Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chronology
2.2. Grain Size Analyses
2.3. Cryptotephra Analyses
2.4. Micropaleontological Analyses
2.4.1. Diatoms
2.4.2. Silicoflagellates
2.4.3. Foraminifera
3. Results
3.1. Box Core Description
3.2. Age Model
3.3. Sediment Grain Size
3.4. Cryptotephra Textures and Glass Chemistry
3.5. Micropaleontological Contents
3.5.1. Diatom Assemblage
3.5.2. Silicoflagellates
3.5.3. Foraminifera
4. Discussion
4.1. Sedimentary Dynamics
4.2. Cryptotephra: Correlation with Volcanic Source
4.3. Paleoenvironment Interpretation
4.3.1. Unit 1: From 24 ka BP to 17 ka BP/Late Pleistocene
4.3.2. Unit 2: From 17 ka BP to 10.2 ka BP/Late Pleistocene-Early Holocene
4.3.3. Unit 3: From 10.2 ka BP to Present
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camerlenghi, A.; Crise, A.; Pudsey, C.J.; Accerboni, E.; Laterza, R.; Rebesco, M. Ten-month observation of the bottom current regime across a sediment drift of the Pacific margin of the Antarctic Peninsula. Antarct. Sci. 1997, 9, 426–433. [Google Scholar] [CrossRef]
- Rebesco, M.; Camerlenghi, A.; Geletti, R.; Canals, M. Margin architecture reveals the transition to the modern Antarctic ice sheet ca. 3 MAa. Geology 2006, 34, 301–304. [Google Scholar] [CrossRef]
- Kim, S.; De Santis, L.; Hong, J.K.; Cottlerle, D.; Petronio, L.; Colizza, E.; Kim, Y.-G.; Kang, S.-G.; Kim, H.J.; Kim, S.; et al. Seismic stratigraphy of the Central Basin in northwestern Ross Sea slope and rise, Antarctica: Clues to the late Cenozoic ice-sheet dynamics and bottom-current activity. Mar. Geol. 2018, 395, 363–379. [Google Scholar] [CrossRef]
- Castagno, P.; Capozzi, V.; DiTullio, G.R.; Falco, P.; Fusco, G.; Rintoul, S.R.; Spezie, G.; Budillon, G. Rebound of shelf water salinity in the Ross Sea. Nat. Commun. 2019, 10, 5441. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.B.; Conway, H.; Bart, P.J.; Witus, A.E.; Greenwood, S.L.; McKay, R.M.; Hall, B.L.; Ackert, R.P.; Licht, K.; Jakobsson, M.; et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 2014, 100, 31–54. [Google Scholar] [CrossRef] [Green Version]
- Halberstadt, A.R.W.; Simkins, L.M.; Greenwood, S.L.; Anderson, J.B. Past ice-sheet behaviour: Retreat scenarios and changing controls in the Ross Sea, Antarctica. Cryosphere 2016, 10, 1003–1020. [Google Scholar] [CrossRef] [Green Version]
- McGlannan, A.J.; Bart, P.J.; Chow, J.M.; DeCesare, M. On the influence of post-LGM ice shelf loss and grounding zone sedimentation on West Antarctic ice sheet stability. Mar. Geol. 2017, 392, 151–169. [Google Scholar] [CrossRef]
- Lee, J.I.; McKay, R.M.; Golledge, N.R.; Yoon, H.I.; Yoo, K.-C.; Kim, H.J.; Hong, J.K. Widespread persistence of expanded East Antarctic glaciers in the southwest Ross Sea during the last deglaciation. Geology 2017, 45, 403–406. [Google Scholar] [CrossRef]
- Prothro, L.O.; Majewski, W.; Yokoyama, Y.; Simkins, L.M.; Anderson, J.B.; Yamane, M.; Miyairi, Y.; Ohkouchi, N. Timing and pathways of East Antarctic Ice Sheet retreat. Quat. Sci. Rev. 2020, 230, 106166. [Google Scholar] [CrossRef]
- Bart, P.J.; Cone, A.N. Early stall of West Antarctic Ice Sheet advance on the eastern Ross Sea middle shelf followed by retreat at 27,500 14C year BP. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 335–336, 52–60. [Google Scholar] [CrossRef]
