime Pig Production and Productivity, and Age at First Conception in a Cohort of Gilts Observed over Six Years on Commercial Farms. J. Vet. Med. Sci. 1999, 61, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Magnabosco, D.; Cunha, E.C.P.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Effects of age and growth rate at onset of boar exposure on oestrus manifestation and first farrowing performance of Landrace×large white gilts. Livest. Sci. 2014, 169, 180–184. [Google Scholar] [CrossRef]
- Calderón Díaz, J.A.; Vallet, J.L.; Lents, C.A.; Nonneman, D.J.; Miles, J.R.; Wright, E.C.; Rempel, L.A.; Cushman, R.A.; Freking, B.A.; Rohrer, G.A.; et al. Age at puberty, ovulation rate, and uterine length of developing gilts fed two lysine and three metabolizable energy concentrations from 100 to 260 d of age. J. Anim. Sci. 2015, 93, 3521–3527. [Google Scholar] [CrossRef] [PubMed]
- Van Wettere, W.H.E.J.; Revell, D.K.; Mitchell, M.; Hughes, P.E. Increasing the age of gilts at first boar contact improves the timing and synchrony of the pubertal response but does not affect potential litter size. Anim. Reprod. Sci. 2006, 95, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.V.; Rodriguez Zas, S.L.; Sloter, N.L.; McNamara, K.A.; Gall, T.J.; Levis, D.G.; Safranski, T.J.; Singleton, W.L. An analysis of survey data by size of the breeding herd for the reproductive management practices of North American sow farms. J. Anim. Sci. 2013, 91, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Stančić, B.; Gagrčin, M.; Grafenau, P.S.; Grafenau, P.J.; Stančić, I.; Kubovičová, E.; Pivko, J. Morphological examination of ovaries in gilts with not detected standing oestrus up to 240 days of age and later. Slovak J. Anim. Sci. 2007, 40, 118–120. [Google Scholar]
- Stancic, I.; Stancic, B.; Bozic, A.; Anderson, R.; Harvey, R.; Gvozdic, D. Ovarian activity and uterus organometry in delayed puberty gilts. Theriogenology 2011, 76, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Tummaruk, P.; Kesdangsakonwut, S. Number of ovulations in culled Landrace × Yorkshire gilts in the tropics associated with age, body weight and growth rate. J. Vet. Med. Sci. 2015, 77, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Levis, D. Housing and management aspects influencing gilt development and longevity: A review. In Proceedings of the 2000 Allen D. Leman Conference, Saint Paul, MN, USA, 11 August 2000; pp. 117–131. [Google Scholar]
- Kirkwood, R.N.; Aherne, F.X. Energy Intake, Body Composition and Reproductive Performance of the Gilt. J. Anim. Sci. 1985, 60, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Beltranena, E.; Aherne, F.X.; Foxcroft, G.R.; Kirkwood, R.N. Effects of pre- and postpubertal feeding on production traits at first and second estrus in gilts. J. Anim. Sci. 1991, 69, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Kummer, R.; Bernardi, M.L.; Schenkel, A.C.; Filha, W.A.; Wentz, I.; Bortolozzo, F.P. Reproductive Performance of Gilts with Similar Age but with Different Growth Rate at the Onset of Puberty Stimulation. Reprod. Domest. Anim. 2009, 44, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Hughes, P.E.; Pearce, G.P.; Paterson, A.M. Mechanisms mediating the stimulatory effects of the boar on gilt reproduction. J. Reprod. Fertil. Suppl. 1990, 40, 323–341. [Google Scholar] [PubMed]
- Kirkwood, R.N.; Forbes, J.M.; Hughes, P.E. Influence of boar contact on attainment of puberty in gilts after removal of the olfactory bulbs. J. Reprod. Fertil. 1981, 61, 193–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltranena, E.; Patterson, J.; Foxcroft, G. Designing effective boar stimulation systems as a critical feature of the gilt development unit. In Proceedings of the Allen D. Leman Pre-Conference Reproduction Workshop, Effective Management of Replacement Gilts, Saint Paul, MN, USA, 17 September 2005; pp. 42–46. [Google Scholar]
- Knox, R.; Daniel, A.; Patterson, J.; Arend, L.; Foxcroft, G. Effects of birth traits, physical or fenceline boar exposure and group size on pubertal measures and lifetime fertility of replacement gilts. In Proceedings of the Billy Day Symposium, Omaha, NE, USA, 11–13 March 2019; Available online: https://www.eventscribe.com/2019/ASAS-MidwestMeeting/agenda.asp?pfp=sesssions (accessed on 2 July 2019).
