A Chronological Database about Natural and Anthropogenic Sinkholes in Italy
Abstract
:1. Introduction
1.1. Sinkholes, an Often Underrated Geohazard
1.2. Sinkholes, Not Only a Karst Feature
1.3. The Need of a Good Knowledge of Past Events
2. Sinkholes
Natural vs. Anthropogenic Sinkholes
3. Materials and Methods: The Chronological Catalogue of Sinkholes
3.1. Idea of the Database
3.2. Definitions
3.3. Structure of the Database
3.3.1. Time of Occurrence
3.3.2. Origin of the Cavity
3.3.3. Location
3.3.4. Sinkhole Typology
3.3.5. Triggering Factors
3.3.6. Damage
3.3.7. Sources
4. Results
5. Use of the Database and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Environment Agency (EEA). Economic Losses from Climate-Related Extremes in Europe. 2021. Available online: https://www.eea.europa.eu/ims/economic-losses-from-climate-related (accessed on 12 January 2022).
- Guzzetti, F. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol. 2000, 58, 89–107. [Google Scholar] [CrossRef]
- Guzzetti, F.; Salvati, P.; Stark, C.P. Evaluation of risk to the population posed by natural hazard in Italy. In Landslide Risk Management; Hungr, O., Fell, R., Couture, R., Eberhardt, E., Eds.; Taylor & Francis: London, UK, 2005; pp. 381–389. [Google Scholar]
- Salvati, P.; Bianchi, C.; Rossi, M.; Guzzetti, F. Societal landslide and flood risk in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 465–483. [Google Scholar] [CrossRef]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007; ISBN 978-0-470-84996-5. [Google Scholar]
- Palmer, A.N. Cave Geology; Cave Books: Dayton, OH, USA, 2007; ISBN 978-0-939748-66-2. [Google Scholar]
- Parise, M.; Ravbar, N.; Živanovic, V.; Mikszewski, A.; Kresic, N.; Mádl-Szőnyi, J.; Kukuric, N. Hazards in Karst and Managing Water Resources Quality. In Karst Aquifers—Characterization and Engineering; Stevanovic, Z., Ed.; Springer: Cham, Switzerland, 2015; pp. 601–687. [Google Scholar]
- Parise, M.; Pisano, L.; Vennari, C. Sinkhole clusters after heavy rainstorms. J. Cave Karst Stud. 2018, 80, 28–38. [Google Scholar] [CrossRef]
- Szwedzicki, T. Geotechnical precursors to large-scale ground collapse in mines. Int. J. Rock Mech. Min. Sci. 2001, 38, 957–965. [Google Scholar] [CrossRef]
- Castellanza, R.; Gerolymatou, E.; Nova, R. An Attempt to Predict the Failure Time of Abandoned Mine Pillars. Rock Mech. Rock Eng. 2007, 41, 377–401. [Google Scholar] [CrossRef]
- Parise, M.; Lollino, P. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology 2011, 134, 132–143. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Wang, L.; Chen, Y.; Wu, Y.; Ma, D.; Zhang, K. Mechanism of collapse sinkholes induced by solu-tion mining of salt formations and measures for prediction and prevention. Bull. Eng. Geol. Environ. 2019, 78, 1401–1415. [Google Scholar] [CrossRef]
- Dobereiner, L.; De Freitas, M.H. Geotechnical properties of weak sandstones. Géotechnique 1986, 36, 79–94. [Google Scholar] [CrossRef]
- Andriani, G.F.; Walsh, N. Physical properties and textural parameters of calcarenitic rocks: Qualitative and quantita-tive evaluations. Eng. Geol. 2002, 67, 5–15. [Google Scholar] [CrossRef]
- Hoke, G.D.; Turcotte, D.L. The weathering of stones due to dissolution. Environ. Earth Sci. 2004, 46, 305–310. [Google Scholar] [CrossRef]
- Lin, M.L.; Jeng, F.S.; Tsai, L.S.; Huang, T.H. Wetting weakening of tertiary sandstones—Microscopic mechanism. Environ. Earth Sci. 2005, 48, 265–275. [Google Scholar] [CrossRef]
- Ghabezloo, S.; Pouya, A. Numerical modeling of the_effect of weathering on the progressive failure of underground limestone mines. In Eurock 2006—Multyphysics Coupling and Long Term Behavior in Rock Mechanics; Van Cotthem, A., Charlier, R., Thimus, J.F., Tshibangu, J.P., Eds.; Taylor and Francis: London, UK, 2006; pp. 233–240. [Google Scholar]
- Castellanza, R.; Lollino, P.; Ciantia, M. A methodological approach to assess the hazard of underground cavities subjected to environmental weathering. Tunn. Undergr. Space Technol. 2018, 82, 278–292. [Google Scholar] [CrossRef]
- Johnson, K.S. Subsidence hazards due to evaporite dissolution in the United States. Environ. Earth Sci. 2005, 48, 395–409. [Google Scholar] [CrossRef]
- Waltham, T.; Park, H.; Suh, J.; Yu, M.; Kwon, H.; Bang, K. Collapses of old mines in Korea. Eng. Geol. 2011, 118, 29–36. [Google Scholar] [CrossRef]
