Assessing Thermal Maturity through a Multi-Proxy Approach: A Case Study from the Permian Faraghan Formation (Zagros Basin, Southwest Iran)
Abstract
:1. Introduction
2. Regional Geological Setting
3. Stratigraphy of the Faraghan Formation
3.1. The Darreh Yas Section
3.2. The Kuh e Faraghan Section
4. Materials and Methods
4.1. Concentration of Organic Matter
4.2. Palynofacies Analysis and Graphical Representation
- (1)
- Phytoclasts: microscopic particles of lignin-cellulosic tissues of terrestrial macrophytes-derived kerogen including opaque and translucent phytoclasts. The first group, being carbonized black woody tissues (including charcoal), are the most stable and can be transported for a long distance;
- (2)
- Palynomorphs are organic-walled microfossils, including sporomorphs (i.e., spores and saccate pollens) and phytoplankton (i.e., acritarchs). High sporomorph/phytoplankton ratio, as well as the abundance of ornamented spores, reflects proximity of the sedimentary environment to the land masses. Saccate pollen grains and small thin-walled smooth spores and non-saccate pollens, due to their buoyancy, can be dispersed over long distances by wind and water currents;
- (3)
- AOM (Amorphous Organic Matter) is fine-grained OM mainly resulting from bacterial degradation of particulate organic matter. It can be abundant in dysoxic to anoxic environments.
4.3. Palynomorph Darkness Index (PDI)
4.4. Thermal Alteration Index (TAI) and Spore Color Index (SCI)
4.5. Spore UV Fluorescence
4.6. Vitrinite Reflectance (VR)
4.7. Raman Spectroscopy
4.8. Rock Eval Pyrolysis
5. Results
Sample | PDIC.-L.% | PDIP.% | TAI | SCI | Tmax | HI | OI | TOC | S1 | S2 | S3 | PI | PY | %Ro | SD | Paleotemp. | %Ro RA2 | SD | Fluorescence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Darreh Yas | |||||||||||||||||||
13268 | 64 | 69 | 3 | 8 | 488 | 49 | 16 | 0.98 | 0.11 | 0.48 | 0.16 | 0.19 | 0.59 | - | - | - | - | - | DO |
13266 | 66 | 76 | 3.3 | 8 | - | - | - | - | - | - | - | - | - | 1.24 | 0.12 | 170.4 | - | - | B |
13265 | 77 | 89 | 3.3 | 9 | 494 | 27 | 10 | 1.32 | 0.07 | 0.35 | 0.13 | 0.17 | 0.42 | - | - | - | - | - | B |
13264 | 78 | 90 | 3.3 | 9 | - | - | - | - | - | - | - | - | - | - | - | - | 1.245 | 0.03 | B |
13263 | 67 | 74 | 3.3 | 8/9 | 469 | 50 | 16 | 1.09 | 0.08 | 0.55 | 0.17 | 0.13 | 0.63 | 1.23 | 0.12 | 170.0 | 0.99 | 0.17 | B |
13262 | 67 | 72 | 3.3 | 8/9 | - | - | - | - | - | - | - | - | - | - | - | - | 1.07 | 0.15 | B |
13261 | 65 | 70 | 3 | 8 | 475 | 91 | 24 | 1.03 | 0.03 | 0.94 | 0.25 | 0.03 | 0.97 | - | - | - | - | - | DO |
13256 | 63 | 69 | 3 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | DO |
13255 | 63 | 69 | 3 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | DO |
13254 | 69 | 71 | 3 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | DO |
Kuh e Faraghan | |||||||||||||||||||
RE-2519 | 64 | 69 | 3 | 8 | 383 | 102 | 86 | 0.49 | 0.07 | 0.5 | - | 0.12 | 0.57 | 1.06 | 0.13 | 154.0 | - | - | DO |
RE-2518 | 67 | 70 | 3 | 9 | 446 | 62 | 118 | 0.66 | 0.17 | 0.41 | - | 0.29 | 0.58 | 1.13 | 0.12 | 160.5 | - | - | DO |
RE-2517 | 65 | 71 | 3 | 8/9 | 374 | 7 | 100 | 0.42 | 0.15 | 0.03 | - | 0.81 | 0.18 | 1.06 | 0.16 | 154.0 | - | - | DO |
RE-2516 | 63 | 69 | 3 | 8/9 | 377 | 56 | 111 | 0.54 | 0.05 | 0.3 | - | 0.13 | 0.35 | 1.04 | 0.11 | 152.0 | - | - | DO |
5.1. Palynofacies Analysis
5.1.1. Darreh Yas Section
5.1.2. Kuh e Faraghan Section
5.2. Thermal Alteration Index (TAI) and Spore Color Index (SCI)
5.3. Palynomorph Darkness Index (PDI)
5.4. Spore UV Fluorescence
5.5. Vitrinite Reflectance (VR)
5.6. Rock Eval Pyrolysis
5.7. MicroRaman Spectroscopy
6. Discussion
6.1. Depositional Setting
6.2. Thermal Maturity Assessment and Source Rock Characterization
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordenave, M.L. The Paleozoic Petroleum System in the Zagros Foldbelt of Iran and Contiguous Offshore. J. Pet. Geol. 2008, 33, 3–42. [Google Scholar] [CrossRef]
- Maurer, F.; Martini, R.; Rettori, R.; Hillgärtner, H.; Cirilli, S. The Geology of Khuff Outcrop Analogues in the Musandam Peninsula, United Arab Emirates and Oman. GeoArabia 2009, 14, 125–158. [Google Scholar] [CrossRef]
- Kamali, M.R.; Rezaee, M.R. Burial History Reconstruction and Thermal Modelling at Kuh-e Mond, SW Iran. J. Pet. Geol. 2003, 26, 451–464. [Google Scholar] [CrossRef]
- Opera, A.; Sarafdokht, H.; Janbaz, M.; Fouladvand, R.; Heidarifard, M.H. Burial History Reconstruction and Thermal Maturity Modeling for the Middle Cretaceous-Early Miocene Petroleum System, Southern Dezful Embayment, SW Iran. Int. J. Coal Geol. 2013, 120, 1–14. [Google Scholar] [CrossRef]
- Aldega, L.; Bigi, S.; Carminati, E.; Trippetta, F.; Corrado, S.; Kavoosi, M.A. The Zagros Fold-and-Thrust Belt in the Fars Province (Iran): II. Thermal Evolution. Mar. Pet. Geol. 2018, 93, 376–390. [Google Scholar] [CrossRef]
