StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Rate Calculation
2.2. Propagation of Uncertainties
2.3. Seasonal Growth Rates and Significant Seasonal Differences
2.4. Outliers
2.5. Case Studies
3. Results
- Obir Cave, Austria
- St. Michaels Cave, Gibraltar
- Inner Space Cavern, Texas
- Larga Cave, Puerto Rico
4. Discussion
- calculation of speleothem growth rates
- quick evaluation of growth influencing parameters
- identification of seasonal growth bias
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairchild, I.J.; Baker, A. Speleothem Science: From Process to Past Environments, 1st ed.; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Fairchild, I.J.; Smith, C.L.; Baker, A.; Fuller, L.; Spötl, C.; Mattey, D.; McDermott, F. Modification and preservation of environmental signals in speleothems. Earth Sci. Rev. 2006, 75, 105–153. [Google Scholar] [CrossRef] [Green Version]
- Lachniet, M.S. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 2009, 28, 412–432. [Google Scholar] [CrossRef]
- Edwards, R.L.; Chen, J.; Wasserburg, G. 238U234U230Th232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 1987, 81, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.A. Uranium-series Chronology and Environmental Applications of Speleothems. Rev. Miner. Geochem. 2003, 52, 407–460. [Google Scholar] [CrossRef]
- Pourmand, A.; Tissot, F.L.H.; Arienzo, M.; Sharifi, A. Introducing a Comprehensive Data Reduction and Uncertainty Propagation Algorithm for U-Th Geochronometry with Extraction Chromatography and Isotope Dilution MC-ICP-MS. Geostand. Geoanal. Res. 2014, 38, 129–148. [Google Scholar] [CrossRef]
- Scholz, D.; Hoffmann, D. 230Th/U-dating of fossil corals and speleothems. E&G Quat. Sci. J. 2008, 57, 52–76. [Google Scholar] [CrossRef]
- Lachniet, M.S.; Burns, S.J.; Piperno, D.R.; Asmerom, Y.; Polyak, V.J.; Moy, C.M.; Christenson, K. A 1500-year El Niño/Southern Oscillation and rainfall history for the Isthmus of Panama from speleothem calcite. J. Geophys. Res. Space Phys. 2004, 109, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spötl, C.; Mangini, A. Stalagmite from the Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: Implications for the absolute chronology of Greenland ice cores. Earth Planet. Sci. Lett. 2002, 203, 507–518. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Treble, P.C. Trace elements in speleothems as recorders of environmental change. Quat. Sci. Rev. 2009, 28, 449–468. [Google Scholar] [CrossRef]
- Cruz, F.W.; Vuille, M.; Burns, S.J.; Wang, X.; Cheng, H.; Werner, M.; Edwards, R.L.; Karmann, I.; Auler, A.S.; Nguyen, H. Orbitally driven east–west antiphasing of South American precipitation. Nat. Geosci. 2009, 2, 210–214. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Barkan, E.; Bergel, S.; Vieten, R.; Affek, H.P. Triple oxygen isotope fractionation between CaCO3 and H2O in inorganically precipitated calcite and aragonite. Chem. Geol. 2020, 539, 119500. [Google Scholar] [CrossRef]
- Li, H.; Sinha, A.; André, A.A.; Spötl, C.; Vonhof, H.B.; Meunier, A.; Kathayat, G.; Duan, P.; Voarintsoa, N.R.G.; Ning, Y.; et al. A multimillennial climatic context for the megafaunal extinctions in Madagascar and Mascarene Islands. Sci. Adv. 2020, 6, eabb2459. [Google Scholar] [CrossRef] [PubMed]
- James, E.W.; Banner, J.L.; Hardt, B. A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochem. Geophys. Geosyst. 2015, 16, 1044–1051. [Google Scholar] [CrossRef]
- Riechelmann, D.F.C.; Schröder-Ritzrau, A.; Scholz, D.; Fohlmeister, J.; Spötl, C.; Richter, D.K.; Mangini, A. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site. J. Hydrol. 2011, 409, 682–695. [Google Scholar] [CrossRef]