- Tolotti, R.; Salvi, C.; Salvi, G.; Bonci, M.C. Late Quaternary climate variability as recorded by micropaleontological diatom data and geochemical data in the Western Ross Sea, Antarctica. Antarct. Sci. 2013, 25, 804–820. [Google Scholar] [CrossRef]
- Frank, T.D.; James, N.P.; Bone, Y.; Malcolm, I.; Bobak, L.E. Late Quaternary carbonate deposition at the bottom of the world. Sediment. Geol. 2014, 305, 1–16. [Google Scholar] [CrossRef]
- Bart, P.J.; DeCesare, M.; Rosenheim, B.E.; Majewski, W.; McGLANNAN, A. A centuries-long delay between a paleo-ice-shelf collapse and grounding-line retreat in the Whales Deep Basin, eastern Ross Sea, Antarctica. Sci. Rep. 2018, 8, 12392. [Google Scholar] [CrossRef] [PubMed]
- Melis, R.; Salvi, G. Foraminifer and Ostracod Occurrence in a Cool-Water Carbonate Factory of the Cape Adare (Ross Sea, Antarctica): A Key Lecture for the Climatic and Oceanographic Variations in the Last 30,000 Years. Geoscience 2020, 10, 413. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.I.; McKay, R.M.; Yoo, K.C.; Bak, Y.S.; Lee, M.K.; Roh, Y.H.; Yoon, H.I.; Moon, H.S.; Hyun, C.U. Late Pleistocene paleoceanographic changes in the Ross Sea—Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation. Quat. Sci. Rev. 2020, 239, 106356. [Google Scholar] [CrossRef]
- Gales, J.; Rebesco, M.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Kim, S.; Accettella, D.; Kovacevic, V.; Liu, Y.; Olivo, E.; et al. Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology 2021, 372, 107453. [Google Scholar] [CrossRef]
- Pollard, D.; DeConto, R.M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 2009, 458, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Golledge, N.R.; Menviel, L.; Carter, L.; Fogwill, C.J.; England, M.H.; Cortese, G.; Levy, R.H. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 2014, 5, 5107. [Google Scholar] [CrossRef] [PubMed]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef]
- Colleoni, F.; De Santis, L.; Montoli, E.; Olivo, E.; Sorlien, C.C.; Bart, P.J.; Gasson, E.G.W.; Bergamasco, A.; Sauli, C.; Wardell, N.; et al. Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Sci. Rep. 2018, 8, 11323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, D.M.; Nicholls, K.W.; Basinski, A. The Southern Ocean and its interaction with the Antarctic Ice Sheet. Science 2020, 367, 1326–1330. [Google Scholar] [CrossRef]
- Orsi, A.; Wiederwohl, T. A recount of Ross Sea waters. Deep Sea Res. II Top. Stud. Oceanogr. 2009, 56, 778–795. [Google Scholar] [CrossRef]
- Smith, W.O., Jr.; Sedwick, P.N.; Arrigo, K.R.; Ainley, D.G.; Orsi, A.H. The Ross Sea in a Sea of Change. Oceanography 2012, 25, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Arndt, J.E.; Schenke, H.W.; Jakobsson, M.; Nitsche, F.O.; Buys, G.; Goleby, B.; Rebesco, M.; Bohoyo, F.; Hong, J.; Black, J.; et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum-Antarctic waters. Geophys. Res. Lett. 2013, 40, 3111–3117. [Google Scholar] [CrossRef] [Green Version]
- Mezgec, K. Palaeoceanographic Changes during the Post-LGM Deglaciation Phase in the Polar Areas (Ross Sea-Antarctica and Barents Sea-Arctic Cases Studies). Ph.D. Thesis, University of Siena, Siena, Italy, 2015. [Google Scholar]
- Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H. Towards radiocarbon dating of single foraminifera with a gas ion source. Nucl. Instrum. Methods B 2013, 294, 307–310. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Reimer, R.W. CALIB 7.1 [WWW Program]. 2018. Available online: http://calib.org (accessed on 14 March 2018).