- Poppe, S.; Holohan, E.P.; Pauwels, E.; Cnudde, V.; Kervyn, M. Sinkholes, pit craters, and small calderas: Analog mod-els of depletion-induced collapse analyzed by computed X-ray microtomography. Geol. Soc. Am. Bull. 2014, 127, 281–296. [Google Scholar] [CrossRef]
- Bérest, P. Cases, causes and classifications of craters above salt caverns. Int. J. Rock Mech. Min. Sci. 2017, 100, 318–329. [Google Scholar] [CrossRef]
- Taheri, K.; Gutiérrez, F.; Mohseni, H.; Raeisi, E.; Taheri, M. Sinkhole susceptibility mapping using the analytical hier-archy process (AHP) and magnitude–frequency relationships: A case study in Hamadan province, Iran. Geomorphology 2015, 234, 64–79. [Google Scholar] [CrossRef]
- Taheri, K.; Shahabi, H.; Chapi, K.; Shirzadi, A.; Gutiérrez, F.; Khosravi, K. Sinkhole susceptibility mapping: A com-parison between Bayes-based machine learning algorithms. Land Degrad. Dev. 2019, 30, 730–745. [Google Scholar] [CrossRef]
- Rosdi, M.A.H.M.; Othman, A.N.; Zubir, M.A.M.; Latif, Z.A.; Yusoff, Z.M. Sinkhole Susceptibility Hazard Zones Using GIS and Analytical Hierarchical Process (AHP): A Case Study of Kuala Lumpur and Ampang Jaya. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-4/W5, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Al-Halbouni, D.; Holohan, E.P.; Taheri, A.; Schöpfer, M.P.J.; Emam, S.; Dahm, T. Geomechanical modelling of sinkhole development using distinct elements: Model verification for a single void space and application to the Dead Sea area. Solid Earth 2018, 9, 1341–1373. [Google Scholar] [CrossRef] [Green Version]
- Beck, B. Soil Piping and Sinkhole Failures. In Encyclopedia of Caves, 2nd ed.; Culver, D.C., White, W.B., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2005; pp. 521–526. [Google Scholar]
- Waltham, T.; Bell, F.G.; Culshaw, M.G. Sinkholes and Subsidence; Springer Science and Business Media LLC: Berlin, Germany, 2005; p. 382. [Google Scholar]
- Gutiérrez, F.; Guerrero, J.; Lucha, P. A genetic classification of sinkholes illustrated from evaporite paleokarst expo-sures in Spain. Environ. Geol. 2008, 53, 993–1006. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Klimchouk, A.; Andrejchuk, V. Karst breakdown mechanisms from observations in the gypsum caves of the Western Ukraine: Implications for subsidence hazard assessment. Int. J. Speleol. 2002, 31, 55–88. [Google Scholar] [CrossRef] [Green Version]
- Waltham, T.; Lu, Z. Natural and Anthropogenic Rock Collapse over Open Caves. In Natural and Anthropogenic Hazards in Karst Areas: Recognition, Analysis, and Mitigation; Parise, M., Gunn, J., Eds.; Geological Society of London: London, UK, 2007; pp. 13–21. [Google Scholar]
- Parise, M. A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2015, 9, 272–285. [Google Scholar] [CrossRef]
- Palmer, A.N. Origin and Morphometry of Limestone Caves. Geol. Soc. Am. Bull. 1991, 103, 1–21. [Google Scholar] [CrossRef]
- Andrejchuk, V.; Klimchouk, A. Mechanisms of karst breakdown formation in the Gypsum Karst of the Fore-Ural Re-gions, Russia (from observations in the Kungurskaja Cave). Int. J. Speleol. 2002, 31, 89–114. [Google Scholar] [CrossRef] [Green Version]
- Worthington, S.R.H. Evolution of caves in response to base-level lowering. Cave Karst Sci. 2005, 32, 3–12. [Google Scholar]
- Galeazzi, C. The Typological Tree of Artificial Cavities: A Contribution by the Commission of the Italian Speleological Society; EGERIA Underground Research Centre: Rome, Italy, 2013; pp. 9–18. [Google Scholar]
- Parise, M.; Galeazzi, C.; Bixio, R.; Dixon, M. Classification of Artificial Cavities: A First Contribution by the UIS Com-mission. In Proceedings of the 16th International Congress of Speleology, Brno, Czech Republic, 21–28 July 2013; pp. 230–235. [Google Scholar]
- Day, A. Cave Surveying; British Cave Research Association: Buxton, UK, 2002. [Google Scholar]
- Häuselmann, P. Symbols for Karst Surfaces: The UIS list. Z. Fur Geomorphol. 2006, 147, 3–7. [Google Scholar]
- Häuselmann, P. (Ed.) UIS Mapping Grades, version 2; Survey and Mapping Working Group, UIS Informatics Commission, 2010. Available online: http://www.uisic.uis-speleo.org/UISmappingGrades.pdf (accessed on 13 March 2022).
