Geomorphological Analysis of Xilokastro Fault, Central Gulf of Corinth, Greece
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
- The application of the geomorphological indices along 102 small basins along the Xilokastro fault proposes high fault activity.
- Although the fault shows high activity, the prominent segment linkage is not achieved. These segments are defined by the Skoupeikos, Fonissa, and Trikalitikos antecedent rivers.
- Its high degree of tectonic activity is certified by the high values of the length-slope index near its trace, by the low values of the valley floor-to-height ratio index, the strong asymmetry of the catchments, especially in between overlapping segments, and from the elongated shape of its catchments.
- Its morphotectonic impact according to the index of hypsometric integral is in a young stage, especially in the western part of the fault, which shows the steepest relief, but no signs of fault propagation are recognized either to the west or to the east.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquakes, Uplift and Landscape, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Whipple, K.X.; Tucker, G. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Space Phys. 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Whipple, K.X.; Tucker, G.E. Implications of sediment-flux-dependent river incision models for landscape evolution. J. Geophys. Res. 2002, 107, 2039. [Google Scholar] [CrossRef] [Green Version]
- Snyder, N.P.; Whipple, K.X.; Tucker, G.E.; Merritts, D.J. Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. 2000, 112, 1250–1263. [Google Scholar]
- Kirby, E.; Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Burbank, D.W.; Anderson, R.S. Tectonic Geomorphology, 2nd ed.; Wiley-Blackwell: New York, NY, USA, 2012. [Google Scholar]
- Clarke, P.J.; Davies, R.R.; England, P.C.; Parsons, B.; Billiris, H.; Paradissis, D.; Veis, G.; Cross, P.A.; Denys, P.H.; Ashkenazi, V.; et al. Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophys. J. Int. 1998, 135, 195–214. [Google Scholar] [CrossRef] [Green Version]
- Westaway, R. The Quaternary evolution of the Gulf of Corinth, central Greece: Coupling between surface processes and flow in the lower continental crust. Tectonophysics 2002, 348, 269–318. [Google Scholar] [CrossRef]
- Avallone, A.; Briole, P.; Agatza-Balodimou, A.M.; Billiris, H.; Charade, O.; Mitsakaki, C.; Nercessian, A.; Papazissi, K.; Paradissis, D.; Veis, G. Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. Comptes Rendus Geosci. 2004, 336, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Micarelli, L.; Moretti, I.; Daniel, J.M. Structural properties of rift–related normal faults: The case study of the Gulf of Corinth, Greece. J. Geodyn. 2003, 36, 275–303. [Google Scholar] [CrossRef]
- Ghisetti, F.; Vezzani, L. Inherited structural controls on normal fault architecture in the Gulf of Corinth (Greece). Tectonics 2005, 24, 4016. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Blanco, D.; De Gelder, G.; Lacassin, R.; Armijo, R. Geometry of Flexural Uplift by Continental Rifting in Corinth, Greece. Tectonics 2020, 39, e2019TC005685. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.E.; McNeill, L.C.; Bull, J.M.; Henstock, T. Evolution of the offshore western Gulf of Corinth. GSA Bull. 2008, 120, 156–178. [Google Scholar] [CrossRef]
- Zygouri, V.; Verroios, S.; Kokkalas, S.; Xypolias, P.; Koukouvelas, I. Scaling properties within the Gulf of Corinth, Greece; comparison between offshore and onshore active faults. Tectonophysics 2008, 453, 193–210. [Google Scholar] [CrossRef]