- Reimer, P.; Bard, E.; Bayliss, A.; Beck, J.; Blackwell, P.; Ramsey, C.; Buck, C.E.; Cheng, H.; Edward, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Hall, B.L.; Henderson, G.M.; Baroni, C.; Kellogg, T.B. Constant Holocene Southern-Ocean 14C reservoir ages and ice-shelf flow rates. Earth Planet. Sci. Lett. 2010, 296, 115–123. [Google Scholar] [CrossRef]
- Mezgec, K.; Stenni, B.; Crosta, X.; Masson-Delmotte, V.; Baroni, C.; Braida, M.; Ciardini, V.; Colizza, E.; Melis, R.; Salvatore, M.C.; et al. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat. Commun. 2017, 8, 1334. [Google Scholar] [CrossRef] [Green Version]
- Tesi, T.; Belt, S.; Gariboldi, K.; Muschitiello, F.; Smik, L.; Finocchiaro, F.; Giglio, F.; Colizza, E.; Gazzurra, G.; Giordano, P.; et al. Resolving sea ice dynamics in the north-western Ross Sea during the last 2.6 ka: From seasonal to millennial timescales. Quat. Sci. Rev. 2020, 237, 106299. [Google Scholar] [CrossRef]
- Andrews, J.T.; Domack, E.W.; Cunningham, W.L.; Leventer, A.; Licht, K.J.; Jull, A.J.T.; DeMaster, D.J.; Jennings, A.E. Problems and Possible Solutions Concerning Radiocarbon Dating of Surface Marine Sediments, Ross Sea, Antarctica. Quat. Res. 1999, 52, 206–216. [Google Scholar] [CrossRef]
- Pudsey, C.J.; Murray, J.W.; Appleby, P.; Evans, J. Ice shelf history from petrographic and foraminiferal evidence, Northeast Antarctic Peninsula. Quat. Sci. Rev. 2006, 25, 2357–2379. [Google Scholar] [CrossRef]
- Hillenbrand, C.-D.; Smith, J.A.; Kuhn, G.; Esper, O.; Gersonde, R.; Larter, R.D.; Maher, B.; Moreton, S.G.; Shimmield, T.M.; Korte, M. Age assignment of a diatomaceous ooze deposited in the western Amundsen Sea Embayment after the Last Glacial Maximum. J. Quat. Sci. 2009, 25, 280–295. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Reimer, R.W. CALIB 8.2 [WWW Program]. 2021. Available online: http://calib.org (accessed on 14 March 2018).
- Heaton, T.; Köhler, P.; Butzin, M.; Bard, E.; Reimer, R.; Austin, W.; Ramsey, C.B.; Grootes, P.M.; Hughen, K.A.; Kromer, B.; et al. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 2020, 62, 779–820. [Google Scholar] [CrossRef]
- Friedman, G.M.; Sanders, J.E. Principles of Sedimentology; Wiley: New York, NY, USA, 1978; p. 792. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- McCave, I.; Andrews, J. Distinguishing current effects in sediments delivered to the ocean by ice. II. Glacial to Holocene changes in high latitude North Atlantic upper ocean flows. Quat. Sci. Rev. 2019, 223, 105902. [Google Scholar] [CrossRef]
- McCave, I.N.; Manighettia, B.; Robinson, S.G. Sortables ilt and fine sediment size/composition slicing: Parameters for paleocurrent speed and palaeoceanography. Paleoceanography 1995, 10, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- Rathburn, A.; Pichon, J.-J.; Ayress, M.; De Deckker, P. Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr. Palaeoclim. Palaeoecol. 1997, 131, 485–510. [Google Scholar] [CrossRef]
- Crosta, X.; Koҫ, N. Diatoms: From micropaleontology to isotope geochemistry. In Development in Marine Geology, 1, Proxies in Late Cenozoic Palaeoceanography; Hillaire-Marcel, C., De Vernal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 27–369. [Google Scholar]