- Patterson, J.L.; Willis, H.J.; Kirkwood, R.N.; Foxcroft, G.R. Impact of boar exposure on puberty attainment and breeding outcomes in gilts. Theriogenology 2002, 57, 2015–2025. [Google Scholar] [CrossRef]
- Rekwot, P.I.; Ogwu, D.; Oyedipe, E.O.; Sekoni, V.O. The role of pheromones and biostimulation in animal reproduction. Anim. Reprod. Sci. 2001, 65, 157–170. [Google Scholar] [CrossRef]
- Zimmerman, D.; McGargill, T.; Rohda, N.; Anderson, M. Boar Libido Affects Pubertal Development of Gilts. Neb. Swine Rep. 1997, 209, 5–6. [Google Scholar]
- Paterson, A.M.; Hughes, P.E.; Pearce, G.P. The effect of season, frequency and duration of contact with boars on the attainment of puberty in gilts. Anim. Reprod. Sci. 1989, 21, 115–124. [Google Scholar] [CrossRef]
- Amaral Filha, W.S.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Growth rate and age at boar exposure as factors influencing gilt puberty. Livest. Sci. 2009, 120, 51–57. [Google Scholar] [CrossRef]
- Evans, L.; Britt, J.; Kirkbride, C.; Levis, D. Troubleshooting Swine Reproduction Failure. Pork Information Gateway. 2006. PIG 08-07-01, 1–7. Available online: http://porkgateway.org/wp-content/uploads/2015/07/troubleshooting-swine-reproduction-failure1.pdf (accessed on 2 July 2019).
- Provost, F.; Fawcett, T. Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data 2013, 1, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gruhot, T.R.; Calderón Díaz, J.A.; Baas, T.J.; Stalder, K.J. Using first and second parity number born alive information to estimate later reproductive performance in sows. Livest. Sci. 2017, 196, 22–27. [Google Scholar] [CrossRef]
- Iida, R.; Koketsu, Y. Number of pigs born alive in parity 1 sows associated with lifetime performance and removal hazard in high- or low-performing herds in Japan. Prev. Vet. Med. 2015, 121, 108–114. [Google Scholar] [CrossRef]
- Williams, N.H.; Patterson, J.L.; Foxcroft, G.R. Non-negotiables in gilt development. Adv. Pork Prod. 2005, 16, 281–289. [Google Scholar]
- Kim, J.S.; Yang, X.; Baidoo, S.K. Relationship between Body Weight of Primiparous Sows during Late Gestation and Subsequent Reproductive Efficiency over Six Parities. Asian-Australas. J. Anim. Sci. 2016, 29, 768–774. [Google Scholar]
- Clowes, E.J.; Aherne, F.X.; Schaefer, A.L.; Foxcroft, G.R.; Baracos, V.E. Parturition body size and body protein loss during lactation influence performance during lactation and ovarian function at weaning in first parity sows. J. Anim. Sci. 2003, 81, 1517–1528. [Google Scholar] [CrossRef]
- Filha, W.S.A.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Reproductive performance of gilts according to growth rate and backfat thickness at mating. Anim. Reprod. Sci. 2010, 121, 139–144. [Google Scholar] [CrossRef]
- Al Ard Khanji, M.S.; Llorente, C.; Falceto, M.V.; Bonastre, C.; Mitjana, O.; Tejedor, M.T. Using body measurements to estimate body weight in gilts. Can. J. Anim. Sci. 2018, 98, 362–367. [Google Scholar] [CrossRef]
- Pasternak, J.; Patterson, J.; Cameron, A.; Dyck, M.; Foxcroft, G. The Use of Allometric Relationships to Estimate Gilt Body Weight. Adv. Pork Prod. 2008, 19, 27. [Google Scholar]
- Young, L.G.; King, G.J.; Walton, J.S.; McMillan, I.; Klevorick, M. Reproductive Performance over Four Parities of Gilts Stimulated to Early Estrus and Mated at First, Second or Third Observed Estrus. Can. J. Anim. Sci. 1990, 70, 483–492. [Google Scholar] [CrossRef]
- MacPherson, R.M.; Hovell, F.D.D.; Jones, A.S. Performance of sows first mated at puberty or second or third oestrus, and carcass assessment of once-bred gilts. Anim. Sci. 1977, 24, 333–342. [Google Scholar] [CrossRef]
- Walker, N.; Kilpatrick, D.J.; Courtney, D.J. The Effect of Conception in Gilts at Puberty or Second Oestrus on Reproductive Performance over Two Parities. Ir. J. Agric. Res. 1989, 28, 115–121. [Google Scholar]
- Grigoriadis, D.F.; Edwards, S.A.; English, P.R.; Davidson, F. The effect of oestrous cycle number, at constant age, on gilt reproduction in a dynamic service system. Anim. Sci. 2001, 72, 11–17. [Google Scholar] [CrossRef]
- Aherne, F.X.; Williams, I.H.; Head, R.H. Nutrition—Reproduction interactions in swine. In Proceedings of the Recent Advances in Animal Nutrition Conference, Armidale, NSW, Australia, 23–25 October 1991; Available online: http://livestocklibrary.com.au/handle/1234/19634 (accessed on 2 July 2019).