- Martimucci, V.; Parise, M. Cave surveys, the representation of underground karst landforms, and their possible use and misuse. In Proceedings of the 20th International Karstological School ‘Karst Forms and Processes’, Postojna, Slovenia, 18–21 June 2012; pp. 69–70. [Google Scholar]
- Fraldi, M.; Guarracino, F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 2009, 46, 665–673. [Google Scholar] [CrossRef]
- Ferrero, A.M.; Segalini, A.; Giani, G.P. Stability analysis of historic underground quarries. Comput. Geotech. 2010, 37, 476–486. [Google Scholar] [CrossRef]
- Formicola, W.; Gueguen, E.; Martimucci, V.; Parise, M.; Ragone, G. Caves Below Quarries and Quarries above Caves: Problems, Hazard and Research. A Case Study from Southern Italy; Geological Society of America: Boulder, CO, USA, 2010; Volume 42. [Google Scholar]
- Sunwoo, C.; Song, W.-K.; Ryu, D.-W. A Case Study of Subsidence over an Abandoned Underground Limestone Mine. Geosystem Eng. 2010, 13, 147–152. [Google Scholar] [CrossRef]
- Hutchinson, D.J.; Phillips, C.; Cascante, G. Risk Considerations for Crown Pillar Stability Assessment for Mine Clo-sure Planning. Geotech. Geol. Eng. 2002, 20, 41–64. [Google Scholar] [CrossRef]
- Waltham, A.; Swift, G. Bearing capacity of rock over mined cavities in Nottingham. Eng. Geol. 2004, 75, 15–31. [Google Scholar] [CrossRef]
- Parise, M. The Impacts of Quarrying in the Apulian Karst. In Advances in Research in Karst Media; Carrasco, F., La Moreaux, J.W., Duran Valsero, J.J., An-dreo, B., Eds.; Springer: Heidelberg, Germany, 2010; pp. 441–447. [Google Scholar]
- Parise, M. Hazards in Karst. In Sustainability of the Karst Environment. Dinaric Karst and Other Karst Regions, Proceedings of the International Interdisciplinary Scientific Conference, Plitvice Lakes, Croatia, 23–26 September 2009; Bonacci, O., Ed.; IHP-UNESCO: Paris, France, 2010; pp. 155–162. [Google Scholar]
- Lollino, P.; Martimucci, V.; Parise, M. Geological survey and numerical modeling of the potential failure mechanisms of underground caves. Geosystem Eng. 2013, 16, 100–112. [Google Scholar] [CrossRef]
- Vattano, M.; Parise, M.; Lollino, P.; Bonamini, M.; Maggio, D.; Madonia, G. Examples of Anthropogenic Sinkholes in Sicily and Comparison with Similar Phenomena in Southern Italy. In Proceedings of the Full Proceedings of the Thirteenth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Carlsbad, New Mexico, 6–10 May 2013; Land, L., Doctor, D.H., Stephenson, J.B., Eds.; University of South Florida: Tampa, FL, USA, 2013; Volume 2, pp. 263–271. [Google Scholar]
- Fazio, N.; Perrotti, M.; Lollino, P.; Parise, M.; Vattano, M.; Madonia, G.; Di Maggio, C. A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks. Eng. Geol. 2017, 228, 301–311. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Y.; Shi, W.; Ren, J.; Liang, F.; Lu, J.; Li, H.; Yu, X. Forensic analysis and numerical simulation of a cata-strophic landslide of dissolved and fractured rock slope subject to underground mining. Landslides 2022, 19, 1045–1067. [Google Scholar] [CrossRef]
- Abbasnejad, A.; Abbasnejad, B.; Derakhshani, R.; Hemmati Sarapardeh, A. Qanat hazard in Iranian urban areas: Explanation and remedies. Environ. Earth Sci. 2016, 75, 1306. [Google Scholar] [CrossRef]
- Parise, M. Qanat is not a hazard. Rebuttal to ‘‘Qanat hazard in Iranian urban areas: Explanation and remedies’’ by Ab-basnejad A, Abbasnejad B, Derakhshani R, Hemmati Sarapardeh A (Environ Earth Sci 2016; 75: 1306). Environ. Earth Sci. 2016, 75, 1476. [Google Scholar] [CrossRef]
- Valipour, M.; Abdelkader, T.A.; Antoniou, G.P.; Sala, R.; Parise, M.; Salgot, M.; Sanaan Bensi, N.; Angelakis, A.N. Sustainability of underground hydro-technologies: From ancient to modern times and toward the future. Sustainability 2020, 12, 8983. [Google Scholar] [CrossRef]
- Brinkmann, R.; Parise, M.; Dye, D. Sinkhole distribution in a rapidly developing urban environment: Hillsborough County, Tampa Bay area, Florida. Eng. Geol. 2008, 99, 169–184. [Google Scholar] [CrossRef]
- Hermosilla, R.G. The Guatemala City sinkhole collapses. Carbonates Evaporites 2011, 27, 103–107. [Google Scholar] [CrossRef]
- Upchurch, S.B.; Littlefield, J.R. Evaluation of data for Sinkhole-development risk models. Environ. Earth Sci. 1988, 12, 135–140. [Google Scholar] [CrossRef]
- Benson, R.C.; Yuhr, L.; Kaufmann, R.D. Assessing the risk of karst subsidence and collapse. Am. Soc. Civ. Eng. Geotech. Spec. Publ. 2003, 122, 31–39. [Google Scholar]
- Brinkmann, R. Florida Sinkholes; Duke University Press: Durham, NC, USA, 2013. [Google Scholar]
- Nisio, S.; Caramanna, G.; Ciotoli, G. Sinkholes in Italy: First results on the inventory and analysis. Geol. Soc. Lond. Spéc. Publ. 2007, 279, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Parise, M.; Vennari, C. A chronological catalogue of sinkholes in Italy: The first step toward a real evaluation of the sinkhole hazard. In Proceedings of the 13th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Carlsbad, New Mexico, 6–10 May 2013; Land, L., Doctor, D.H., Stephenson, B., Eds.; National Cave and Karst Research Institute: Carlsbad, NM, USA, 2013; pp. 383–392. [Google Scholar]
- Parise, M.; Vennari, C. Distribution and features of natural and anthropogenic sinkholes in Apulia. In EuroKarst 2016, Neuchatel: Advances in the Hydrogeology of Karst and Carbonate Reservoirs; Renard, P., Bertrand, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 27–34. ISBN 978-3-319-45464-1. [Google Scholar]
- Fonseca, C. Rupestrian civilization in Apulia. In Apulia between Bisantium and the West; 1980; pp. 36–116. (In Italian) [Google Scholar]
- Parise, M.; Federico, A.; Delle Rose, M.; Sammarco, M. Karst terminology in Apulia (southern Italy). Acta Carsologica 2003, 32, 65–82. [Google Scholar] [CrossRef]
- Tharp, T.M. Mechanics of upward propagation of cover-collapse sinkholes. Eng. Geol. 1999, 52, 23–33. [Google Scholar] [CrossRef]