- Doutsos, T.; Piper, D.J. Listric faulting, sedimentation, and morphological evolution of the Quaternary eastern Corinth rift, Greece: First stages of continental rifting. GSA Bull. 1990, 102, 812–829. [Google Scholar] [CrossRef]
- Armijo, R.; Meyer, B.; King, G.C.P.; Rigo, A.; Papanastassiou, D. Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int. 1996, 126, 11–53. [Google Scholar] [CrossRef] [Green Version]
- Sorel, D. A Pleistocene and still–active detachment fault and the origin of the Corinth–Patras rift (Greece). Geology 2000, 28, 83–86. [Google Scholar] [CrossRef]
- Collier, R.; Jones, G. Rift Sequences of the Southern Margin of the Gulf of Corinth (Greece) as Exploration/Production Analogues. In Proceedings of the American Association of Petroleum Geologists International Conference, Search and Discovery Article no. 90017, Barcelona, Spain, 21–24 September 2003. [Google Scholar]
- Ford, M.; Rohais, S.; Williams, E.A.; Bourlange, S.; Jousselin, D.; Backert, N.; Malartre, F. Tectono-sedimentary evolution of the western Corinth rift (Central Greece). Basin Res. 2012, 25, 3–25. [Google Scholar] [CrossRef]
- Ford, M.; Hemelsdael, R.; Mancini, M.; Palyvos, N. Rift migration and lateral propagation: Evolution of normal faults and sediment-routing systems of the western Corinth rift (Greece). In The Geometry of Normal Faults; Childs, C., Holdsworth, R.E., Jackson, C.A., Manzocchi, T., Walsh, J.J., Yielding, G., Eds.; Geological Society, Special Publications: London, UK, 2016. [Google Scholar]
- Pirazzoli, P.; Stiros, S.; Fontugne, M.; Arnold, M. Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Mar. Geol. 2004, 212, 35–44. [Google Scholar] [CrossRef]
- Billiris, H.; Paradissis, D.; Veis, G.; England, P.; Featherstone, W.; Parsons, B.; Cross, P.; Rands, P.; Rayson, M.; Sellers, P.; et al. Geodetic determination of tectonic deformation in central Greece from 1900 to Nat. Cell Biol. 1991, 350, 124–129. [Google Scholar] [CrossRef]
- Davies, R.; England, P.; Parsons, B.; Billiris, H.; Paradissis, D.; Veis, G. Geodetic strain of Greece in the interval 1892–1992. J. Geophys. Res. Space Phys. 1997, 102, 24571–24588. [Google Scholar] [CrossRef]
- Briole, P.; Rigo, A.; Lyon-Caen, H.; Ruegg, J.; Papazissi, K.; Mistakaki, C.; Balodimou, A.; Veis, G.; Hatzfeld, D.; Deschamps, A. Active deformation of the gulf of Korinthos, Greece: Results from repeated GPS surveys between 1990 and 1995. JGR 2000, 105, 25605–25625. [Google Scholar] [CrossRef] [Green Version]
- Palyvos, N.; Mancini, M.; Sorel, D.; Lemeille, F.; Pantosti, D.; Julia, R.; Triantaphyllou, M.; De Martini, P.-M. Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geol. J. 2009, 45, 78–104. [Google Scholar] [CrossRef]
- Jackson, J.; Gagnepain, J.; Houseman, G.; King, G.; Papadimitriou, P.; Soufleris, C.; Virieux, J. Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): The Corinth earthquakes of February and March Earth Planet. Sci. Lett. 1982, 57, 377–397. [Google Scholar] [CrossRef]
- King, G.C.P.; Ouyang, Z.X.; Papadimitriou, P.; Deschamps, A.; Gagnepain, J.; Houseman, G.; Jackson, J.A.; Soufleris, C.; Virieux, J. The evolution of the Gulf of Corinth (Greece): An aftershock study of the 1981 earthquakes. Geophys. J. Int. 1985, 80, 677–693. [Google Scholar] [CrossRef] [Green Version]
- Pavlides, S. Active faulting in multi–fractured seismogenic areas; examples from Greece. Z. Geomorphol. Suppl. 1993, 94, 57–72. [Google Scholar]
