Investigating the Potential Role of Geological Context on Groundwater Quality: A Case Study of the Grenville and St. Lawrence Platform Geological Provinces in Quebec, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Groundwater Samples and Laboratory Analyses
2.2.2. Preparation of the Regional Database
2.2.3. Univariate and Multivariate Statistical Analyses
2.2.4. Saturation Index
3. Results
3.1. Statistical Analysis
3.2. Correlation Matrix
3.3. Principal Component Analysis
4. Interpretation and Discussion
4.1. Hydrogeological Processes Affecting Groundwater Chemistry
4.2. Chemical Evolution of Groundwater
4.3. Regional Hydrogeochemical Conceptual Model
4.4. Trace Chemicals and Groundwater Quality
4.5. Isotopic Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministère de l’Environnement et de la Lutte Contre les Changements Climatiques: Projets D’acquisition de Connaissance des eaux souterraines. Available online: https://www.environnement.gouv.qc.ca/eau/souterraines/programmes/acquisition-connaissance.htm (accessed on 9 March 2021).
- Larocque, M.; Cloutier, V.; Levison, J.; Rosa, E. Results from the Quebec Groundwater Knowledge Acquisition Program. Can. Water Resour. J. 2018, 43, 69–74. [Google Scholar] [CrossRef]
- Rouleau, A.; Larocque, M.; Walter, J.; Gagné, S.; Tremblay, L.; Germaneau, D. Le programme d’acquisition de connaissances sur les eaux souterraines. Vecteur Environ. 2012, 45, 30–31. [Google Scholar]
- Tòth, J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol. J. 1999, 7, 1–14. [Google Scholar] [CrossRef]
- Chebotarev, I. Metamorphism of natural waters in the crust of weathering. Geochim. Cosmochim. Acta 1955, 8, 22–48. [Google Scholar] [CrossRef]
- Beaudry, C.; Lefebvre, R.; Rivard, C.; Cloutier, V. Conceptual model of regional groundwater flow based on hydrogeochemistry (Montérégie Est, Québec, Canada). Can. Water Resour. J. 2018, 43, 152–172. [Google Scholar] [CrossRef]
- Walter, J.; Rouleau, A.; Chesnaux, R.; Lambert, M.; Daigneault, R. Characterization of general and singular features of major aquifer systems in the Saguenay-Lac-Saint-Jean region. Can. Water Resour. J. 2018, 43, 75–91. [Google Scholar] [CrossRef]
- Ghesquière, O.; Waler, J.; Chesnaux, R.; Rouleau, A. Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J. Hydrol. Reg. Stud. 2015, 4, 246–266. [Google Scholar] [CrossRef] [Green Version]
- Montcoudiol, N.; Molson, J.; Lemieux, J.-M. Groundwater geochemistry of the Outaouais Region (Québec, Canada): A regional study. Hydrogeol. J. 2015, 23, 377–396. [Google Scholar] [CrossRef]
- Lacasse, K. Caractérisation Géochimique et Isotopique des Aquifères du Sud-Ouest de la Mauricie. Master’s Thesis, Université du Québec à Trois-Rivières, Québec, QC, Canada, 2013. [Google Scholar]
- Blanchette, D.; Lefebvre, R.; Nastev, M.; Cloutier, V. Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Can. Water Resour. J. 2010, 35, 503–526. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, V.; Lefebvre, R.; Savard, M.; Therrien, R. Groundwater origin and geochemical processes in the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Quebec, Canada. In Proceedings of the 57th Canadian Geotechnical Conference and 5th Joint CGS/IAH Conference, Québec City, QC, Canada, 24–26 October 2004; p. 8. [Google Scholar]
- Walter, J.; Chesnaux, R.; Cloutier, V.; Gaboury, D. The influence of water/rock—water/clay interactions and mixing in the salinization processes of groundwater. J. Hydrol. Reg. Stud. 2017, 13, 168–188. [Google Scholar] [CrossRef]
- Walter, J.; Chesnaux, R.; Gaboury, D.; Cloutier, V. Subsampling of regional-scale database for improving multivariate analysis interpretation of groundwater chemical evolution and ion sources. Geosciences 2019, 9, 139. [Google Scholar] [CrossRef] [Green Version]
- Ministère de l’Énergie et des Ressources naturelles. Portrait Territoriale Mauricie 2006, 87. Available online: https://mern.gouv.qc.ca/nos-publications/portrait-territorial-mauricie/ (accessed on 3 December 2021).