- Waltham, T. The engineering classification of karst with respect to the role and influence of caves. Int. J. Speleol. 2002, 31, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Parise, M. Sinkholes. In Encyclopedia of Caves, 3rd ed.; White, W.B., Culver, D.C., Pipan, T., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2019; pp. 934–942. [Google Scholar]
- Parise, M. Sinkholes, Subsidence and Related Mass Movements. In Treatise on Geomorphology; Shroder, J.J.F., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2022; Volume 5, pp. 200–220. ISBN 9780128182345. [Google Scholar]
- Sauro, U. Dolines and Sinkholes: Aspects of Evolution and Problems of Classification. Acta Carsol. 2003, 32, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Williams, P. Dolines. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fitzroy Dearborn: New York, NY, USA, 2005; pp. 304–310. [Google Scholar]
- Rose, M.D.; Parise, M. Karst subsidence in South-Central Apulia, Southern Italy. Int. J. Speleol. 2002, 31, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Margiotta, S.; Marini, G.; Fay, S.; D’Onghia, F.; Liso, I.; Parise, M.; Pinna, M. Hydro-Stratigraphic Conditions and Human Activity Leading to Development of a Sinkhole Cluster in a Mediterranean Water Ecosystem. Hydrology 2021, 8, 111. [Google Scholar] [CrossRef]
- Rose, M.D.; Federico, A.; Parise, M. Sinkhole genesis and evolution in Apulia, and their interrelations with the anthropogenic environment. Nat. Hazards Earth Syst. Sci. 2004, 4, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Fidelibus, M.D.; Gutiérrez, F.; Spilotro, G. Human-induced hydrogeological changes and sinkholes in the coastal gypsum karst of Lesina Marina area (Foggia Province, Italy). Eng. Geol. 2011, 118, 1–19. [Google Scholar] [CrossRef]
- Zini, L.; Calligaris, C.; Forte, E.; Petronio, L.; Zavagno, E.; Boccali, C.; Cucchi, F. A multidisciplinary approach in sinkhole analysis: The Quinis village case study (NE Italy). Eng. Geol. 2015, 197, 132–144. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Fidolini, F.; Casagli, N. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology 2015, 241, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Iovine, G.; Vennari, C.; Gariano, S.L.; Caloiero, T.; Lanza, G.; Nicolino, N.; Suriano, S.; Ferraro, G.; Parise, M. The “Pi-ano dell’Acqua” sinkholes (San Basile, Northern Calabria, Italy). Bull. Eng. Geol. Environ. 2016, 75, 37–52. [Google Scholar] [CrossRef]
- Margiotta, S.; Negri, S.; Parise, M.; Quarta, T.A.M. Karst geosites at risk of collapse: The sinkholes at Nociglia (Apulia, SE Italy). Environ. Earth Sci. 2015, 75, 1–10. [Google Scholar] [CrossRef]
- Guarino, P.M.; Nisio, S. Anthropogenic sinkholes in the territory of the city of Naples (Southern Italy). Phys. Chem. Earth Parts A/B/C 2012, 49, 92–102. [Google Scholar] [CrossRef]
- Parise, M. A present risk from past activities: Sinkhole occurrence above underground quarries. Carbonates Evaporites 2012, 27, 109–118. [Google Scholar] [CrossRef]
- Guarino, P.M.; Santo, A.; Forte, G.; De Falco, M.; Niceforo, D.M.A. Analysis of a database for anthro- pogenic sinkhole triggering and zonation in the Naples hinterland (Southern Italy). Nat. Hazards 2018, 91, 173–192. [Google Scholar]
- Scotto di Santolo, A.; Forte, G.; Santo, A. Analysis of sinkhole triggering mechanisms in the hinter-land of Naples (southern Italy). Eng. Geol. 2018, 237, 42–52. [Google Scholar] [CrossRef]
- Tufano, R.; Guerriero, L.; Corona, M.A.; Bausilio, G.; Di Martire, D.; Nisio, S.; Calcaterra, D. Anthropogenic sinkholes of the city of Naples, Italy: An update. Nat. Hazards 2022, 1–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Yang, Z.; Li, J. Relative Accuracy Evaluation. PLoS ONE 2014, 9, e103853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneuwly-Bollschweiler, M.; Stoffel, M.; Rudolf-Miklau, F. Summary and Outlook. In Dating Torrential Processes on Fans and Cones; Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 419–423. [Google Scholar]
- Gibson, K. BusinessDictionary.com. Ref. Rev. 2009, 23, 25–26. [Google Scholar] [CrossRef]
- Clapham, C.; Nicholson, J. The Concise Oxford Dictionary of Mathematics; Oxford University Press (OUP): Oxford, UK, 2009. [Google Scholar]
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 6th ed.; McGraw-Hill Higher Education: Boston, MA, USA, 2010; ISBN 978-0-07-340106-5. [Google Scholar]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Cambridge University. Cambridge Dictionary; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Carlson, N.R.; Buskist, W.; Heth, D.C.; Schmaltz, R. Psychology: The Science of Behaviour. Fourth Canadian Edition with MyPsychLab, 4th ed.; Pearson Education Canada: Toronto, ON, Canada, 2009; ISBN 978-0205702862. [Google Scholar]
- The Use of Historical Data in Natural Hazard Assessments. Advances in Natural and Technological Hazards Research; Glade, T.; Albini, P.; Frances, F. (Eds.) Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 17. [Google Scholar]
- Vennari, C.; Salvati, P.; Bianchi, C.; Casarano, D.; Parise, M.; Basso, A.; Marchesini, I. AReGeoDatHa: Apulian Regional GeoDatabase for geo-hydrological Hazards. J. Environ. Manag. 2022. under review. [Google Scholar]
- Nursey-Bray, M.J.; Vince, J.; Scott, M.; Haward, M.; O’Toole, K.; Smith, T.; Harvey, N.; Clarke, B. Science into policy? Discourse, coastal management and knowledge. Environ. Sci. Policy 2014, 38, 107–119. [Google Scholar] [CrossRef]
- Guzzetti, F. Forecasting natural hazards, performance of scientists, ethics, and the need for transparency. Toxicol. Environ. Chem. 2016, 98, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- POLARIS-POpoLAtion at RISk by Landslides and Floods in Italy. (In Italian). Available online: http://polaris.irpi.cnr.it/elenco-zone-allerta/ (accessed on 12 January 2022).