- Gaughan, J.B.; Cameron, R.D.; Dryden, G.M.; Young, B.A. Effect of body composition at selection on reproductive development in large white gilts. J. Anim. Sci. 1997, 75, 1764–1772. [Google Scholar] [CrossRef] [PubMed]
- Beltranena, E.; Foxcroft, G.R.; Aherne, F.X.; Kirkwood, R.N. Endocrinology of nutritional flushing in gilts. Can. J. Anim. Sci. 1991, 71, 1063–1071. [Google Scholar] [CrossRef]
- Booth, P.J.; Cosgrove, J.R.; Foxcroft, G.R. Endocrine and metabolic responses to realimentation in feed-restricted prepubertal gilts: Associations among gonadotropins, metabolic hormones, glucose, and uteroovarian development. J. Anim. Sci. 1996, 74, 840–848. [Google Scholar] [CrossRef]
- Booth, P.J.; Craigon, J.; Foxcroft, G.R. Nutritional manipulation of growth and metabolic and reproductive status in prepubertal gilts. J. Anim. Sci. 1994, 72, 2415–2424. [Google Scholar] [CrossRef]
- Almeida, F.R.C.L.; Kirkwood, R.N.; Aherne, F.X.; Foxcroft, G.R. Consequences of different patterns of feed intake during the estrous cycle in gilts on subsequent fertility. J. Anim. Sci. 2000, 78, 1556–1563. [Google Scholar] [CrossRef]
- Almeida, F.R.C.L.; Mao, J.; Novak, S.; Cosgrove, J.R.; Foxcroft, G.R. Effects of different patterns of feed restriction and insulin treatment during the luteal phase on reproductive, metabolic, and endocrine parameters in cyclic gilts. J. Anim. Sci. 2001, 79, 200–212. [Google Scholar] [CrossRef]
- Chen, T.Y.; Stott, P.; Athorn, R.Z.; Bouwman, E.G.; Langendijk, P. Undernutrition during early follicle development has irreversible effects on ovulation rate and embryos. Reprod. Fertil. Dev. 2012, 24, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.R.C.L.; Machado, G.S.; Borges, A.L.C.C.; Rosa, B.O.; Fontes, D.O. Consequences of different dietary energy sources during follicular development on subsequent fertility of cyclic gilts. Animal 2014, 8, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patterson, J.; Foxcroft, G. Gilt Management for Fertility and Longevity. Animals 2019, 9, 434. https://doi.org/10.3390/ani9070434
Patterson J, Foxcroft G. Gilt Management for Fertility and Longevity. Animals. 2019; 9(7):434. https://doi.org/10.3390/ani9070434
Chicago/Turabian StylePatterson, Jennifer, and George Foxcroft. 2019. "Gilt Management for Fertility and Longevity" Animals 9, no. 7: 434. https://doi.org/10.3390/ani9070434
APA StylePatterson, J., & Foxcroft, G. (2019). Gilt Management for Fertility and Longevity. Animals, 9(7), 434. https://doi.org/10.3390/ani9070434