- Riechelmann, D.F.; Deininger, M.; Scholz, D.; Riechelmann, S.; Schröder-Ritzrau, A.; Spötl, C.; Richter, D.K.; Mangini, A.; Immenhauser, A. Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data. Geochim. Cosmochim. Acta 2013, 103, 232–244. [Google Scholar] [CrossRef]
- Frisia, S.; Fairchild, I.J.; Fohlmeister, J.; Miorandi, R.; Spötl, C.; Borsato, A. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochim. Cosmochim. Acta 2011, 75, 380–400. [Google Scholar] [CrossRef]
- Spötl, C.; Fairchild, I.J.; Tooth, A.F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochim. Cosmochim. Acta 2005, 69, 2451–2468. [Google Scholar] [CrossRef]
- Baldini, J.U.; McDermott, F.; Hoffmann, D.L.; Richards, D.A.; Clipson, N. Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet. Sci. Lett. 2008, 272, 118–129. [Google Scholar] [CrossRef]
- Mattey, D.P.; Fairchild, I.J.; Atkinson, T.C.; Latin, J.-P.; Ainsworth, M.; Durell, R. Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. Geol. Soc. London Spéc. Publ. 2010, 336, 323–344. [Google Scholar] [CrossRef]
- Mattey, D.; Atkinson, T.; Barker, J.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M. Carbon dioxide, ground air and carbon cycling in Gibraltar karst. Geochim. Cosmochim. Acta 2016, 184, 88–113. [Google Scholar] [CrossRef]
- Vieten, R.; Winter, A.; Warken, S.F.; Schröder-Ritzrau, A.; Miller, T.E.; Scholz, D. Seasonal temperature variations controlling cave ventilation processes in cueva larga, Puerto Rico. Int. J. Speleol. 2016, 45, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M. Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A. J. Sediment. Res. 2007, 77, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.; Mattey, D.P.; Baldini, J.U. Reconstructing modern stalagmite growth from cave monitoring, local meteorology, and experimental measurements of dripwater films. Earth Planet. Sci. Lett. 2014, 392, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Dreybrodt, W. Speleothem Deposition. In Encyclopedia of Caves; White, W.B., Culver, D.C., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 769–777. ISBN 9780123838322. [Google Scholar]
- Dreybrodt, W. Chemical kinetics, speleothem growth and climate. Boreas 1999, 28, 347–356. [Google Scholar] [CrossRef]
- Kaufmann, G. Stalagmite growth and palaeo-climate: The numerical perspective. Earth Planet. Sci. Lett. 2003, 214, 251–266. [Google Scholar] [CrossRef]
- Kaufmann, G.; Dreybrodt, W. Stalagmite growth and palaeo-climate: An inverse approach. Earth Planet. Sci. Lett. 2004, 224, 529–545. [Google Scholar] [CrossRef]
- Weedon, G.P. Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Casteel, R.C.; Banner, J.L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies. Chem. Geol. 2015, 392, 43–58. [Google Scholar] [CrossRef]
- Hansen, M.; Dreybrodt, W.; Scholz, D. Chemical evolution of dissolved inorganic carbon species flowing in thin water films and its implications for (rapid) degassing of CO2 during speleothem growth. Geochim. Cosmochim. Acta 2013, 107, 242–251. [Google Scholar] [CrossRef]
- Dreybrodt, W. Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O–CO2–CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochim. Cosmochim. Acta 2008, 72, 4712–4724. [Google Scholar] [CrossRef]
- Van Beynen, P.E.; Soto, L.; Polk, J. Paleo-Precipitation Determination as Derived from Speleothems in Central Florida, USA. J. Cave Karst Stud. 2008, 70, 25–34. [Google Scholar]
- Vaks, A.; Gutareva, O.S.; Breitenbach, S.F.M.; Avirmed, E.; Mason, A.J.; Thomas, A.; Osinzev, A.V.; Kononov, A.M.; Henderson, G. Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science 2013, 340, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Cruz, F.; Karmann, I.; Magdaleno, G.; Coichev, N.; Viana, O. Influence of hydrological and climatic parameters on spatial-temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, Southeastern Brazil. J. Hydrol. 2005, 302, 1–12. [Google Scholar] [CrossRef]