- Portal of the National Register of Italian Caves. (In Italian). Available online: https://speleo.it/catastogrotte/ (accessed on 2 December 2021).
- Nationale Register of Artificial Cavities. (In Italian). Available online: http://catastoartificiali.speleo.it/applications/1.0/ (accessed on 2 December 2021).
- Billi, A.; Valle, A.; Brilli, M.; Faccenna, C.; Funiciello, R. Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy. J. Struct. Geol. 2007, 29, 385–395. [Google Scholar] [CrossRef]
- Buchignani, V.; D’Amato Avanzi, G.; Giannecchini, R.; Puccinelli, A. Evaporite karst and sinkholes: A synthesis on the case of Camaiore (Italy). Environ. Geol. 2008, 53, 1037–1044. [Google Scholar] [CrossRef]
- Tassi, F.; Bicocchi, G.; Cabassi, J.; Capecchiacci, F.; Vaselli, O.; Capezzuoli, E.; Brogi, A. Hydrogeochemical processes controlling water and dissolved gas chemistry at the Accesa sinkhole (southern Tuscany, central Italy). J. Limnol. 2014, 73, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, S.; Galeazzi, C.; Germani, C.; Martimucci, V.; Parise, M. Geohydrological problems related to underground artificial cavities. In Proceedings of the Convegni Lincei “Frane e dissesto idrogeologico: Consuntivo”; Accademia dei Lincei, Rome, Italy, 22 March 2010; Volume 262, pp. 223–232. (In Italian). [Google Scholar]
- Germani, C.; Galeazzi, C.; Galeazzi, S.; Casciotti, L.; Vennari, C.; Parise, M. Sinkhole problems at Rome and in the surrounding territories. In Proceedings of the World Multidisciplinary Earth Sciences Symposium WMESS 2015, Prague, Czech Republic, 7–11 September 2015. [Google Scholar]
- Adams, W.C. Whose Lives Count?: TV Coverage of Natural Disasters. J. Commun. 1986, 36, 113–122. [Google Scholar] [CrossRef]
- Van Belle, D.A. New York times and network TV news coverage of foreign disasters: The significance of the insignificant variables. J. Mass Commun. Q. 2000, 77, 50–70. [Google Scholar] [CrossRef]
- Eisensee, T.; Strömberg, D. News droughts, news floods, and US disaster relief. Q. J. Econ. 2007, 122, 693–728. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M. The contribution of historical information in the assessment of the landslide hazard. In The Use of Historical Data in Natural Hazard Assessments. Advances in Natural and Technological Hazards Research; Glade, T., Albini, P., Frances, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 201–217. [Google Scholar]
- Calcaterra, D.; Parise, M.; Palma, B. Combining historical and geological data for the assessment of the landslide hazard: A case study from Campania, Italy. Nat. Hazards Earth Syst. Sci. 2003, 3, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Vennari, C.; Parise, M.; Santangelo, N.; Santo, A. A database on flash flood events in Campania, southern Italy, with an evaluation of their spatial and temporal distribution. Nat. Hazards Earth Syst. Sci. 2016, 16, 2485–2500. [Google Scholar] [CrossRef] [Green Version]
- Avvenuti, M.; Del Vigna, F.; Cresci, S.; Marchetti, A.; Tesconi, M. Pulling information from social media in the after-math of unpredictable disasters. In Proceedings of the 2nd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Piscataway, NJ, USA; 2015; pp. 258–264. [Google Scholar]
- Hicks, S.P. Geoscience analysis on Twitter. Nat. Geosci. 2019, 12, 585–586. [Google Scholar] [CrossRef]
- Vennari, C.; Salvati, P.; Bianchi, C.; Casarano, D.; Parise, M.; Basso, A.; Marchesini, I. Database of geo-hydrological hazards in Apulia (Italy) (1.0.0) [Data set]. Zenodo 2022. [Google Scholar] [CrossRef]
- Sinkholes Project-ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale. Available online: https://www.isprambiente.gov.it/it/progetti/cartella-progetti-in-corso/suolo-e-territorio-1/il-progetto-sinkhole (accessed on 4 February 2022).