- Tselentis, A.; Melis, N.; Sokos, E.; Papatsimpa, K. The Egion Jume 15, 1995 (6.2 ML) earthquake, Western Greece. Pure Appl. Geophys. 1996, 147, 83–98. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Doutsos, T. Implications of structural segmentation during earthquakes: The 1995 Egion earthquake, Gulf of Corinth, Greece. J. Struct. Geol. 1996, 18, 1381–1388. [Google Scholar] [CrossRef]
- Bernard, P.; Lyon Caen, H.; Briole, P.; Deschamps, A.; Boudin, F.; Makropoulos, K.; Papadinmitriou, P.; Lemeille, F.; Patau, G.; Billiris, H.; et al. Seismicity, deformation and seismic hazard in the western rift of Corinth: New insightsfrom the Corinth Rift Laboratory (CRL). Tectonophysics 2006, 426, 7–30. [Google Scholar] [CrossRef]
- Karakostas, V.; Karagianni, E.; Paradisopoulou, P. Space–time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth Gulf. Nat. Hazards 2012, 63, 1181–1202. [Google Scholar] [CrossRef]
- Doutsos, T.; Koukouvelas, I.K.; Xypolias, P. A new orogenic model for the External Hellenides. Geol. Soc. Spec. Publ. 2006, 260, 507–520. [Google Scholar] [CrossRef]
- Doutsos, T.; Kontopoulos, N.; Poulimenos, G. The Corinth-Patras rift as the initial stage of continental fragmentation behind an active island arc (Greece). Basin Res. 2007, 1, 177–190. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Kontopoulos, N.; Anagnostou, C.; Chronis, G.; Panagos, A.G. Modern fan deltas in the western Gulf of Corinth, Greece. Geo-Marine Lett. 1990, 10, 5–12. [Google Scholar] [CrossRef]
- Poulimenos, G.; Zelilidis, A.; Kontopoulos, N.; Doutsos, T. Geometry of trapezoidal fan deltas and their relationship to ex-tensional faulting along the southwestern active margins of the Corinth rift, Greece. Basin Res. 1993, 5, 179–192. [Google Scholar] [CrossRef]
- Zelilidis, A. Drainage evolution in a rifted basin, Corinth graben, Greece. Geomorphology 2000, 35, 69–85. [Google Scholar] [CrossRef]
- Zelilidis, A. The geometry of fan-deltas and related turbidites in narrow linear basins. Geol. J. 2003, 38, 31–46. [Google Scholar] [CrossRef]
- Rohais, S.; Eschard, R.; Guillocheau, F. Depositional model and stratigraphic architecture of rift climax Gilbert-type fan deltas (Gulf of Corinth, Greece). Sediment. Geol. 2008, 210, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Papatheodorou, G.; Stefatos, A.; Christodoulou, D.; Ferentinos, G. Small Scale Present Day Turbidity Currents in a Tectonically Active Submarine Graben, The Gulf of Corinth (Greece): Their Significance in Dispersing Mine Tailings and Their Relevance to Basin Filling. In Drought and Drought Mitigation in Europe; Springer: Berlin/Heidelberg, Germany, 2003; Volume 19, pp. 459–468. [Google Scholar]
- Moretti, I.; Lykousis, V.; Sakellariou, D.; Reynaud, J.-Y.; Benziane, B.; Prinzhoffer, A. Sedimentation and subsidence rate in the Gulf of Corinth: What we learn from the Marion Dufresne’s long-piston coring. Comptes Rendus Geosci. 2004, 336, 291–299. [Google Scholar] [CrossRef]
- Lykousis, V.; Sakellariou, D.; Moretti, I.; Kaberi, H. Late Quaternary basin evolution of the Gulf of Corinth: Sequence stra-tigraphy, sedimentation, fault-slip and subsidence rates. Tectonophysics 2007, 440, 29–51. [Google Scholar] [CrossRef]
- Beckers, A.; Hubert-Ferrari, A.; Beck, C.; Papatheodorou, G.; de Batist, M.; Sakellariou, D.; Tripsanas, E.; Demoulin, A. Char-acteristics and frequency of large submarine landslides at the western tip of the Gulf of Corinth. Nat. Hazards Earth Syst. Sci. 2017, 18, 1411–1425. [Google Scholar] [CrossRef] [Green Version]
- De Martini, P.M.; Pantosti, D.; Palyvos, N.; Lemeille, F.; McNeill, L.; Collier, R. Slip rates of the Aigion and Eliki Faults from uplifted marine terraces, Corinth Gulf, Greece. Comptes Rendus Geosci. 2004, 336, 325–334. [Google Scholar] [CrossRef]