- Mahmoud, M.D.; Vaslet, D.; Husseini, M.I. The Lower Silurian Qalibah Formation of Saudi Arabia: An Important Hydrocarbon Source Rock. AAPG Bull. 1992, 76, 1491–1506. [Google Scholar] [CrossRef]
- Ertug, K.; Vecoli, M.; İnan, S. Palynofacies, Paleoenvironment and Thermal Maturity of Early Silurian Shales in Saudi Arabia (Qusaiba Member of Qalibah Formation). Rev. Palaeobot. Palynol. 2019, 270, 8–18. [Google Scholar] [CrossRef]
- Konert, G.; Afifi, A.M.; Al-Hajri, S.I.A.; Droste, H.J. Paleozoic Stratigraphy and Hydrocarbon Habitat of the Arabian Plate. GeoArabia 2001, 6, 407–442. [Google Scholar]
- Saberi, M.H.; Rabbani, A.R. Origin of Natural Gases in the Permo-Triassic Reservoirs of the Coastal Fars and Iranian Sector of the Persian Gulf. J. Nat. Gas Sci. Eng. 2015, 26, 558–569. [Google Scholar] [CrossRef]
- Saberi, M.H.; Rabbani, A.R.; Ghavidel-syooki, M. Hydrocarbon Potential and Palynological Study of the Latest Ordovician—Earliest Silurian Source Rock (Sarchahan Formation) in the Zagros Mountains, Southern Iran. Mar. Pet. Geol. 2016, 71, 12–25. [Google Scholar] [CrossRef]
- Jafarian, A.; Javanbakht, M.; Koeshidayatullah, A.; Pimentel, N.; Hersi, O.S.; Yahyaei, A.; Beigi, M. Paleoenvironmental, Diagenetic, and Eustatic Controls on the Permo–Triassic Carbonate–Evaporite Reservoir Quality, Upper Dalan and Kangan Formations, Lavan Gas Field, Zagros Basin. Geol. J. 2018, 53, 1442–1457. [Google Scholar] [CrossRef]
- Tavakoli, V.; Jamalian, A. Microporosity Evolution in Iranian Reservoirs, Dalan and Dariyan Formations, the Central Persian Gulf. J. Nat. Gas Sci. Eng. 2018, 52, 155–165. [Google Scholar] [CrossRef]
- Zamanzadeh, S.M.; Amini, A.; Kamali, M.R. Burial history reconstruction using late diagenetic products in the early Permian Siliciclastics of the Faraghan Formation, Southern Zagros, Iran. J. Pet. Geol. 2009, 32, 171–192. [Google Scholar] [CrossRef]
- Szabo, F.; Kheradpir, A. Permian and Triassic Stratigraphy, Zagros Basin, South-West Iran. J. Pet. Geol. 1978, 1, 57–82. [Google Scholar] [CrossRef]
- Ghavidel-syooki, M. Palynological Study and Age Determination of Faraghan in Kuhe-Faraghan, Southeast of Iran. J. Sci. Univ. Tehran 1984, 1984, 41–50. [Google Scholar]
- Ghavidel-syooki, M. Palynostratigraphy and Paleoecology of the Faraghan Formation of Southeastern Iran. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1988. [Google Scholar]
- Ghavidel-syooki, M. Acritarch Biostratigraphy of the Palaeozoic Rock Units in the Zagros Basin, Southern Iran. Acta-Univ. Carol. Geol. 1996, 40, 385–412. [Google Scholar] [CrossRef]
- Ghavidel-syooki, M. Palynostratigraphy and Palaeogeography of Early Permian Strata in the Zagros Basin, Southeast-Southwest Iran. J. Sci. Islamic Repub. Iran 1997, 8, 243–261. [Google Scholar]
- Ghavidel-Syooki, M. Peri-Gondwanan Acritarchs, Chitinozoans, and Miospores from Paleozoic Succession in the High Zagros Mountains, Southern Iran: Regional Stratigraphic Significance and Paleogeographic Implications. Rev. Palaeobot. Palynol. 2021, 292, 104457. [Google Scholar] [CrossRef]
- Ghavidel-Syooki, M. Biostratigraphy and paleobiogeography of some Paleozoic rocks at Zagros and Alborz mountains. In Treatise on the Geology of Iran; Geological Survey of Iran: Teheran, Iran, 1994; Volume 18, pp. 1–168. [Google Scholar]
- Spina, A.; Stephenson, M.H.; Cirilli, S.; Aria-Nasab, M.; Rettori, R. Palynostratigraphy of the Permian Faraghan Formation in the Zagros Basin, Southern Iran. Riv. Ital. Paleontol. Stratigr. 2018, 124, 573–595. [Google Scholar] [CrossRef]
- Spina, A.; Cirilli, S.; Sorci, A.; Clayton, G.; Gennari, V.; Ghorbani, M.; Ghorbani, M.; Ovissi, M.; Rettori, G.; Rettori, R. Palynology of the Permian Succession from the Ajabshir Area (Azerbaijan, Central Iran): A Preliminary Report. Geopersia 2020, 10, 211–225. [Google Scholar] [CrossRef]
- Dow, W.G. Kerogen Studies and Geological Interpretations. J. Geochem. Explor. 1977, 7, 79–99. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. From Kerogen to Petroleum. Pet. Form. Occur. 1984, 160–198. [Google Scholar] [CrossRef]
- Hood, A.; Gutjahr, C.C.M.; Heacock, R.L. Organic Metamorphism and the Generation of Petroleum. AAPG Bull. 1975, 59, 986–996. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.K. Vitrinite Reflectance as Maturity Parameter: Petrographic and Molecular Characterization and Its Applications to Basin Modeling; ACS: Washington, DC, USA, 1994. [Google Scholar]
- Suárez-Ruiz, I.; Flores, D.; Mendonça Filho, J.G.; Hackley, P.C. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. Int. J. Coal Geol. 2012, 99, 54–112. [Google Scholar] [CrossRef]
- Fernandes, P.; Cogné, N.; Chew, D.M.; Rodrigues, B.; Jorge, R.C.G.S.; Marques, J.; Jamal, D.; Vasconcelos, L. The Thermal History of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An Integrated Vitrinite Reflectance and Apatite Fission Track Thermochronology Study. J. Afr. Earth Sci. 2015, 112, 55–72. [Google Scholar] [CrossRef]