- Ministère de l’Énergie et des Ressources naturelles. Portrait Territoriale Lanaudière 2007, 96. Available online: https://mern.gouv.qc.ca/nos-publications/portrait-territorial-lanaudiere/ (accessed on 3 December 2021).
- Ministère des Affaires Municipales et Habitation: Organisation municipale—Région administrative 14: Lanaudière. Available online: https://www.mamh.gouv.qc.ca/organisation-municipale/organisation-territoriale/regions-administratives/lanaudiere/ (accessed on 9 March 2021).
- Ministère des Affaires Municipales et Habitation: Organisation Municipale—Région Administrative 04: Mauricie. Available online: https://www.mamh.gouv.qc.ca/organisation-municipale/organisation-territoriale/regions-administratives/mauricie/ (accessed on 9 March 2021).
- Bédard, J. Carte Géologique de la Région de Cartier-Tracy, Comtés de Montcalm, Joliette et Berthier; Ministère des Richesses Naturelles: Quebec, QC, Canada, 1971. [Google Scholar]
- Béland, J.; Bergeron, R. Esquisse géologique du Québec méridional. Cah. Geogr. Que. 1959, 3, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, L.; Brouillette, P. Structural Map of Trois-Rivières, Grenville Province, Québec; Map 1:250,000; Geological Survey of Canada: Ottawa, ON, Canada, 1995. [Google Scholar]
- O’Nell, J.; Osborne, F. Géologie de la mine Tetreault, Montauban-les-mines, comté de Portneuf; (Carte No 496 associée au rpport No 136); Ministère des Mines et des Pêcheries: Québec, QC, Canada, 1938. [Google Scholar]
- Comeau, F.-A.; Bédard, K.; Malo, M. Lithostratigraphie Standardisée du Basin des Basses-Terres du Saint-Laurent Basée sur L’étude des Diagraphies: Rapport Final; Research Report, R1442; INRS: Quebec City, QC, Canada, 2013. [Google Scholar]
- Globensky, Y. Géologie des Basses-Terres du St-Laurent (Geology of the St. Lawrence Lowlands); Ministry of Energy and Resources, General Direction for Geologic and Mineral Exploration: Québec, QC, Canada, 1987; p. 85. [Google Scholar]
- Cloutier, V.; Lefebvre, R.; Savard, M.; Therrien, R. Desalination of a sedimentary rock aquifer system invaded by Pleistocene Champlain Sea water and processes controlling groundwater geochemistry. Environ. Earth Sci. 2010, 59, 977–994. [Google Scholar] [CrossRef]
- Ministère de l’Environnement et de la Lutte Contre les Changements Climatiques: Normales Climatiques du Québec 1981–2010. Available online: https://www.environnement.gouv.qc.ca/climat/normales/index.asp (accessed on 11 January 2021).
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; 668p. [Google Scholar]
- Hounslow, A. Water Quality Data: Analysis and Interpretation; CRC Press: Boca Raton, FL, 1995; p. 416. [Google Scholar]
- Baillargeon, G. Probabilité et Statistique Avec Applications en Technologie et Ingénierie; Les Éditions SMG: Trois-Rivières, QC, Canada, 2002; p. 728. [Google Scholar]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 1–30. [Google Scholar] [CrossRef]
- Davis, J.C.; Sampson, R.J. Statistics and Data Analysis in Geology; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1986; p. 646. [Google Scholar]
- Güler, C.; Thyne, G.; McCray, J.; Turner, K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Farnham, I.; Johannesson, K.; Singh, A.; Hodge, V.; Stetzenbach, K. Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal. Chim. Acta 2003, 490, 123–138. [Google Scholar] [CrossRef]
- Yeomans, K.; Golder, P. The Guttman-Kaiser criterion as a predictor of the number of common factors. Statistician 1982, 221–229. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston. 2019. Available online: http://www.rstudio.com/ (accessed on 5 January 2020).