- Hasle, G.R.; Syversten, E.E. Marine diatoms. In Identifying Marine Phytoplankton; Thomas, C.R., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 5–385. [Google Scholar]
- Armand, L.K. The Use of Diatom Transfer Functions in Estimating Sea-SURFACE temperature and Sea-Ice in Cores from the Southeast Indian Ocean. Ph.D. Thesis, Australian National University, Canberra, Australia, 1997. [Google Scholar]
- Etourneau, J.; Collins, L.G.; Willmott, V.; Kim, J.-H.; Barbara, L.; Leventer, A.; Schouten, S.; Damsté, J.S.S.; Bianchini, A.; Klein, V.; et al. Holocene climate variations in the western Antarctic Peninsula: Evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability. Clim. Past 2013, 9, 1431–1446. [Google Scholar] [CrossRef] [Green Version]
- Taylor, F.; Sjunneskog, C. Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 2. Diatom assemblages. Paleoc. Paleoclim. 2002, 17, 8001. [Google Scholar] [CrossRef]
- Malinverno, E. Extant morphotypes of Distephanus speculum (Silicoflagellata) from the Australian sector of the Southern Ocean: Morphology, morphometry and biogeography. Mar. Micropaleontol. 2010, 77, 154–174. [Google Scholar] [CrossRef]
- Jordan, R.; McCartney, K. Stephanocha nom. nov., a replacement name for the illegitimate silicoflagellate genus Distephanus (Dictyochophyceae). Phytotaxa 2015, 201, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Malinverno, E.; Maffioli, P.; Gariboldi, K. Latitudinal distribution of extant fossilizable phytoplankton in the Southern Ocean: Planktonic provinces, hydrographic fronts and palaeoecological perspectives. Mar. Micropaleontol. 2016, 123, 41–58. [Google Scholar] [CrossRef]
- Violanti, D. Taxonomy and distribution of recent benthic foraminifers from Terra Nova Bay (Ross Sea, Antarctica), Oceanographic Campaign 1987/1988. Palaeontogr. Ital. 1996, 83, 25–71. [Google Scholar]
- Murray, J.W.; Pudsey, C.J. Living (stained) and dead foraminifera from the newly ice-free Larsen Ice Shelf, Weddell Sea, Antarctica: Ecology and taphonomy. Mar. Micropaleontol. 2004, 53, 67–81. [Google Scholar] [CrossRef]
- Majewski, W. Benthic foraminiferal communities: Distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Pol. Polar Res. 2005, 26, 159–214. [Google Scholar]
- Majewski, W.; Bart, P.J.; McGlannan, A.J. Foraminiferal assemblages from ice-proximal paleo-settings in the Whales Deep Basin, Eastern Ross Sea, Antarctica. Palaeogeogr. Paleoclim. Palaeoecol. 2018, 493, 64–81. [Google Scholar] [CrossRef]
- Ellis and Messina Catalogues. Available online: http://www.micropress.org/ (accessed on 10 December 2020).
- Le Bas, M.J.; Maitre, R.W.L.; Streckeisen, A.; Zanettin, B.; Rocks, I.S.O.T.S.O.I. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Pet. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Di Roberto, A.; Colizza, E.; Del Carlo, P.; Petrelli, M.; Finocchiaro, F.; Kuhn, G. First marine cryptotephra in Antarctica found in sediments of the western Ross Sea correlates with englacial tephras and climate records. Sci. Rep. 2019, 9, 10628. [Google Scholar] [CrossRef]
- Lee, M.J.; Kyle, P.R.; Iverson, N.A.; Lee, J.I.; Han, Y. Rittmann volcano, Antarctica as the source of a widespread 1252 ± 2 CE tephra layer in Antarctica ice. Earth Planet. Sci. Lett. 2019, 521, 169–176. [Google Scholar] [CrossRef]