- Italian Web Sinkholes Database. Available online: http://host.uniroma3.it/laboratori/idrogeologia/iwsd.php (accessed on 9 February 2022).
- Sinkhole Project WebGIS. Soil Protection, Campania Region. (In Italian). Available online: http://webgis.difesa.suolo.regione.campania.it:8080/sinkhole/map.phtml (accessed on 9 February 2022).
- Davis, N. When is a sinkhole not a sinkhole? The Guardian, 28 May 2016; 32. [Google Scholar]
- Pasquarè, F.; Pozzetti, M. Geological hazards, disasters and the media: The Italian case study. Quat. Int. 2007, 173–174, 166–171. [Google Scholar] [CrossRef]
- Brinkmann, R.; Parise, M. The timing of sinkhole formation in Tampa and Orlando, Florida. Florida Geogr. 2010, 41, 22–38. [Google Scholar]
- Del Prete, S.; Di Crescenzo, G.; Santangelo, N.; Santo, A. Collapse sinkholes in Campania (southern Italy): Predis-posing factors, genetic hypothesis and susceptibility. Geomorphology 2010, 54, 259–284. [Google Scholar] [CrossRef]
- Del Prete, S.; Iovine, G.; Parise, M.; Santo, A. Origin and distribution of different types of sinkholes in the plain areas of Southern Italy. Geodin. Acta 2010, 23, 113–127. [Google Scholar] [CrossRef]
- Santo, A.; Ascione, A.; Del Prete, S.; Di Crescenzo, G.; Santangelo, N. Collapse sinkholes in the carbonate massifs of Central and Southern Apennines. Acta Carsologica 2012, 40. [Google Scholar] [CrossRef]
- Santo, A.; Santangelo, N.; De Falco, M.; Forte, G.; Valente, E. Cover collapse sinkhole over a deep buried carbonate bedrock: The case study of Fossa San Vito (Sarno-Southern Italy). Geomorphology 2019, 345, 106838. [Google Scholar] [CrossRef]
- Martinotti, M.E.; Pisano, L.; Marchesini, I.; Rossi, M.; Peruccacci, S.; Brunetti, M.T.; Melillo, M.; Amoruso, G.; Loiacono, P.; Vennari, C.; et al. Landslides, floods and sinkholes in a karst environment: The 1–6 September 2014 Gargano event, southern Italy. Nat. Hazards Earth Syst. Sci. 2017, 17, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Sottile, R. Geological Problems Related to Sinkholes in Urban Areas. The Example of the City of Palermo. Bachelor Thesis, Palermo University, Palermo, Italy, 2010. (In Italian). [Google Scholar]
- Barla, G.; Jarre, P. Subsidence over an Abandoned Dissolving Salt Mine. In Rock Mechanics as a Multidisciplinary Science; Roegiers, J.-C., Ed.; Balkema: Rotterdam, The Netherlands, 1991; pp. 393–398. [Google Scholar]
- Bérest, P.; Bergues, J.; Brouard, B. Review of static and dynamic compressibility issues relating to deep underground salt caverns. Int. J. Rock Mech. Min. Sci. 1999, 36, 1031–1049. [Google Scholar] [CrossRef]
- Bérest, P.; Brouard, B.; Feuga, B.; Karimi-Jafari, M. The 1873 collapse of the Saint-Maximilien panel at the Varangeville salt mine. Int. J. Rock Mech. Min. Sci. 2008, 45, 1025–1043. [Google Scholar] [CrossRef]
- Gisotti, G. Environmental problems about the salt mine at Belvedere Spinello (Catanzaro). A new case of subsidence in Italy. Memorie Descrittive della Carta Geologica d’Italia 1992, 42, 283–306. (In Italian) [Google Scholar]
- Roda, C.; Martelli, G. The 25 april 1984 collapse chimney in the territory of Belvedere di Spinello (Crotone). Giorn. Geol. Appl. 2006, 3, 237–248. (In Italian) [Google Scholar]
- Mayer, R.; Plank, C.; Bohner, A.; Kollarits, S.; Corsini, A.; Ronchetti, F.; Siegel, H.; Noessing, L.; Mair, V.; Sulzenbacher, U.; et al. MONITOR: Hazard monitoring for risk assessment and risk communication. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2008, 2, 195–222. [Google Scholar] [CrossRef]
- Ho, K.K.S.; Ko, F.W.Y. Application of quantified risk analysis in landslide risk management practice: Hong Kong experience. Georisk 2009, 3, 134–146. [Google Scholar] [CrossRef]
- Sousa, R.L.; Karam, K.; Einstein, H.H. Exploration analysis for landslide risk management. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2014, 8, 155–170. [Google Scholar] [CrossRef]
- Sidle, R.C.; Benson, W.H.; Carriger, J.F.; Kamai, T. Broader perspective on ecosystem sustainability: Consequences for decision making. Proc. Natl. Acad. Sci. USA 2013, 110, 9201–9208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J.L.; Stein, S. Gray swans: Comparison of natural and financial hazard assessment and mitigation. Nat. Hazards 2012, 72, 1279–1297. [Google Scholar] [CrossRef]
- Qin, L.; Feng, S.; Zhu, H. Research on the technological architectural design of geological hazard monitoring and rescue-after-disaster system based on cloud computing and Internet of things. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 684–695. [Google Scholar] [CrossRef]
- Shao, L. Geological disaster prevention and control and resource protection in mineral resource exploitation region. Int. J. Low-Carbon Technol. 2019, 14, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Festa, V.; Fiore, A.; Parise, M.; Siniscalchi, A. Sinkhole evolution in the Apulian Karst of Southern Italy: A case study, with some considerations on Sinkhole Hazards. J. Cave Karst Stud. 2012, 74, 137–147. [Google Scholar] [CrossRef]