- Price, L.C.; Baker, C.E. Supperssion of Vitrinite Reflectance in Amorphous rich kerogen—A major unrecognized problem. J. Pet. Geol. 1985, 8, 59–84. [Google Scholar] [CrossRef]
- Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J. The Influence of Extractable Organic Matter on Vitrinite Reflectance Suppression: A Survey of Kerogen and Coal Types. Int. J. Coal Geol. 2007, 70, 67–78. [Google Scholar] [CrossRef]
- Caricchi, C.; Corrado, S.; di Paolo, L.; Aldega, L.; Grigo, D. Thermal Maturity of Silurian Deposits in the Baltic Syneclise (on-Shore Polish Baltic Basin): Contribution to Unconventional Resources Assessment. Ital. J. Geosci. 2016, 135, 383–393. [Google Scholar] [CrossRef]
- Schito, A.; Corrado, S.; Aldega, L.; Grigo, D. Overcoming Pitfalls of Vitrinite Reflectance Measurements in the Assessment of Thermal Maturity: The Case History of the Lower Congo Basin. Mar. Pet. Geol. 2016, 74, 59–70. [Google Scholar] [CrossRef]
- Schito, A.; Corrado, S.; Trolese, M.; Aldega, L.; Caricchi, C.; Cirilli, S.; Grigo, D.; Guedes, A.; Romano, C.; Spina, A.; et al. Assessment of Thermal Evolution of Paleozoic Successions of the Holy Cross Mountains (Poland). Mar. Pet. Geol. 2017, 80, 112–132. [Google Scholar] [CrossRef]
- Schito, A.; Andreucci, B.; Aldega, L.; Corrado, S.; di Paolo, L.; Zattin, M.; Szaniawski, R.; Jankowski, L.; Mazzoli, S. Burial and Exhumation of the Western Border of the Ukrainian Shield (Podolia): A Multi-Disciplinary Approach. Basin Res. 2018, 30, 532–549. [Google Scholar] [CrossRef] [Green Version]
- Schito, A.; Spina, A.; Corrado, S.; Cirilli, S.; Romano, C. Comparing Optical and Raman Spectroscopic Investigations of Phytoclasts and Sporomorphs for Thermal Maturity Assessment: The Case Study of Hettangian Continental Facies in the Holy Cross Mts. (Central Poland). Mar. Pet. Geol. 2019, 104, 331–345. [Google Scholar] [CrossRef]
- Spina, A.; Vecoli, M.; Riboulleau, A.; Clayton, G.; Cirilli, S.; di Michele, A.; Marcogiuseppe, A.; Rettori, R.; Sassi, P.; Servais, T.; et al. Application of Palynomorph Darkness Index (PDI) to Assess the Thermal Maturity of Palynomorphs: A Case Study from North Africa. Int. J. Coal Geol. 2018, 188, 64–78. [Google Scholar] [CrossRef]
- Lucca, A.; Storti, F.; Molli, G.; Muchez, P.; Schito, A.; Artoni, A.; Balsamo, F.; Corrado, S.; Mariani, E.S. Seismically Enhanced Hydrothermal Plume Advection through the Process Zone of the Compione Extensional Fault, Northern Apennines, Italy. GSA Bull. 2019, 131, 547–571. [Google Scholar] [CrossRef]
- Sorci, A.; Cirilli, S.; Clayton, G.; Corrado, S.; Hints, O.; Goodhue, R.; Schito, A.; Spina, A. Palynomorph Optical Analyses for Thermal Maturity Assessment of Upper Ordovician (Katian-Hirnantian) Rocks from Southern Estonia. Mar. Pet. Geol. 2020, 120, 104574. [Google Scholar] [CrossRef]
- Tricker, P.M.; Marshall, J.E.A.; Badman, T.D. Chitinozoan reflectance: A Lower Palaeozoic thermal maturity indicator. Mar. Pet. Geol. 1992, 9, 302–307. [Google Scholar] [CrossRef]
- Deaf, A.S.; Tahoun, S.S.; Gentzis, T.; Carvajal-Ortiz, H.; Harding, I.C.; Marshall, J.E.A.; Ocubalidet, S. Organic geochemical, palynofacies, and petrographic analyses examining the hydrocarbon potential of the Kharita Formation (Albian) in the Matruh Basin, northwestern Egypt. Mar. Pet. Geol. 2020, 112, 104087. [Google Scholar] [CrossRef]
- Marshall, J.E.A. Quantitative Spore Colour. J. Geol. Soc. 1991, 148, 223–233. [Google Scholar] [CrossRef]
- Hartkopf-Fröder, C.; Königshof, P.; Littke, R.; Schwarzbauer, J. Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. Int. J. Coal Geol. 2015, 150–151, 74–119. [Google Scholar] [CrossRef]
- Staplin, F.L. Sedimentary Organic Matter, Organic Metamorphism, and Oil and Gas Occurrence. Bull. Can. Pet. Geol. 1969, 17, 47–66. [Google Scholar]
- Waples, D.W. Predicting thermal maturity. In Geochemistry in Petroleum Exploration; Springer: Cham, Switzerland, 1985; pp. 121–154. [Google Scholar]
- Smith, P.M.R. Spectral Correlation of Spore Coloration Standards. Geol. Soc. Spec. Publ. 1983, 12, 289–294. [Google Scholar] [CrossRef]
- Williams, H.; Colman-Sadd, S.P.; Swinden, H.S. Tectonic-Stratigraphic Subdivisions of Central Newfoundland. Curr. Res. Part B 1998, 1322, 91–98. [Google Scholar]
- Goodhue, R.; Clayton, G. Palynomorph Darkness Index (PDI)—A New Technique for Assessing Thermal Maturity. Palynology 2010, 34, 147–156. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman Spectra of Carbonaceous Material in Metasediments: A New Geothermometer. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Lahfid, A.; Beyssac, O.; Deville, E.; Negro, F.; Chopin, C.; Goffé, B. Evolution of the Raman Spectrum of Carbonaceous Material in Low-Grade Metasediments of the Glarus Alps (Switzerland). Terra Nova 2010, 22, 354–360. [Google Scholar] [CrossRef]