- Harpel, C.; Kyle, P.; Dunbar, N. Englacial tephrostratigraphy of Erebus volcano, Antarctica. J. Volcanol. Geotherm. Res. 2008, 177, 549–568. [Google Scholar] [CrossRef]
- Di Roberto, A.; Albert, P.; Colizza, E.; Del Carlo, P.; Di Vincenzo, G.; Gallerani, A.; Giglio, F.; Kuhn, G.; Macrì, P.; Manning, C.; et al. Evidence for a large-magnitude Holocene eruption of Mount Rittmann (Antarctica): A volcanological reconstruction using the marine tephra record. Quat. Sci. Rev. 2020, 250, 106629. [Google Scholar] [CrossRef]
- Del Carlo, P.; Di Roberto, A.; Di Vincenzo, G.; Bertagnini, A.; Landi, P.; Pompilio, M.; Colizza, E.; Giordano, G. Late Pleistocene-Holocene volcanic activity in northern Victoria Land recorded in Ross Sea (Antarctica) marine sediments. Bull. Volcanol. 2015, 77, 36. [Google Scholar] [CrossRef]
- Bukry, D. Silicoflagellate stratigraphy of offshore California and Baja California, Deep Sea Drilling Project Leg 63. In Initial Reports of the DSDP; Yeats, R.S., Haq, B.U., Pisciotto, K.A., Eds.; U.S. Goverment Printing Office: Washington, DC, USA, 1981; Volume 63, pp. 595–610. [Google Scholar]
- Hoffmann, S.S.; Dalsing, R.E.; Murphy, C.S. Sortable silt records of intermediate-depth circulation and sedimentation in the Southwest Labrador Sea since the Last Glacial Maximum. Quat. Sci. Rev. 2019, 206, 99–110. [Google Scholar] [CrossRef]
- McCave, I.N.; Thornalley, D.J.R.; Hall, I.R. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the ‘Mud Current Meter’. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 127, 1–12. [Google Scholar] [CrossRef]
- Andrews, J.T.; Principato, S.M. Grain-size characteristics and provenance of ice-proximal glacial marine sediments. Geol. Soc. Lond. Spec. Publ. 2002, 203, 305–324. [Google Scholar] [CrossRef]
- Richard, G.J.; Roberts, M.J.; Williams, M.J.; Dunn, A.; Smith, M.H. Mean circulation and hydrography in the Ross Sea sector, Southern Ocean: Representation in numerical models. Antarct. Sci. 2010, 22, 533–558. [Google Scholar] [CrossRef]
- Armienti, P.; Tripodo, A. Petrography and chemistry of lavas and comagmatic xenoliths of Mt. Rittmann, a volcano discovered during the IV Italian expedition in Northern Victoria Land (Antarctica). Mem. Soc. Geol. Ital. 1991, 46, 427–451. [Google Scholar]
- Dunbar, N.W.; Zielinski, G.A.; Voisins, D.T. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations. J. Geophys. Res. 2003, 108, 2374. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, N.W.; Kurbatov, A.V. Tephrochronology of the Siple Dome ice core, West Antarctica: Correlations and sources. Quat. Sci. Rev. 2011, 30, 1602–1614. [Google Scholar] [CrossRef]
- Narcisi, B.; Petit, J.R.; Chappellaz, J. A 70 ka record of explosive eruptions from the TALDICE ice core (Talos Dome, East Antarctic plateau). J. Quat. Sci. 2010, 25, 844–849. [Google Scholar] [CrossRef]
- Sigl, M.; Fudge, T.J.; Winstrup, M.; Cole-Dai, J.; Ferris, D.; McConnell, J.R.; Taylor, K.C.; Welten, K.C.; Woodruff, T.E.; Adolphi, F.; et al. The WAIS Divide deep ice core WD2014 chronology—Part 2: Annual-layer counting (0–31 ka BP). Clim. Past 2016, 12, 769–786. [Google Scholar] [CrossRef] [Green Version]
- Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The Last Glacial Maximum. Science 2009, 325, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domack, E.W.; Jacobson, E.A.; Shipp, S.; Anderson, J.B. Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2—Sedimentologic and stratigraphic signature. Geol. Soc. Am. Bull. 1999, 111, 1517–1536. [Google Scholar] [CrossRef]
- Bart, P.J.; Anderson, J.B.; Trincardi, F.; Shipp, S.S. Seismic data from the Northern Basin, Ross Sea, record extreme expansions of the East Antarctic ice sheet during the late Neogene. Mar. Geol. 2000, 166, 31–50. [Google Scholar] [CrossRef]
- McKay, R.M.; Dunbar, G.B.; Naish, T.R.; Barrett, P.J.; Carter, L.; Harper, M. Retreat history of the Ross Ice Sheet (Shelf) since the Last Glacial Maximum from deep-basin sediment cores around Ross Island. Palaeogeogr. Palaeoclim. Palaeoecol. 2008, 260, 245–261. [Google Scholar] [CrossRef]
- Cunningham, W.L.; Leventer, A.; Andrews, J.T.; Jennings, A.E.; Licht, K.J. Late Pleistocene-Holocene marine conditions in the Ross Sea, Antarctica: Evidence from the diatom record. Holocene 1999, 9, 129–139. [Google Scholar] [CrossRef]
- Smith, J.A.; Graham, A.G.C.; Post, A.L.; Hillenbrand, C.D.; Bart, P.J.; Powell, R.D. The marine geological imprint of Antarctic ice shelves. Nat. Commun. 2019, 10, 5635. [Google Scholar] [CrossRef] [Green Version]
- Melis, R.; Capotondi, L.; Torricella, F.; Ferretti, P.; Geniram, A.; Hong, J.K.; Kuhn, G.; Khim, B.-K.; Kim, S.; Malinverno, E.; et al. Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge. J. Micropalaeontol. 2021, 40, 15–35. [Google Scholar] [CrossRef]
- Mikis, A.; Hendry, K.R.; Pike, J.; Schmidt, D.N.; Edgar, K.M.; Peck, V.; Peeters, F.J.C.; Leng, M.J.; Meredith, M.P.; Todd, C.L.; et al. Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: A sediment trap study. Biogeosciences 2019, 16, 3267–3282. [Google Scholar] [CrossRef]
- Majewski, W.; Prothro, L.O.; Simkins, L.M.; Demianiuk, E.J.; Anderson, J.B. Foraminiferal Patterns in Deglacial Sediment in the Western Ross Sea, Antarctica: Life Near Grounding Lines. Paleoceanogr. Paleoclimatol. 2020, 35, 003716. [Google Scholar] [CrossRef]
- Majewski, W.; Wellner, J.S.; Anderson, J.B. Environmental connotations of benthic foraminiferal assemblages from coastal West Antarctica. Mar. Micropaleontol. 2016, 124, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorsi, R.; Quaia, T.; Burckle, L.H.; Anderson, R.F.; Melis, R.; Brambati, A. C-14 age control of pre- and post-LGM events using N. pachyderma preserved in deep-sea sediments (Ross Sea, Antarctica). In Proceedings of the 10th ISAES X, USGS, Santa Barbara, CA, USA, 26 September–1 October 2007. [Google Scholar]
- WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 2013, 500, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Jouzel, J.; Masson, V.; Cattani, O.; Falourd, S.; Stievenard, M.; Stenni, B.; Longinelli, A.; Johnsen, S.J.; Steffenssen, J.P.; Petit, J.R.; et al. A new 27 ky high resolution East Antarctic climate record. Geophys. Res. Lett. 2001, 28, 3199–3202. [Google Scholar] [CrossRef]
- EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 2006, 444, 195–198. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and millennial Antarctic climate variability over the last 800,000 years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Stenni, B.; Buiron, D.; Frezzotti, M.; Albani, S.; Barbante, C.; Bard, E.; Barnola, J.M.; Baroni, M.; Baumgartner, M.; Bonazza, M.; et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat. Geosci. 2011, 4, 46–49. [Google Scholar] [CrossRef]
- Bostock, H.; Barrows, T.; Carter, L.; Chase, Z.; Cortese, G.; Dunbar, G.; Ellwood, M.; Hayward, B.; Howard, W.; Neil, H.; et al. A review of the Australian–New Zealand sector of the Southern Ocean over the last 30 ka (Aus-INTIMATE project). Quat. Sci. Rev. 2013, 74, 35–57. [Google Scholar] [CrossRef]
- Anderson, J.B.; Shipp, S.S.; Lowe, A.L.; Wellner, J.S.; Mosola, A.B. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: A review. Quat. Sci. Rev. 2002, 21, 49–70. [Google Scholar] [CrossRef]
- Bentley, M.J.; Cofaigh, C.Ó.; Anderson, J.B.; Conway, H.; Davies, B.; Graham, A.G.C.; Hillebrand, C.D.; Hodgson, D.A.; Jamieson, S.S.R.; Larter, R.D.; et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 2014, 100, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, Y.; Esat, T.M.; Thompson, W.G.; Thomas, A.L.; Webster, J.M.; Miyairi, Y.; Sawada, C.; Aze, T.; Matsuzaki, H.; Okuno, J.; et al. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 2018, 559, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.M. Last Glacial Maximum—Holocene Glacial and Depositional History from Sediment 1049 Cores at Coulman High beneath the Ross Ice Shelf, Antarctica. Master’s Thesis, Victoria University of Wellington, Wellington, New Zealand, 2012; 114p. [Google Scholar]
- Jorissen, F.J.; Fontanier, C.; Thomas, E. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In Proxies in Late Cenozoic. Paleoceanography, Developments in Marine Geology, 1; Hillaire-Marcel, C., De Vernal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 263–325. [Google Scholar]
- Melis, R.; Salvi, G. Late Quaternary foraminiferal assemblages from western Ross Sea (Antarctica) in relation to the main glacial and marine lithofacies. Mar. Micropaleontol. 2009, 70, 39–53. [Google Scholar] [CrossRef]
- Baroni, C.; Orombelli, G. Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology 1994, 22, 23–26. [Google Scholar] [CrossRef]
- Crosta, X.; Romero, O.; Armand, L.K.; Pichon, J.-J. The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeogeogr. Palaeoclim. Palaeoecol. 2005, 223, 66–92. [Google Scholar] [CrossRef]
Core ID | Latitude S | Longitude E | Water Depth (m) | Length (cm) |
---|---|---|---|---|
KI13-BC2 | 71°21.00 | 179°30.33 | 2246 | 37 |
KI13-BC3 | 71°52.47 | 177°48.08 | 1800 | 37 |
KI13-BC4 | 72°32.87 | 177°33.43 | 1788 | 45 |
Box Core Label | Sample Depth (cm) | Carbon Source a | Laboratory Code | Conventional 14C Age (year BP) | Error (year) | LCO b | LCO Corr. Age (year BP) | Median Probability Cal Age (year BP) | Lower Cal Range (year BP) | Upper Cal Range (year BP) |
---|---|---|---|---|---|---|---|---|---|---|
KI-13 BC02 | 0–1 | AIOM | OS-107476 | 4140 | 0 | |||||
KI-13 BC02 | 8–9 | AIOM | 4809.1.2 | 10,813 | 150 | 3040 | 7773 | 7479 | 7112 | 7867 |
KI-13 BC02 | 15–16 | AIOM | Poz-121677 | 16,330 | 100 | 3040 | 13,290 | 14,006 | 13,585 | 14,642 |
KI-13 BC02 | 18–19 | AIOM | Poz-121678 | 17,010 | 110 | 3040 | 13,970 | 15,209 | 14,476 | 15,776 |