- Zumpano, V.; Pisano, L.; Parise, M. An integrated framework to identify and analyze karst sinkholes. Geomorphology 2019, 332, 213–225. [Google Scholar] [CrossRef]
- Filin, S.; Baruch, A. Detection of Sinkhole Hazards using Airborne Laser Scanning Data. Photogramm. Eng. Remote Sens. 2010, 76, 577–587. [Google Scholar] [CrossRef]
- Zhu, J.; Taylor, T.P.; Currens, J.C.; Crawford, M.M. Improved karst sinkhole mapping in Kentucky using LiDAR tech-niques: A pilot study in Floyds fork watershed. J. Cave Karst Stud. 2014, 76, 207–216. [Google Scholar] [CrossRef]
- Bauer, C. Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology 2015, 250, 78–88. [Google Scholar] [CrossRef]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from LiDAR-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Hofierka, J.; Gallay, M.; Bandura, P.; Šašak, J. Identification of karst sinkholes in a forested karst landscape using air-borne laser scanning data and water flow analysis. Geomorphology 2018, 308, 265–277. [Google Scholar] [CrossRef]
- Kemmerly, P.R. Sinkhole Hazards and Risk Assessment in a Planning Context. J. Am. Plan. Assoc. 1993, 59, 221–229. [Google Scholar] [CrossRef]
- Florea, L. Using state-wide GIS data to identify the coincidence between sinkholes and geologic structure. J. Cave Karst Stud. 2005, 67, 120–124. [Google Scholar]
- Gao, Y.; Alexander, E.C., Jr.; Barnes, R.J. Karst database implementation in Minnesota: Analysis of sinkhole distribution. Environ. Geol. 2005, 47, 1083–1098. [Google Scholar] [CrossRef]
- Hyland, S.E.; Kennedy, L.M.; Younos, T.; Parson, S. Analysis of Sinkhole Susceptibility and Karst Distribution in the Northern Shenandoah Valley, Virginia: Implications for Low Impact Development (LID) Site Suitability Models. Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/49477/VWRRC_sr200631.pdf (accessed on 13 March 2022).
- Brinkmann, R.; Parise, M. Karst Environments: Problems, Management, Human Impacts, and Sustainability. An introduction to the Special Issue. J. Cave Karst Stud. 2012, 74, 135–136. [Google Scholar] [CrossRef]
- Milanovic, P.T. Geological Engineering in Karst; Zebra: Belgrade, Serbia, 2000; p. 347. ISBN 867489125X. [Google Scholar]
- Milanovic, P. The environmental impacts of human activities and engineering constructions in karst regions. Episodes 2002, 25, 13–21. [Google Scholar] [CrossRef]
- Zhou, W.; Beck, B.F.; Beynen, P.E. Engineering Issues on Karst. In Karst Management; Springer Science and Business Media LLC: Berlin, Germany, 2011; pp. 9–45. [Google Scholar]
- Parise, M.; Closson, D.; Gutierrez, F.; Stevanovic, Z. Anticipating and managing engineering problems in the com-plex karst environment. Environ. Earth Sci. 2015, 74, 7823–7835. [Google Scholar] [CrossRef]
- Nicoletti, P.G.; Parise, M. Seven landslide dams of old seismic origin in southeastern Sicily (Italy). Geomorphology 2002, 46, 203–222. [Google Scholar] [CrossRef]
- Porfido, S.; Esposito, E.; Vittori, E.; Tranfaglia, G.; Michetti, A.; Blumetti, M.; Ferreli, L.; Guerrieri, L.; Serva, L. Areal Distribution of Ground Effects Induced by Strong Earthquakes in the Southern Apennines (Italy). Surv. Geophys. 2002, 23, 529–562. [Google Scholar] [CrossRef]
- Closson, D.; Karaki, N.A.; Milisavljevic, N.; Hallot, F.; Acheroy, M. Salt-dissolution-induced subsidence in the Dead Sea area detected by applying interferometric techniques to ALOS Palsar Synthetic Aperture Radar images. Geodin. Acta 2010, 23, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, K.; Ömer, A.; Aoki, T.; Kishimoto, I.; Konagai, K.; Matsui, T.; Sakuta, J.; Takahashi, N.; Teodori, S.-P.; Yashima, A. Reconnaissance Investigation on the Damage of the 2009 L’Aquila, Central Italy Earthquake. J. Earthq. Eng. 2010, 14, 817–841. [Google Scholar] [CrossRef]
- Parise, M.; Perrone, A.; Violante, C.; Stewart, J.P.; Simonelli, A.; Guzzetti, F. Activity of the Italian National Research Council in the aftermath of the 6 April 2009 Abruzzo earthquake: The Sinizzo Lake case study. In Proceedings of the 2nd International Workshop “Sinkholes in the Natural and Anthropogenic Environment”, Rome, Italy, 3–4 December 2009; pp. 623–641. [Google Scholar]
- Tomac, I.; Kovačević Zelić, B.; Perić, D.; Domitrović, D.; Štambuk Cvitanović, N.; Vučenović, H.; Parlov, J.; Stipčević, J.; Matešić, D.; Matoš, B.; et al. Geotechnical Reconnaissance of an Extensive Cover-Collapse Sinkhole Phenomena of 2020–2021 Petrinja Earthquake Sequence (Central Croatia). Earthq. Spectra. 2021, 52. [Google Scholar] [CrossRef]
- Tomac, I.; Vlahović, I.; Parlov, J.; Matoš, B.; Matešić, D.; Kosović, I.; Pavičić, I.; Frangen, T.; Terzić, J.; Pavelić, D.; et al. Geotechnical Reconnaissance and Engineering Effects of the December 29, 2020, M6.4 Petrinja, Croatia Earthquake, and Associated Seismic Sequence; Technical report of Geotechnical Extreme Event Reconnaissance (GEER) Association: Petrinja, Croatia, 2021; pp. 49–96. Available online: http://www.geerassociation.org/index.php/component/geer_reports/?view=geerreports&layout=build&id=99 (accessed on 13 March 2022).