- Ferralis, N.; Matys, E.D.; Knoll, A.H.; Hallmann, C.; Summons, R.E. Rapid, Direct and Non-Destructive Assessment of Fossil Organic Matter via MicroRaman Spectroscopy. Carbon 2016, 108, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Lünsdorf, N.K.; Dunkl, I.; Schmidt, B.C.; Rantitsch, G.; von Eynatten, H. Towards a Higher Comparability of Geothermometric Data Obtained by Raman Spectroscopy of Carbonaceous Material. Part 2: A Revised Geothermometer. Geostand. Geoanalytical Res. 2017, 41, 593–612. [Google Scholar] [CrossRef]
- Liu, D.; Xiao, X.; Tian, H.; Min, Y.; Zhou, Q.; Cheng, P.; Shen, J. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chin. Sci. Bull. 2012, 58, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Hinrichs, R.; Brown, M.T.; Vasconcellos, M.A.Z.; Abrashev, M.V.; Kalkreuth, W. Simple Procedure for an Estimation of the Coal Rank Using Micro-Raman Spectroscopy. Int. J. Coal Geol. 2014, 136, 52–58. [Google Scholar] [CrossRef]
- Schmidt, J.S.; Hinrichs, R.; Araujo, C.V. Maturity Estimation of Phytoclasts in Strew Mounts by Micro-Raman Spectroscopy. Int. J. Coal Geol. 2017, 173, 1–8. [Google Scholar] [CrossRef]
- Hackley, P.C.; Lünsdorf, N.K. Application of Raman Spectroscopy as Thermal Maturity Probe in Shale Petroleum Systems: Insights from Natural and Artificial Maturation Series. Energy Fuels 2018, 32, 11190–11202. [Google Scholar] [CrossRef]
- Khatibi, S.; Ostadhassan, M.; Tuschel, D.; Gentzis, T.; Bubach, B.; Carvajal-Ortiz, H. Raman Spectroscopy to Study Thermal Maturity and Elastic Modulus of Kerogen. Int. J. Coal Geol. 2018, 185, 103–118. [Google Scholar] [CrossRef]
- Schito, A.; Corrado, S. An Automatic Approach for Characterization of the Thermal Maturity of Dispersed Organic Matter Raman Spectra at Low Diagenetic Stages. In Application of Analytical Techniques to Petroleum Systems; Dowey, P.J., Osborne, M., Volk, H., Eds.; Geological Society of London Special Publications: London, UK, 2020; Volume 484, pp. 107–119. [Google Scholar] [CrossRef]
- Corrado, S.; Schito, A.; Romano, C.; Grigo, D.; Poe, B.T.; Aldega, L.; Caricchi, C.; di Paolo, L.; Zattin, M. An Integrated Platform for Thermal Maturity Assessment of Polyphase, Long-Lasting Sedimentary Basins, from Classical to Brand-New Thermal Parameters and Models: An Example from the on-Shore Baltic Basin (Poland). Mar. Pet. Geol. 2020, 122, 104547. [Google Scholar] [CrossRef]
- Muirhead, D.K.; Bond, C.E.; Watkins, H.; Butler, R.W.H.; Schito, A.; Crawford, Z.; Marpino, A. Raman Spectroscopy: An Effective Thermal Marker in Low Temperature Carbonaceous Fold–Thrust Belts. In Fold and Thrust Belts: Structural Style, Evolution and Exploration; Hammerstein, J.A., Di Cuia, R., Cottam, M.A., Zamora, G., Butler, R.W.H., Eds.; Geological Society of London Special Publications: London, UK, 2020; Volume 490, pp. 135–151. [Google Scholar] [CrossRef]
- Nirrengarten, M.; Mohn, G.; Schito, A.; Corrado, S.; Gutiérrez-García, L.; Bowden, S.A.; Despinois, F. The Thermal Imprint of Continental Breakup during the Formation of the South China Sea. Earth Planet. Sci. Lett. 2020, 531, 115972. [Google Scholar] [CrossRef]
- Tyson, R.V. Sedimentary Organic Matter; Springer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Batten, D.J. Palynofacies and Petroleum Potential. Palynol. Princ. Appl. 1996, 3, 1065–1084. [Google Scholar]
- Alavi, M. Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and Its Proforeland Evolution. Am. J. Sci. 2004, 304, 1–20. [Google Scholar] [CrossRef]
- Heydari, E. Tectonics versus Eustatic Control on Supersequences of the Zagros Mountains of Iran. Tectonophysics 2008, 451, 56–70. [Google Scholar] [CrossRef]
- Stöcklin, J. Structural History and Tectonics of Iran: A Review. AAPG Bull. 1968, 52, 1229–1258. [Google Scholar] [CrossRef]
- Berberian, M.; King, G.C.P. Towards a Paleogeography and Tectonic Evolution of Iran. Can. J. Earth Sci. 1981, 18, 210–265. [Google Scholar] [CrossRef]
- Setudehnia, A. The Paleozoic Sequence at Zard Kuh and Kuh-e-Dinar. Bull. Iran. Pet. Inst. 1975, 60, 16–33. [Google Scholar]
- Bahroudi, A.; Talbot, C.J. The Configuration of the Basement beneath the Zagros Basin. J. Pet. Geol. 2003, 26, 257–282. [Google Scholar] [CrossRef]
- Gaetani, M.; Garzanti, E.; Polino, R.; Kiricko, Y.; Korsakhov, S.; Cirilli, S.; Nicora, A.; Rettori, R.; Larghi, C.; Palliani, R.B. Stratigraphic Evidence for Cimmerian Events in NW Caucasus (Russia). Bull. Soc. Géol. Fr. 2005, 176, 283–299. [Google Scholar] [CrossRef]
- Gaetani, M.; Nicora, A.; Henderson, C.; Cirilli, S.; Gale, L.; Rettori, R.; Vuolo, I.; Atudorei, V. Refinements in the Upper Permian to Lower Jurassic Stratigraphy of Karakorum, Pakistan. Facies 2012, 59, 915–948. [Google Scholar] [CrossRef]
- Ruban, D.A.; Al-Husseini, M.I.; Iwasaki, Y. Review of Middle East Paleozoic Plate Tectonics. GeoArabia 2007, 12, 35–56. [Google Scholar] [CrossRef]
- Angiolini, L.; Checconi, A.; Gaetani, M.; Rettori, R. The Latest Permian Mass Extinction in the Alborz Mountains (North Iran). Geol. J. 2010, 45, 216–229. [Google Scholar] [CrossRef]