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
- Health Canada. Guidelines for Canadian Drinking Water Quality—Guideline Technical Document—Total Dissolved Solids (TDS); Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada: Ottawa, ON, Canada, 1991; p. 3. [Google Scholar]
- Occhietti, S.; Richard, P. Effet réservoir sur les âges 14C de la Mer de Champlain à la transition Pléistocène-Holocène: Révision de la chronologie de la déglaciation au Québec méridional. Géographie Phys. Quat. 2003, 57, 115–138. [Google Scholar] [CrossRef] [Green Version]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water, 3rd ed.; Library of Congress, Department of the Interior, US Geological Survey: Washington, DC, USA, 1985; p. 272.
- Datta, P.; Tyagi, S. Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. J. Geol. Soc. India 1996, 47, 179–188. [Google Scholar]
- Plummer, L.; Busby, J.; Lee, R.; Hanshaw, B. Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour. Res. 1990, 26, 1981–2014. [Google Scholar] [CrossRef]
- Langmuir, D. The geochemistry of some carbonate groundwaters in central Pennsylvania. Geochim. Cosmochim. Acta 1971, 35, 1023–1045. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Goldberg, E.; Broecker, W.; Gross, M.; Turekian, K. Radioactivity in the Marine Environment; National Academyof Sciences: Washington, DC, USA, 1971; p. 137. [Google Scholar]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, K.; Thao, N.; Batsaikhan, B.; Yun, S. Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam. J. Hydrol. 2017, 549, 703–714. [Google Scholar] [CrossRef]
- Health Canada. Guidelines for Canadian Drinking Water Quality—Summary Table; Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada: Ottawa, ON, Canada, 2020; p. 28. [Google Scholar]
- Hou, Q.; Zhang, Q.; Huang, G.; Liu, C.; Zhang, Y. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China. Sci. Total Environ. 2020, 701. [Google Scholar] [CrossRef] [PubMed]
- Bondu, R.; Cloutier, V.; Rosa, E. Occurrence of geogenic contaminants in private wells from a crystalline bedrock aquifer in western Quebec, Canada: Geochemical sources and health risks. J. Hydrol. 2018, 55, 627–637. [Google Scholar] [CrossRef]
- Li, X.; Masuda, H.; Kusakabe, M.; Yanagisawa, F.; Zeng, H. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin, China. Geochem. J. 2006, 40, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Delisle, C.; Schmidt, J. The effects of sulphur on water and aquatic life in Canada. The effects of sulphur on water and aquatic life in Canada. In Sulphur and Its Inorganic Derivatives in the Canadian Environment; NRCC No. 15015; Associate Committee on Scientific Criteria for Environmental Quality, National Research Council of Canada: Ottawa, ON, Canada, 1977. [Google Scholar]
- Pinet, N.; Duchesne, M.; Lavoie, D.; Bolduc, A.; Long, B. Surface and subsurface signature of gas seepage in the St. Lawrence Estuary (Canada): Significance to hydrocarbon exploration. Mar. Pet. Geol. 2008, 25, 271–288. [Google Scholar] [CrossRef]