- Karymbalis, E.; Chalkias, C.; Chalkias, G.; Grigoropoulou, E.; Manthos, G.; Ferentinou, M. Assessment of the sensitivity of the southern coast of the Gulf of Corinth (Peloponnese, Greece) to sea-level rise. Open Geosci. 2012, 4, 561–577. [Google Scholar] [CrossRef]
- Hemelsdaël, R.; Malartre, F.; Gawthorpe, R.; Ford, M. Interaction of an antecedent fluvial system with early normal fault growth: Implications for syn-rift stratigraphy, western Corinth rift (Greece). Sedimentology 2017, 64, 1957–1997. [Google Scholar] [CrossRef]
- Hatzfeld, D.; Karakostas, V.; Ziazia, M.; Kassaras, I.; Papadimitriou, E.; Makropoulos, K.; Voulgaris, N.; Papaioannou, C. Microseismicity and faulting geometry in the Gulf of Corinth (Greece). Geophys. J. Int. 2000, 141, 438–456. [Google Scholar] [CrossRef] [Green Version]
- Sachpazi, M.; Clément, C.; Laigle, M.; Hirn, A.; Roussos, N. Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth Planet. Sci. Lett. 2003, 216, 243–257. [Google Scholar] [CrossRef]
- Cowie, P.; Gupta, S.; Dawers, N. Implications of fault array evolution for synrift depocentre development: Insights from a numerical fault growth model. Basin Res. 2000, 12, 241–261. [Google Scholar] [CrossRef]
- Stefatos, A.; Papatheodorou, G.; Ferentinos, G.; Leeder, M.; Collier, R. Seismic reflection imaging of active offshore faults in the Gulf of Corinth: Their seismotectonic significance. Basin Res. 2002, 14, 487–502. [Google Scholar] [CrossRef]
- Taylor, B.; Weiss, J.R.; Goodliffe, A.M.; Sachpazi, M.; Laigle, M.; Hirn, A. The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophys. J. Int. 2011, 185, 1189–1219. [Google Scholar] [CrossRef] [Green Version]
- Gawthorpe, R.L.; Leeder, M.R.; Kranis, H.; Skourtsos, E.; Andrews, J.E.; Henstra, G.A.; Mack, G.H.; Muravchik, M.; Turner, J.A.; Stamatakis, M. Tectono-sedimentary evolution of the Plio-Pleistocene Corinth rift, Greece. Basin Res. 2018, 30, 448–479. [Google Scholar] [CrossRef] [Green Version]
- Collier, R.E.L.; Leeder, M.R.; Trout, M.; Ferentinos, G.; Lyberis, E.; Papatheodorou, G. High sediment yields and cool, wet winters: Test of last glacial paleoclimates in the northern Mediterranean. Geology 2000, 28, 999–1002. [Google Scholar] [CrossRef]
- Finnegan, N.J.; Hallet, B.; Montgomery, D.R.; Zeitler, P.K.; Stone, J.O.; Anders, A.; Yuping, L. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. GSA Bull. 2008, 120, 142–155. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Koukouvelas, I.K. Transfer zones along active normal faults in Peloponnesus, Greece. Bull. Geol. Soc. Greece 1998, 32, 221–229. [Google Scholar]
- Ganas, A.; Pavlides, S.; Karastathis, V. DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology 2005, 65, 301–319. [Google Scholar] [CrossRef]
- Zygouri, V.; Koukouvelas, I.K.; Kokkalas, S.; Xypolias, P.; Papadopoulos, G.A. The Nisi Fault as a Key structure for under-standing the active deformation of the NW Peloponnese, Greece. Geomorphology 2015, 237, 142e156. [Google Scholar] [CrossRef]
- Koukouvelas, I.K.; Zygouri, V.; Verroios, S.; Nikolakopoulos, K. Treatise on the tectonic geomorphology of active faults: The significance of using a universal digital elevation model. J. Struct. Geol. 2018, 116, 241–252. [Google Scholar] [CrossRef]
- Roberts, S.; Jackson, J. Active normal faulting in central Greece: An overview. Geol. Soc. Spec. Publ. Lond. 1991, 56, 125–142. [Google Scholar]
- Pavlides, S.; Koukouvelas, I.; Kokkalas, S.; Stamatopoulos, L.; Keramydas, D.; Tsodoulos, I. Late Holocene evolution of the East Eliki fault, Gulf of Corinth (Central Greece). Quat. Int. 2004, 115–116, 139–154. [Google Scholar] [CrossRef]