- Berra, F.; Angiolini, L. The Evolution of the Tethys Region throughout the Phanerozoic: A Brief Tectonic Reconstruction; AAPG: Tulsa, OK, USA, 2014. [Google Scholar]
- Aria-Nasab, M.; Spina, A.; Cirilli, S.; Daneshian, J. The Palynostratigraphy of the Lower Carboniferous (Middle Tournaisian–Upper Viséan) Shishtu Formation from the Howz-e-Dorah Section, Southeast Tabas, Central Iranian Basin. Palynology 2015, 40, 247–263. [Google Scholar] [CrossRef]
- Gennari, V.; Rettori, R. Globigaetania angulata Gen. n. Sp. n.(Globivalvulininae, Foraminifera) from the Wordian (Middle Permian) of NW Iran. Riv. Ital. Paleontol. Stratigr. 2019, 125, 1–11. [Google Scholar]
- Ghorbani, M. Lithostratigraphy of Iran; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Sharland, P.R.; Casey, D.M.; Davies, R.B.; Simmons, M.D.; Sutcliffe, O.E. Arabian Plate Sequence Stratigraphy; Gulf PetroLink: Manama, Bahrain, 2001; Volume 2. [Google Scholar]
- Casciello, E.; Vergés, J.; Saura, E.; Casini, G.; Fernández, N.; Blanc, E.; Homke, S.; Hunt, D.W. Fold Patterns and Multilayer Rheology of the Lurestan Province, Zagros Simply Folded Belt (Iran). J. Geol. Soc. 2009, 166, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Muttoni, G.; Gaetani, M.; Kent, D.V.; Sciunnach, D.; Angiolini, L.; Berra, F.; Garzanti, E.; Mattei, M.; Zanchi, A. Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A Transformation during the Permian. GeoArabia 2009, 14, 17–48. [Google Scholar] [CrossRef]
- Spina, A.; Cirilli, S.; Ghorbani, M.; Rettori, R.; Sorci, A.; Servais, T. Middle–late Cambrian acritarchs of the Zagros Basin, southwestern Iran. Palynology 2021, 45, 171–186. [Google Scholar] [CrossRef]
- Vennin, E.; Kolodka, C.; Asghari, A.; Thomazo, C.; Buoncristiani, J.F.; Goodarzi, H.; Desaubliaux, G. Discussion on Palaeozoic Discontinuities in the Kuh-e Surmeh Area (Zagros, Iran). Mar. Pet. Geol. 2015, 66, 1073–1092. [Google Scholar] [CrossRef]
- Garzanti, E.; Sciunnach, D. Early Carboniferous Onset of Gondwanian Glaciation and Neo-Tethyan Rifting in South Tibet. Earth Planet. Sci. Lett. 1997, 148, 359–365. [Google Scholar] [CrossRef]
- Angiolini, L.; Balini, M.; Garzanti, E.; Nicora, A.; Tintori, A. Gondwanan Deglaciation and Opening of Neotethys: The Al Khlata and Saiwan Formations of Interior Oman. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 196, 99–123. [Google Scholar] [CrossRef]
- Insalaco, E.; Virgone, A.; Courme, B.; Gaillot, J.; Kamali, M.; Moallemi, A.; Lotfpour, M.; Monibi, S. Upper Dalan Member and Kangan Formation between the Zagros Mountains and Offshore Fars, Iran: Depositional System, Biostratigraphy and Stratigraphic Architecture. GeoArabia 2006, 11, 75–176. [Google Scholar] [CrossRef]
- Zeinalzadeh, A. Burial History and Thermal Modeling of Dehram, Khami and Bangestan Groups in the Fars Area, South Iran. Master’s Thesis, University of Tehran, Tehran, Iran, 2000. [Google Scholar]
- Alsharhan, A.S.; Nairn, A.E.M. Sedimentary Basins and Petroleum Geology of the Middle East; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 0444824650. [Google Scholar]
- Alsharhan, A.S.; Kendall, C.G.S.C. Paleozoic Sequence Stratigraphy, Depositional Systems, and Hydrocarbon Habitats across the Arabian Plate. AAPG Bull. 2021, 105, 1149–1198. [Google Scholar] [CrossRef]
- Tavakoli-Shirazi, S.; de Lamotte, D.F.; Wrobel-Daveau, J.-C.; Ringenbach, J.-C. Pre-Permian uplift and diffuse extensional deformation in the High Zagros Belt (Iran): Integration in the geodynamic evolution of the Arabian plate. Arab. J. Geosci. 2013, 6, 2329–2342. [Google Scholar] [CrossRef]
- Asghari, A. Sedimentary Environment, Sequence Stratigraphy and Paleogeography of Paleozoic Pre-Khuff Succession in Southern Iran (Zagros and Persian Gulf). Ph.D. Thesis, Universitè de Bourgogne, Dijon, France, 2014. [Google Scholar]
- Ghavidel-syooki, M.; Hassanzadeh, J.; Vecoli, M. Palynology and Isotope Geochronology of the Upper Ordovician–Silurian Successions (Ghelli and Soltan Maidan Formations) in the Khoshyeilagh Area, Eastern Alborz Range, Northern Iran; Stratigraphic and Palaeogeographic Implications. Rev. Palaeobot. Palynol. 2011, 164, 251–271. [Google Scholar] [CrossRef]
- Golonka, J. Plate-Tectonic Maps of the Phanerozoic; AAPG: Tulsa, OK, USA, 2002. [Google Scholar]
- Haq, B.U.; Al-Qahtani, A.M. Phanerozoic Cycles of Sea-Level Change on the Arabian Platform; Gulf PetroLink: Manama, Bahrain, 2005; Volume 10. [Google Scholar]
- Husseini, M.I. Upper Palaeozoic Tectono-Sedimentary Evolution of the Arabian and Adjoining Plates. J. Geol. Soc. 1992, 149, 419–429. [Google Scholar] [CrossRef]
- Faqira, M.; Rademakers, M.; Afifi, A.M. New Insights into the Hercynian Orogeny, and Their Implications for the Paleozoic Hydrocarbon System in the Arabian Plate. GeoArabia 2009, 14, 199–228. [Google Scholar] [CrossRef]