- Castonguay, C.; Lavoie, D.; Dietrich, J.; Laliberté, J.-Y. Structure and petroleum plays of the St. Lawrence Platform and Appalachians in southern Quebec: Insights from interpretation of MRNQ seismic reflection data. Bull. Can. Pet. Geol. 2010, 58, 219–234. [Google Scholar] [CrossRef]
- Moritz, A.; Hélie, J.-F.; Pinti, D.L.; Larocque, M.; Barnetche, D.; Retailleau, S.; Lefebvre, R.; Gélinas, Y. Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence lowlands (Quebec, Canada). Environ. Sci. Technol. 2015, 49, 4765–4771. [Google Scholar] [CrossRef] [PubMed]
- Ladevèze, P.; Rivard, C.; Lavoie, D.; Séjourné, S.; Lefebvre, R.; Bordeleau, G. Fault and natural fracture control on upward fluid migration: Insights from a shale gas play in the St. Lawrence Platform, Canada. Hydrogeol. J. 2019, 27, 121–143. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.; Blenkinsop, J. Dissolution of fluorite (CaF2) for geochemistry. J. Fluor. Chem. 1989, 43, 145–149. [Google Scholar] [CrossRef]
- Guilleux, C.; Kochoni, E.; Campbell, P.; Blais, J.; Fortin, C. Géochimie et Écotoxicologie Des. Fluorures Dans les Écosystèmes Terrestres et Aquatiques et Méthodes de Traitement: Revue de la Littérature Scientifique; Research Report R1640; INRS, Centre Eau Terre Environnement: Québec, QC, Canada, 2015; p. 116. [Google Scholar]
- Rankama, K.; Edgington, G. Fluorine in soils. Soil Sci. 1946, 61, 341–353. [Google Scholar] [CrossRef]
- Leng, M. Isotopes in palaeoenvironmental research. Dev. Paleoenviron. Res. 2006, 10, 307. [Google Scholar] [CrossRef]
Bottles | Parameters | Preservatives | Filters |
---|---|---|---|
Polyethylene 500 mL | Suspended solids Total solids TDS | NA | NA |
Polyethylene 250 mL | Al, Sb, Ag, As, Ba, Be, Bi, B, Ca, Cr, Co, Cu, Fe, Li, Mg, Mn, Mo, Ni, K, Pb, Se, Si, Na, Sr, Sn, Ti, U, V, Zn | 0.5 mL 69% HNO3 | 0.45 μm membrane |
Polyethylene 250 mL | Total alkalinity, NO2 and NO3, Br, Cl, F, SO4 | NA | NA |
Polyethylene 250 mL | Sulfur | 0.5 mL 5 N NaOH | NA |
Polyethylene 250 mL | Inorganic phosphorus | 0.5 mL 50% H2SO4 | NA |
Glass 60 mL | Ammoniacal nitrogen | 0.17 mL sulfuric acid | NA |
Polyethylene 30 mL | δ18O, δ2H | NA | NA |
G-GP | B-GP | G-SLP | B-SLP | |
---|---|---|---|---|
Grenville Province | Grenville Province | St. Lawrence Platform | St. Lawrence Platform | |
Aquifer type | Granular | Bedrock | Granular | Bedrock |
n | 81 | 111 | 47 | 20 |
Water type (n) | Ca–HCO3 (62) Na–HCO3 (10) Ca–Cl (5)/Na–Cl (4) (Ca–Na)SO4 (0) | Ca–HCO3 (59) Na–HCO3 (32) Ca–Cl (4)/Na–Cl (13) (Ca–Na)SO4 (3) | Ca–HCO3 (29) Na–HCO3 (8) Ca–Cl (1)/Na–Cl (7) (Ca–Na)SO4 (2) | Ca–HCO3 (30) Na–HCO3 (24) Ca–Cl (5)/Na–Cl (17) (Ca–Na)SO4 (2) |
Major elements (mg/L) | ||||
Calcium | 14.00 | 20.00 | 28.00 | 19.00 |
Magnesium | 1.90 | 4.00 | 4.60 | 9.95 |
Potassium | 1.40 | 2.00 | 2.30 | 7.45 |
Sodium | 6.30 | 19.00 | 27.00 | 97.00 |
Chloride | 3.40 | 15.00 | 34.00 | 36.50 |
Sulfate | 7.80 | 16.00 | 11.00 | 8.00 |
Bicarbonate | 42.00 | 90.00 | 110.00 | 195.00 |
Minor elements (mg/L) | ||||
Barium | 0.014 | 0.021 | 0.042 | 0.230 |
Manganese | 0.008 | 0.010 | 0.004 | 0.016 |
Silicium | 5.60 | 5.90 | 5.40 | 7.20 |
Strontium | 0.083 | 0.22 | 0.17 | 0.52 |
Fluoride | 0.05 | 0.18 | 0.08 | 0.69 |
Ammonium | 0.02 | 0.05 | 0.04 | 0.59 |
Iron | 0.06 | 0.06 | 0.06 | 0.06 |