- Scholz, D.; Hoffmann, D.L. StalAge—An algorithm designed for construction of speleothem age models. Quat. Geochronol. 2011, 6, 369–382. [Google Scholar] [CrossRef]
- Breitenbach, S.F.M.; Rehfeld, K.; Goswami, B.; Baldini, J.U.L.; Ridley, H.E.; Kennett, D.J.; Prufer, K.M.; Aquino, V.V.; Asmerom, Y.; Polyak, V.J.; et al. COnstructing Proxy Records from Age models (COPRA). Clim. Past 2012, 8, 1765–1779. [Google Scholar] [CrossRef] [Green Version]
- Tortelli, D.M.; Walter, M. Modeling and rendering the growth of speleothems in real-time. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Rome, Italy, 27–29 February 2009; Volume 2, pp. 27–35. [Google Scholar]
- Sherwin, C.M.; Baldini, J.U. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems. Geochim. Cosmochim. Acta 2011, 75, 3915–3929. [Google Scholar] [CrossRef]
- Vieten, R.; Warken, S.; Winter, A.; Scholz, D.; Miller, T.; Spötl, C.; Schröder-Ritzrau, A. Monitoring of Cueva Larga, Puerto Rico—A First Step to Decode Speleothem Climate Records. In Karst Groundwater Contamination and Public Health; White, W., Herman, J., Herman, E., Rutigliano, M., Eds.; Springer: Cham, Germany, 2017. [Google Scholar] [CrossRef]
- Vieten, R.; Warken, S.; Winter, A.; Schröder-Ritzrau, A.; Scholz, D.; Spötl, C. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico. J. Geophys. Res. Biogeosci. 2018, 123, 879–888. [Google Scholar] [CrossRef]
- Baker, A.; Genty, D.; Dreybrodt, W.; Barnes, W.L.; Mockler, N.J.; Grapes, J. Testing Theoretically Predicted Stalagmite Growth Rate with Recent Annually Laminated Samples: Implications for Past Stalagmite Deposition. Geochim. Cosmochim. Acta 1998, 62, 393–404. [Google Scholar] [CrossRef]
- Aggarwal, C.C.; Yu, P.S. Outlier detection for high dimensional data. ACM SIGMOD Rec. 2001, 30, 37–46. [Google Scholar] [CrossRef]
- Barnett, V.; Lewis, T. Outliers in Statistical Data, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Crosby, T.; Iglewicz, B.; Hoaglin, D.C. How to Detect and Handle Outliers. Technometrics 1994, 36, 315. [Google Scholar] [CrossRef]
- Knorr, E.M.; Ng, R.T.; Tucakov, V. Distance-based outliers: Algorithms and applications. VLDB J. 2000, 8, 237–253. [Google Scholar] [CrossRef]
- Hansen, M.; Scholz, D.; Schöne, B.R.; Spötl, C. Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3. Chem. Geol. 2019, 509, 20–44. [Google Scholar] [CrossRef]
- Fritts, H.C. Growth-Rings of Trees: Their Correlation with Climate. Science 1966, 154, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Mühlinghaus, C.; Scholz, D.; Mangini, A. Modelling stalagmite growth and δ13C as a function of drip interval and temperature. Geochim. Cosmochim. Acta 2007, 71, 2780–2790. [Google Scholar] [CrossRef]
- Dreybrodt, W. Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chem. Geol. 1980, 29, 89–105. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieten, R.; Hernandez, F. StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations. Geosciences 2021, 11, 187. https://doi.org/10.3390/geosciences11050187
Vieten R, Hernandez F. StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations. Geosciences. 2021; 11(5):187. https://doi.org/10.3390/geosciences11050187
Chicago/Turabian StyleVieten, Rolf, and Francisco Hernandez. 2021. "StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations" Geosciences 11, no. 5: 187. https://doi.org/10.3390/geosciences11050187
APA StyleVieten, R., & Hernandez, F. (2021). StalGrowth—A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations. Geosciences, 11(5), 187. https://doi.org/10.3390/geosciences11050187