- Stephenson, M.H.; Osterloff, P.L.; Filatoff, J. Palynological Biozonation of the Permian of Oman and Saudi Arabia: Progress and Challenges. GeoArabia 2003, 8, 467–496. [Google Scholar] [CrossRef]
- Stephenson, M.H. Stratigraphic Note: Update of the Standard Arabian Permian Palynological Biozonation; Definition and Description of OSPZ5 and 6. GeoArabia 2006, 11, 173–178. [Google Scholar] [CrossRef]
- Stephenson, M.H. Spores and Pollen from the Middle and Upper Gharif Members (Permian) of Oman. Palynology 2008, 32, 157–182. [Google Scholar] [CrossRef]
- Stolle, E. Regional Permian Palynological Correlations: Southeast Turkey-Northern Iraq. Comun. Geol. 2007, 94, 125–143. [Google Scholar]
- Stolle, E.; Yalçin, M.N.; Kavak, O. The Permian Kas Formation of SE Turkey—Palynological Correlation with Strata from Saudi Arabia and Oman. Geol. J. 2011, 46, 561–573. [Google Scholar] [CrossRef]
- Ghavidel-Syooki, M.; Popov, L.E.; Javier Álvaro, J.; Pour, M.G.; Tolmacheva, T.Y.; Ehsani, M.H. Dapingian-Lower Darriwilian (Ordovician) Stratigraphic Gap in the Faraghan Mountains, Zagros Ranges, South-Eastern Iran. Bull. Geosci. 2014, 89, 679–706. [Google Scholar] [CrossRef] [Green Version]
- Traverse, A. Paleopalynology; Springer: Cham, Switzerland, 2007; ISBN 1402056109. [Google Scholar]
- Buratti, N.; Cirilli, S. A New Bleaching Method for Strongly Oxidized Palynomorphs. Micropaleontology 2011, 57, 263–267. [Google Scholar]
- Tyson, R.V. Palynofacies analysis. In Applied Micropalaeontology; Springer: Cham, Switzerland, 1993; pp. 153–191. [Google Scholar]
- Steffen, D.; Gorin, G.E. Sedimentology of Organic Matter in Upper Tithonian-Berriasian Deep-Sea Carbonates of Southeast France: Evidence of Eustatic Control. In Source Rocks in a Sequence Stratigraphic Framework; AAPG: Tulsa, OK, USA, 1993; pp. 49–65. [Google Scholar]
- Cirilli, S.; Bucefalo Palliani, R.; Pontini, M.R. Palynostratigraphy and Palynofacies of the Late Triassic R. Contorta Facies in Northern Apennines: II The Monte Cetona Formation. Rev. Paleobiol. 1994, 13, 319–339. [Google Scholar]
- Cirilli, S.; Buratti, N.; Gugliotti, L.; Frixa, A. Palynostratigraphy and Palynofacies of the Upper Triassic Streppenosa Formation (SE Sicily, Italy) and Inference on the Main Controlling Factors in the Organic Rich Shale Deposition. Rev. Palaeobot. Palynol. 2015, 218, 67–79. [Google Scholar] [CrossRef]
- Cirilli, S.; Panfili, G.; Buratti, N.; Frixa, A. Paleoenvironmental Reconstruction by Means of Palynofacies and Lithofacies Analyses: An Example from the Upper Triassic Subsurface Succession of the Hyblean Plateau Petroleum System (SE Sicily, Italy). Rev. Palaeobot. Palynol. 2018, 253, 70–87. [Google Scholar] [CrossRef]
- Batten, D.J. Palynofacies and Palaeoenvironmental Interpretation. Palynol. Princ. Appl. 1996, 3, 1011–1064. [Google Scholar]
- Berra, F.; Cirilli, S. Preservation and Thermal Alteration of Organic Matter in the Ortles and Quattervals Nappes (Upper Austroalpine, Nord-Eastern Lombardy, Italy): Preliminary Results and Implications for Regional Geology. Eclogae Geol. Helv. 1997, 90, 325–336. [Google Scholar]
- Berra, F.; Cirilli, S. Palaeoenvironmental Interpretation of the Late Triassic Fraele Formation: Ortles Nappe, Austroalpine Domain, Lombardy. Riv. Ital. Paleontol. Stratigr. 1997, 103, 53–70. [Google Scholar]
- Aldinucci, M.; Brogi, A.; Spina, A. Middle-Late Permian Sporomorphs from the Farma Formation (Monticiano-Roccastrada Ridge, Southern Tuscany): New Constraints for the Tectono-Sedimentary History of the Tuscan Domain. Boll. Soc. Geol. Ital. 2008, 127, 581–597. [Google Scholar]
- Cornamusini, G.; Talarico, F.M.; Cirilli, S.; Spina, A.; Olivetti, V.; Woo, J. Upper Paleozoic Glacigenic Deposits of Gondwana: Stratigraphy and Paleoenvironmental Significance of a Tillite Succession in Northern Victoria Land (Antarctica). Sediment. Geol. 2017, 358, 51–69. [Google Scholar] [CrossRef]
- Tyson, R.V. Late Jurassic Palynofacies Trends, Piper and Kimmeridge Clay Formations, UK Onshore and Northern North Sea. In Northwest European Micropalaeontology and Palynology; Ellis Horwood Publishers: Chichester, UK, 1989; pp. 135–172. [Google Scholar]
- Fraser, W.T.; Watson, J.S.; Sephton, M.A.; Lomax, B.H.; Harrington, G.; Gosling, W.D.; Self, S. Changes in spore chemistry and appearance with increasing maturity. Rev. Palaeobot. Palynol. 2014, 201, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Clayton, G.; Goodhue, R.; Abdelbagi, S.T.; Vecoli, M. Correlation of Palynomorph Darkness Index and vitrinite reflectance in a submature Carboniferous well section in northern Saudi Arabia. Rev. Micropaléontologie 2017, 60, 411–416. [Google Scholar] [CrossRef]
- Riboulleau, A.; Spina, A.; Vecoli, M.; Riquier, L.; Quijada, M.; Tribovillard, N.; Averbuch, O. Organic matter deposition in the Ghadames Basin (Libya) during the Late Devonian—A multidisciplinary approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 497, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Haseldonckx, P. Relation of Palynomorph Colour and Sedimentary Organic Matter to Thermal Maturation and Hydrocarbon Generating Potential. Generation and Maturation of Hydrocarbons in Sedimentary Basins. United Nations Economic and Social Development in Asia and the Pacific. CCOP Tech. Publ. 1979, 6, 41–53. [Google Scholar]