Sulfides | 0.02 | 0.02 | 0.02 | 0.04 |
In situ parameters | ||||
Dissolved O2 (%) | 1.33 | 0.00 | 0.00 | 0.00 |
pH | 6.25 | 7.73 | 6.47 | 8.10 |
TDS (mg/L) | 32.00 | 103.00 | 161.00 | 204.00 |
B-GP | G-GP | B-SLP | G-SLP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Components | ||||||||||||||
Elements | C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 | C1 | C2 | C3 | C1 | C2 | C3 |
Ca2+ | 0.75 | −0.03 | 0.10 | 0.42 | −0.15 | −0.08 | 0.80 | 0.29 | −0.11 | −0.22 | 0.88 | 0.27 | 0.79 | 0.13 |
Mg2+ | 0.21 | 0.00 | 0.19 | 0.75 | 0.47 | 0.47 | 0.10 | 0.53 | 0.44 | 0.62 | 0.18 | 0.28 | 0.33 | 0.81 |
Na+ | 0.76 | 0.44 | 0.17 | −0.18 | 0.97 | −0.01 | 0.04 | −0.02 | 0.94 | 0.24 | 0.04 | 0.77 | 0.40 | −0.20 |
K+ | 0.31 | 0.73 | −0.05 | −0.13 | 0.70 | 0.44 | −0.04 | 0.21 | 0.27 | 0.91 | −0.4 | 0.18 | 0.67 | 0.21 |
Cl− | 0.97 | 0.03 | 0.03 | 0.02 | 0.89 | 0.02 | 0.06 | 0.03 | 0.95 | 0.19 | −0.01 | 0.93 | 0.20 | 0.11 |
SO42− | −0.06 | 0.13 | 0.80 | −0.05 | 0.22 | 0.16 | 0.70 | −0.31 | 0.05 | 0.09 | 0.93 | 0.13 | 0.41 | −0.49 |
HCO3− | 0.02 | 0.87 | −0.03 | 0.15 | 0.90 | 0.16 | 0.01 | 0.22 | 0.79 | 0.43 | −0.23 | 0.04 | 0.82 | −0.01 |
Ba2+ | −0.11 | 0.50 | 0.07 | 0.39 | −0.06 | 0.84 | −0.14 | −0.10 | 0.24 | 0.89 | −0.08 | 0.90 | 0.14 | 0.30 |
SiO2 | −0.07 | 0.14 | −0.36 | 0.57 | 0.11 | −0.06 | 0.01 | 0.80 | −0.08 | −0.15 | −0.02 | 0.20 | 0.12 | 0.76 |
Sr2+ | 0.25 | −0.14 | 0.67 | 0.10 | 0.29 | 0.79 | 0.32 | 0.06 | 0.61 | 0.64 | 0.07 | 0.93 | 0.06 | 0.27 |
Eigenvalue | 2.29 | 1.78 | 1.30 | 1.30 | 3.43 | 1.80 | 1.27 | 1.21 | 3.12 | 2.77 | 1.76 | 3.37 | 2.25 | 1.74 |
Explained variance % | 22.9 | 17.8 | 13.0 | 13.0 | 34.3 | 18.0 | 12.7 | 12.1 | 31.2 | 27.7 | 17.6 | 33.7 | 22.5 | 17.4 |
Cumulative % of variance | 22.9 | 40.7 | 53.7 | 66.7 | 34.3 | 52.3 | 65.0 | 77.1 | 31.2 | 58.9 | 76.5 | 33.7 | 56.2 | 73.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremblay, R.; Walter, J.; Chesnaux, R.; Boumaiza, L. Investigating the Potential Role of Geological Context on Groundwater Quality: A Case Study of the Grenville and St. Lawrence Platform Geological Provinces in Quebec, Canada. Geosciences 2021, 11, 503. https://doi.org/10.3390/geosciences11120503
Tremblay R, Walter J, Chesnaux R, Boumaiza L. Investigating the Potential Role of Geological Context on Groundwater Quality: A Case Study of the Grenville and St. Lawrence Platform Geological Provinces in Quebec, Canada. Geosciences. 2021; 11(12):503. https://doi.org/10.3390/geosciences11120503
Chicago/Turabian StyleTremblay, Roxane, Julien Walter, Romain Chesnaux, and Lamine Boumaiza. 2021. "Investigating the Potential Role of Geological Context on Groundwater Quality: A Case Study of the Grenville and St. Lawrence Platform Geological Provinces in Quebec, Canada" Geosciences 11, no. 12: 503. https://doi.org/10.3390/geosciences11120503
APA StyleTremblay, R., Walter, J., Chesnaux, R., & Boumaiza, L. (2021). Investigating the Potential Role of Geological Context on Groundwater Quality: A Case Study of the Grenville and St. Lawrence Platform Geological Provinces in Quebec, Canada. Geosciences, 11(12), 503. https://doi.org/10.3390/geosciences11120503