- Tsodoulos, I.M.; Koukouvelas, I.K.; Pavlides, S. Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 2008, 453, 211–232. [Google Scholar] [CrossRef]
- Karalis, S.; Karymbalis, E.; Valkanou, K.; Chalkias, C.; Katsafados, P.; Kalogeropoulos, K.; Batzakis, V.; Bofilios, A. Assessment of the relationships among catchments’ morphometric parameters and hydrologic indices. Int. J. Geosci. 2014, 5, 1571–1583. [Google Scholar]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System con-straints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Taymaz, T.; Jackson, J.; McKenzie, D. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- Doutsos, T.; Kokkalas, S. Stress and deformation patterns in the Aegean region. J. Struct. Geol. 2001, 23, 455–472. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Comninakis, P.E.; Karakaisis, G.F.; Karakostas, B.G.; Papaioannou, C.A.; Papazachos, C.B.; Scordilis, E.M. A Catalogue of Earthquakes in Greece and Surrounding Area for the Period 1901–1999; Geophysical Laboratory, Aristotle University of Thessaloniki: Thessaloniki, Greece, 2000. [Google Scholar]
- Tiberi, C.; Diament, M.; Lyon-Caen, H.; King, T. Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophys. J. Int. 2001, 145, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Nyst, M.; Thatcher, W. New constraints on the active tectonic deformation of the Aegean. J. Geophys. Res. Space Phys. 2004, 109, 11406. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, D.; Royden, L.H. Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Plio-cene-Quaternary normal faults—Or what happened at Corinth? Tectonics 2007, 26. [Google Scholar] [CrossRef]
- Charalampakis, M.; Stefatos, A.; Hasiotis, T.; Ferentinos, G. Submarine Mass Movements On An Active Fault System In The Central Gulf Of Corinth. In Submarine Mass Movements and Their Consequences; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67–75. [Google Scholar]
- Cullen, T.M.; Collier, R.E.L.; Gawthorpe, R.L.; Hodgson, D.M.; Barrett, B.J. Axial and transverse deep-water sediment supply to syn-rift fault terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Res. 2020, 32, 1105–1139. [Google Scholar] [CrossRef] [Green Version]
- Place, J.; Géraud, Y.; Diraison, M.; Warr, L. North–south transfer zones and paleo–morphological reconstruction of the Xylocastro area (Corinth Gulf, Greece). Tectonophysics 2007, 440, 121–139. [Google Scholar] [CrossRef]
- Skourtsos, E.; Kranis, H. Structure and evolution of the western Corinth Rift, through new field data from the Northern Peloponnesus. In Extending a Continent: Architecture, Rheology and Heat Budget; Ring, U., Wernicke, B., Eds.; Geological Society of London, Special Publication: London, UK, 2009; Volume 321, pp. 119–138. [Google Scholar]
- Rohais, S.; Moretti, I. Structural and stratigraphic architecture of the Corinth Rift (Greece): An integrated onshore to offshore basin-scale synthesis. In Lithosphere Dynamics and Sedimentary Basins of the Arabian Plate and Surrounding Areas; Roure, F., Amin, A.A., Khomsi, S., Al Garni, M.A.M., Eds.; Cham Springer International Publishing: Copenhagen, Denmark, 2017; pp. 89–120. [Google Scholar]
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquakes, Uplift and Landscape; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Delcaillau, B. Reliefs et Tectonique Recente Nouveau Précis de Géomorphologie; Paris, France. 2004, p. 262. Available online: https://hal.archives-ouvertes.fr/hal-01896068/ (accessed on 20 November 2021).