- Fisher, M.J.; Barnard, P.C.; Cooper, B.S. Organic Maturation and Hydrocarbon Generation in the Mesozoic Sediments of the Sverdrup Basin, Arctic Canada. In Proceedings of the 4th International Palynological Conference, Lucknow, India, 29 December 1976–15 January 1977; pp. 581–588. [Google Scholar]
- Collins, A. The 1-10 Spore Colour Index (SC1) Scale: A Universally Applicable Colour Maturation Scale Based on Graded, Picked Palynomorphs. Meded. Rijks Geol. Dienst. 1990, 45, 39–47. [Google Scholar]
- Hillier, S.; Marshall, J.E.A. Organic Maturation, Thermal History and Hydrocarbon Generation in the Orcadian Basin, Scotland. J. Geol. Soc. 1992, 149, 491–502. [Google Scholar] [CrossRef]
- Marshall, J.E.A.; Yule, B.L.; Jones, P.T.; Rowe, N.P. Spore Colour Measurement. Fossil Plants and Spores: Modern Techniques; Geological Society: London, UK, 1999; pp. 165–168. [Google Scholar]
- Pearson, D.L. Pollen/Spore Color Standard, Revised Edition; Phillips Petroleum Exploration Projects Section: Bartlesville, OK, USA, 1990. [Google Scholar]
- Senftle, J.T.; Landis, C.R.; McLaughlin, R.L. Organic Petrographic Approach to Kerogen Characterization. In Organic Geochemistry. Topics in Geobiology; Springer: Boston, MA, USA, 1993; pp. 355–374. [Google Scholar] [CrossRef]
- Mao, S.; Buxton Eglinton, L.; Whelan, J.; Liu, L. Thermal Evolution of Sediments from Leg 139, Middle Valley, Juan de Fuca Ridge: An Organic Petrological Study. In Proceedings of the Ocean Drilling Program. Scientific Results, College Station, TX, USA, 3–7 October; Ocean Drilling Program: College Station, TX, USA, 1994; Volume 139. [Google Scholar]
- Taylor, G.H.; Teichmüller, M.; Davis, A.; Diessel, C.F.K.; Littke, R.; Robert, P. Organic Petrology; Schweizerbart Science Pulishers: Stuttgart, Germany, 1998. [Google Scholar]
- Fernandes, P.; Rodrigues, B.; Borges, M.; Matos, V.; Clayton, G. Organic Maturation of the Algarve Basin (Southern Portugal) and Its Bearing on Thermal History and Hydrocarbon Exploration. Mar. Pet. Geol. 2013, 46, 210–233. [Google Scholar] [CrossRef]
- Galasso, F.; Pereira, Z.; Fernandes, P.; Spina, A.; Marques, J. First Record of Permo-Triassic Palynomorphs of the N’Condédzi Sub-Basin, Moatize-Minjova Coal Basin, Karoo Supergroup, Mozambique. Rev. Micropaléontol. 2019, 64, 100357. [Google Scholar] [CrossRef]
- Galasso, F.; Fernandes, P.; Montesi, G.; Marques, J.; Spina, A.; Pereira, Z. Thermal History and Basin Evolution of the Moatize-Minjova Coal Basin (N’Condédzi Sub-Basin, Mozambique) Constrained by Organic Maturation Levels. J. Afr. Earth Sci. 2019, 153, 219–238. [Google Scholar] [CrossRef]
- Van Gijzel, P. Manual of the Techniques and Some Geological Applications of Fluorescence Microscopy. In Proceedings of the American Association of Stratigraphic Palynologists, 12 Annual Meeting Workshop, Dallas, TX, USA, 9–12 September 1979. [Google Scholar]
- McPhilemy, B. The Value of Fluorescence Microscopy in Routine Palynofacies Analysis: Lower Carboniferous Successions from Counties Armagh and Roscommon, Ireland. Rev. Palaeobot. Palynol. 1988, 56, 345–359. [Google Scholar] [CrossRef]
- Hillier, S.; Marshall, J. A Rapid Technique to Make Polished Thin Sections of Sedimentary Organic Matter Concentrates. J. Sediment. Res. 1988, 58, 754–755. [Google Scholar] [CrossRef]
- Barker, C.E. Geothermics of petroleum systems: Implications of the stabilization of kerogen thermal maturation after a geologically brief heating duration at peak temperature. In Petroleum Systems of the United States; Magoon, L.B., Ed.; U.S. Geological Survey Bulletin: Washington, DC, USA, 1988; Volume 1870, pp. 26–29. [Google Scholar]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. Raman Spectroscopy as a Tool to Determine the Thermal Maturity of Organic Matter: Application to Sedimentary, Metamorphic and Structural Geology. Earth-Sci. Rev. 2019, 198, 102936. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 2003, 53, 1126. [Google Scholar] [CrossRef] [Green Version]
- Espitalié, J.; Laporte, J.L.; Madec, M.; Marquis, F.; Leplat, P.; Paulet, J.; Boutefeu, A. Méthode rapide de caractérisation des roches mères, de leur potential et de leur degré d’évolution. Oil Gas Sci. Technol.—Rev. l’Institut Fr. Pet. 1977, 32, 23–42. [Google Scholar]
- Peters, K.E.; Whelan, J.K.; Hunt, J.M.; Tarafa, M.E. Programmed pyrolysis of organic matter from thermally altered Cretaceous black shales. Am. Assoc. Pet. Geol. Bull. 1983, 67, 2137–2146. [Google Scholar]
- Peters, K.E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. Am. Assoc. Pet. Geol. Bull. 1986, 70, 318–329. [Google Scholar] [CrossRef]