KI-13 BC02 | 26–27 | AIOM | Poz-121679 | 17,930 | 120 | 3040 | 14,890 | 16,546 | 16,058 | 17,063 |
KI-13 BC03 | 0–1 | AIOM | Poz-69634 | 5050 | 0 | |||||
KI-13 BC03 | 27–28 | N. pachy | 4814.1.1 | 14,421 | 122 | - | - | 15,878 | 15,315 | 16,332 |
KI-13 BC03 | 33–34 | N. pachy | 4815.1.1 | 15,596 | 136 | - | - | 17,537 | 17,044 | 17,979 |
KI-13 BC04 | 0–1 | AIOM | OS-107477 | 4500 | 0 | |||||
KI-13 BC04 | 10–11 | AIOM | 4807.1.1 | 16,167 | 217 | 3400 | 12,767 | 13,451 | ||
KI-13 BC04 | 16–17 | AIOM | Poz-121674 | 17,100 | 110 | 3400 | 13,700 | 14,692 | 14,106 | 15,239 |
KI-13 BC04 | 24–25 | AIOM | Poz-121675 | 20,530 | 150 | 3400 | 17,130 | 19,233 | 18,796 | 19,683 |
KI-13 BC04 | 36–37 | AIOM | 4806.1.1 | 22,810 | 419 | 3400 | 19,410 | 22,005 |
Sand | Silt | Clay | Mz | σi | Sk | Kg | C | M | >1 mm | SS% | SSmean | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | Φ | Φ | µm | µm | counts | µm | |||||
CLUSTER 1 | avg | 11.1 | 81.5 | 7.4 | 6.25 | 1.90 | −0.01 | 1.10 | 445 | 13 | 36 | 53.5 | 22.2 |
SD | 3.2 | 3.7 | 0.9 | 0.15 | 0.18 | 0.07 | 0.08 | 84 | 2 | 16 | 3.5 | 0.8 | |
CLUSTER 2 | avg | 11.2 | 82.2 | 6.6 | 5.99 | 1.80 | 0.14 | 1.01 | 351 | 17 | 25 | 61.9 | 24.5 |
SD | 2.2 | 2.2 | 0.9 | 0.11 | 0.08 | 0.05 | 0.05 | 123 | 1 | 26 | 2.1 | 0.6 | |
CLUSTER 3 | avg | 16.6 | 77.2 | 6.2 | 5.71 | 1.89 | 0.17 | 1.02 | 428 | 22 | 25 | 64.8 | 26.1 |
SD | 3.7 | 3.5 | 0.5 | 0.14 | 0.11 | 0.06 | 0.06 | 87 | 2 | 23 | 1.9 | 0.5 | |
CLUSTER 4 | avg | 19.8 | 75.4 | 4.8 | 5.40 | 1.82 | 0.20 | 1.13 | 450 | 28 | 34 | 71.3 | 27.7 |
SD | 3.6 | 3.5 | 0.5 | 0.14 | 0.13 | 0.05 | 0.06 | 72 | 3 | 18 | 2.1 | 0.5 | |
CLUSTER 5 | avg | 27.4 | 68.9 | 3.7 | 4.98 | 1.77 | 0.20 | 1.30 | 472 | 37 | 61 | 77.0 | 30.1 |
SD | 2.0 | 2.0 | 0.2 | 0.09 | 0.12 | 0.05 | 0.07 | 52 | 2 | 9 | 2.2 | 0.9 | |
CLUSTER 6 | avg | 31.3 | 63.7 | 5.0 | 5.14 | 2.05 | 0.19 | 0.99 | 493 | 34 | 48 | 65.7 | 27.5 |
SD | 5.2 | 4.6 | 0.8 | 0.25 | 0.16 | 0.10 | 0.06 | 88 | 7 | 41 | 3.4 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torricella, F.; Melis, R.; Malinverno, E.; Fontolan, G.; Bussi, M.; Capotondi, L.; Del Carlo, P.; Di Roberto, A.; Geniram, A.; Kuhn, G.; et al. Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum. Geosciences 2021, 11, 155. https://doi.org/10.3390/geosciences11040155
Torricella F, Melis R, Malinverno E, Fontolan G, Bussi M, Capotondi L, Del Carlo P, Di Roberto A, Geniram A, Kuhn G, et al. Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum. Geosciences. 2021; 11(4):155. https://doi.org/10.3390/geosciences11040155
Chicago/Turabian StyleTorricella, Fiorenza, Romana Melis, Elisa Malinverno, Giorgio Fontolan, Mauro Bussi, Lucilla Capotondi, Paola Del Carlo, Alessio Di Roberto, Andrea Geniram, Gerhard Kuhn, and et al. 2021. "Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum" Geosciences 11, no. 4: 155. https://doi.org/10.3390/geosciences11040155
APA StyleTorricella, F., Melis, R., Malinverno, E., Fontolan, G., Bussi, M., Capotondi, L., Del Carlo, P., Di Roberto, A., Geniram, A., Kuhn, G., Khim, B. -K., Morigi, C., Scateni, B., & Colizza, E. (2021). Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum. Geosciences, 11(4), 155. https://doi.org/10.3390/geosciences11040155