- Singh, P.; Thakur, J.K.; Singh, U.C. Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environ. Earth Sci. 2012, 68, 1967–1977. [Google Scholar] [CrossRef]
- Dar, R.A.; Romshoo, S.; Chandra, R.; Ahmad, I. Tectono-geomorphic study of the Karewa Basin of Kashmir Valley. J. Asian Earth Sci. 2014, 92, 143–156. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Stamatopoulos, L.; Katsonopoulou, D.; Pavlides, S. A paleoseismological and geoarchaeological investigation of Eliki fault, Gulf of Corinth, Greece. J. Struct. Geol. 2001, 23, 531–543. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Campos, N.; Alcalá-Reygosa, J.; Granados-Bolaños, S. Equilibrium-line altitude and temperature reconstructions during the Last Glacial Maximum in Chirripó National Park, Costa Rica. J. S. Am. Earth Sci. 2020, 100, 102576. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Campos, N.; Granados-Bolaños, S. Tropical glacier reconstructions during the Last Glacial Maximum in Costa Rica. Rev. Mex. Cienc. Geol. 2021, 38, 55–64. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Vargas-Sanabria, D. A geomorphometric model to determine topographic parameters controlling wildfires occurrence in tropical dry forests. J. Arid. Environ. 2021, 198, 104674. [Google Scholar] [CrossRef]
- Koukouvelas, I.K.; Zygouri, V.; Papadopoulos, G.A.; Verroios, S. Holocene record of slip-predictable earthquakes on the Kenchreai Fault, Gulf of Corinth, Greece. J. Struct. Geol. 2017, 94, 258–274. [Google Scholar]
- Philips, L.F.; Schumm, S.A. Effect of regional slope on drainage networks. Geology 1987, 15, 813–816. [Google Scholar] [CrossRef]
- Cox, R.T. Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tec-tonics: An example from the Mississippi Embayment. Geol. Soc. Am. Bull. 1994, 106, 571–581. [Google Scholar] [CrossRef]
- Hack, J. Stream profile analysis and stream gradient index. U.S. Geol. Surv. J. Res. Explor. Athens 1973, 1, 421–429. [Google Scholar]
- Bull, W.B.; McFadden, L.D. Tectonic Geomorphology North and South of the Garlock Fault, California. In Geomorphology in Arid regions; Doehring, D.O., Ed.; State University of New York: Binghamton, NY, USA, 1977; pp. 115–138. [Google Scholar]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Azor, A.; Keller, E.A.; Yeats, R.S. Geomorphic indicators of active fold growth: Oak Ridge anticline, Ventura basin, southern California. GSA Bull. 2002, 114, 745–753. [Google Scholar] [CrossRef]
- Verrios, S.; Zygouri, V.; Kokkalas, S. Morphotectonic Analysis in the Eliki Fault Zone (Gulf of Corinth, Greece). Bull. Geol. Soc. Greece 2004, 36, 1706–1715. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.G.; Goy, J.; Zazo, C.; Bardají, T. Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology 2003, 50, 203–225. [Google Scholar] [CrossRef]
- Rockwell, T.; Keller, E.; Johnson, D. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Tectonic Geomorphology; Morisawa, M., Hack, T.J., Eds.; State University of New York: Binghamton, NY, USA, 1985; pp. 183–207. [Google Scholar]
- Demoulin, A.; Beckers, A.; Hubert-Ferrari, A. Patterns of Quaternary uplift of the Corinth rift southern border (N Peloponnese, Greece) revealed by fluvial landscape morphometry. Geomorphology 2015, 246, 188–204. [Google Scholar] [CrossRef]
Geomorphic Indices | Mathematical Formula | Xilokastro Fault |
---|---|---|
Number of Calculations for Each Index | ||
Number of valleys | 102 | |
Drainage basin shape Bs (1, 2) | Bs = BL/Bw | 102 |
Elongation Basin Index RL (1, 2) | RL = 2√(A/π)/L | 102 |
CircularityBasin IndexRc(1, 2) | Rc = 4πA/P2 | 102 |
Asymmetry Factor AF (1, 3) | AF = 100(Ar/At) | 102 |
Transverse Topographic Symmetry Factor T (1, 3) | T = Da/Dd | 881 |
Stream length-gradient index SL (1, 4) | SL = (ΔH/ΔL)L | 845 |
Valley Floor Width–Valley Height Ratio Vf (1, 5) | Vf = 2Vfw/[(Eld − Esc) + (Erd − Esc)] | 1673 |
Hypsometric integral Hi (1, 6) | Hi = (hmid − hmin)/(hmax−hmin) | 1859 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verroios, S.; Zygouri, V. Geomorphological Analysis of Xilokastro Fault, Central Gulf of Corinth, Greece. Geosciences 2021, 11, 516. https://doi.org/10.3390/geosciences11120516
Verroios S, Zygouri V. Geomorphological Analysis of Xilokastro Fault, Central Gulf of Corinth, Greece. Geosciences. 2021; 11(12):516. https://doi.org/10.3390/geosciences11120516
Chicago/Turabian StyleVerroios, Sotirios, and Vasiliki Zygouri. 2021. "Geomorphological Analysis of Xilokastro Fault, Central Gulf of Corinth, Greece" Geosciences 11, no. 12: 516. https://doi.org/10.3390/geosciences11120516
APA StyleVerroios, S., & Zygouri, V. (2021). Geomorphological Analysis of Xilokastro Fault, Central Gulf of Corinth, Greece. Geosciences, 11(12), 516. https://doi.org/10.3390/geosciences11120516