- Dembicki, H. Three common source rock evaluation errors made by geologists during prospect or play appraisals. Am. Assoc. Pet. Geol. Bull. 2009, 93, 341–356. [Google Scholar] [CrossRef]
- Guedes, A.; Valentim, B.; Prieto, A.C.; Rodrigues, S.; Noronha, F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite. Int. J. Coal Geol. 2010, 83, 415–422. [Google Scholar] [CrossRef]
- Espitalié, J.; Deroo, G.; Marquis, F. La pyrolyse Rock-Eval et ses applications. Troisième partie. Rev. l’Institut Fr. Pet. 1986, 41, 73–89. [Google Scholar] [CrossRef]
- Peters, K.E.; Cassa, M.R. Applied Source Rock Geochemistry: Chapter 5: Part II. Essential Elements; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994. [Google Scholar]
- Langford, F.F.; Blanc-Valleron, M.-M. Interpreting Rock-Eval Pyrolysis Data Using Graphs of Pyrolizable Hydrocarbons vs. Total Organic Carbon. AAPG Bull. 1990, 74, 799–804. [Google Scholar] [CrossRef]
- Hazra, B.; Wood, D.A.; Varma, A.K.; Sarkar, B.C.; Tiwari, B.; Singh, A.K. Insights into the Effects of Matrix Retention and Inert Carbon on the Petroleum Generation Potential of Indian Gondwana Shales. Mar. Pet. Geol. 2018, 91, 125–138. [Google Scholar] [CrossRef]
- Yang, S.; Horsfield, B. Critical Review of the Uncertainty of Tmax in Revealing the Thermal Maturity of Organic Matter in Sedimentary Rocks. Int. J. Coal Geol. 2020, 225, 103500. [Google Scholar] [CrossRef]
- Conford, C.; Gardner, P.; Burgess, C. Geochemical truths in large data sets. I: Geochemical screening data. Org. Geochem. 1998, 29, 519–530. [Google Scholar] [CrossRef]
- Cheshire, S.; Craddock, P.R.; Xu, G.; Sauerer, B.; Pomerantz, A.E.; McCormick, D.; Abdallah, W. Assessing thermal maturity beyond the reaches of vitrinite reflectance and Rock-Eval pyrolysis: A case study from the Silurian Qusaiba formation. Int. J. Coal Geol. 2017, 180, 29–45. [Google Scholar] [CrossRef]
- Hunt, J.M. Petroleum Geochemistry and Geology, 2nd ed.; Freeman and Company: New York, NY, USA, 1996; Volume 74. [Google Scholar]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Rev. l’Institut Fr. Pet. 1998, 53, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Maravelis, A.; Makrodimitras, G.; Pasadakis, N.; Zelilidis, A. Stratigraphic evolution and source rock potential of a Lower Oligocene to Lower—Middle Miocene continental slope system, Hellenic Fold and Thrust Belt, Ionian Sea, northwest Greece. Geol. Mag. 2014, 151, 394–413. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Chamilaki, E.; Pasadakis, N.; Zelilidis, A.; Collins, W.J. Hydrocarbon generation potential of a Lower Permian sedimentary succession (Mount Agony Formation): Southern Sydney Basin, New South Wales, Southeast Australia. Int. J. Coal Geol. 2017, 183, 52–64. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Chamilaki, E.; Pasadakis, N.; Vassiliou, A.; Zelilidis, A. Organic geochemical characteristics and paleodepositional conditions of an Upper Carboniferous mud-rich succession (Yagon Siltstone): Myall Trough, southeast Australia. J. Pet. Sci. Eng. 2017, 158, 322–335. [Google Scholar] [CrossRef]
- Rashidi, M.R. Source Rock Potential and Kerogen Evaluation of Lower Permian Faraghan Formation in Zagros Basin of Iran. In Proceedings of the 5th EAGE St. Petersburg International Conference and Exhibition on Geosciences-Making the Most of the Earths Resources, Saint Petersburg, Russia, 2–5 April 2012. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spina, A.; Cirilli, S.; Sorci, A.; Schito, A.; Clayton, G.; Corrado, S.; Fernandes, P.; Galasso, F.; Montesi, G.; Pereira, Z.; et al. Assessing Thermal Maturity through a Multi-Proxy Approach: A Case Study from the Permian Faraghan Formation (Zagros Basin, Southwest Iran). Geosciences 2021, 11, 484. https://doi.org/10.3390/geosciences11120484
Spina A, Cirilli S, Sorci A, Schito A, Clayton G, Corrado S, Fernandes P, Galasso F, Montesi G, Pereira Z, et al. Assessing Thermal Maturity through a Multi-Proxy Approach: A Case Study from the Permian Faraghan Formation (Zagros Basin, Southwest Iran). Geosciences. 2021; 11(12):484. https://doi.org/10.3390/geosciences11120484
Chicago/Turabian StyleSpina, Amalia, Simonetta Cirilli, Andrea Sorci, Andrea Schito, Geoff Clayton, Sveva Corrado, Paulo Fernandes, Francesca Galasso, Giovanni Montesi, Zelia Pereira, and et al. 2021. "Assessing Thermal Maturity through a Multi-Proxy Approach: A Case Study from the Permian Faraghan Formation (Zagros Basin, Southwest Iran)" Geosciences 11, no. 12: 484. https://doi.org/10.3390/geosciences11120484
APA StyleSpina, A., Cirilli, S., Sorci, A., Schito, A., Clayton, G., Corrado, S., Fernandes, P., Galasso, F., Montesi, G., Pereira, Z., Rashidi, M., & Rettori, R. (2021). Assessing Thermal Maturity through a Multi-Proxy Approach: A Case Study from the Permian Faraghan Formation (Zagros Basin, Southwest Iran). Geosciences, 11(12), 484. https://doi.org/10.3390/geosciences11120484