- Laureano, P. Gardens of Stone; Bollati Boringhieri: Turin, Italy, 1993. (In Italian) [Google Scholar]
- Lapenna, V.; Leucci, G.; Parise, M.; Porfyriou, H.; Genovese, L.; Varriale, R. A project to promote the importance of the natural and cultural heritage of the underground environment in southern Italy. In Proceedings of the International Congress in Artificial Cavities “Hypogea 2017”, Cappadocia, Turkey, 6–10 March 2017; pp. 128–136, ISBN 978-605-9680-37-0. [Google Scholar]
- AlRayyan, K.; Hamarneh, C.; Sukkar, H.; Ghaith, A.; Abu-Jaber, N. From Abandoned Mines to a Labyrinth of Knowledge: A Conceptual Design for a Geoheritage Park Museum in Jordan. Geoheritage 2017, 11, 257–270. [Google Scholar] [CrossRef]
- Polimeni, B.; Bixio, R.; Galeazzi, C.; Germani, C.; Parise, M.; Saj, S.; Sammarco, M. Creating a Map of the Underground Heritage in the Mediterranean Area: A Visual Representation for a Comprehensive Research. In Lecture Notes in Civil Engineering; Springer Science and Business Media LLC: Berlin, Germany, 2019; Volume 26, pp. 115–129. [Google Scholar]
- Genovese, L. Underground Built Heritage as Valuable Resource for Sustainable Growth. In Damage Assessment and Conservation of Underground Spaces as Valuable Resources for Human Activities in Italy and Japan; Varriale, R., Oguchi, C.T., Parise, M., Eds.; Consiglio Nazionale delle Ricerche: Rome, Italy, 2020; pp. 29–34. [Google Scholar]
- Varriale, R.; Parise, M.; Genovese, L.; Leo, M.; Valese, S. Underground Built Heritage in Naples: From Knowledge to Monitoring and Enhancement. In Handbook of Cultural Heritage Analysis; Springer Science and Business Media LLC: Berlin, Germany, 2022; pp. 2001–2035. [Google Scholar]
- Hatzor, Y.; Talesnick, M.; Tsesarsky, M. Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin, Israel. Int. J. Rock Mech. Min. Sci. 2002, 39, 867–886. [Google Scholar] [CrossRef]
- Oguchi, C.T.; Sakane, K.; Tamura, Y. Non-destructive Field Measurement for Investigation of Weathered Parts–Case Study at the Taya Cave, Central Japan. In Damage Assessment and Conservation of Underground Spaces as Valuable Resources for Human Activities in Italy and Japan; Varriale, R., Oguchi, C.T., Parise, M., Eds.; Consiglio Nazionale delle Ricerche: Rome, Italy, 2020; pp. 85–92. [Google Scholar]
- Parise, M. Instability Issues in Underground Cultural Heritage Sites. In Damage Assessment and Conservation of Underground Spaces as Valuable Resources for Human Activities in Italy and Japan; Varriale, R., Oguchi, C.T., Parise, M., Eds.; Consiglio Nazionale delle Ricerche: Rome, Italy, 2020; pp. 93–106. [Google Scholar]
Temporal Accuracy | Available Information | Examples |
---|---|---|
High | Hour-day-month-year | 8:10 am, 20 February 2020 |
Middle-high | Day-month-year | 20 February 2020 |
Middle | Month (or season)-year | February 2020, or Winter 2020 |
Middle-low | Year | 2020 |
Low | Range of years | Between 2019 and 2020, or after 2020 |
Geographical Certainty | Available Information |
---|---|
High | The locality has an accuracy of less than 100 m |
Middle | The locality is known but not attributable to a precise point or it is generically located along a street |
Low | Locality is expressed in general terms |
Category Code | Category Description | Type of Consequences | EU-CODE |
---|---|---|---|
1 | Human Health | Social | B10 |
1 | Human Health | Human health | B11 |
1 | Human Health | Community | B12 |
1 | Human Health | Other | B13 |
2 | Environment | Environment | B20 |
2 | Environment | Water body status | B21 |
2 | Environment | Protected areas | B22 |
2 | Environment | Pollution sources | B23 |
2 | Environment | Other | B24 |
3 | Cultural Heritage | Cultural heritage | B30 |
3 | Cultural Heritage | Cultural assetts | B31 |
3 | Cultural Heritage | Landscape | B32 |
3 | Cultural Heritage | Other | B33 |
4 | Economic Activity | Economic | B40 |
4 | Economic Activity | Property | B41 |
4 | Economic Activity | Infrastructure | B42 |
4 | Economic Activity | Rural land use | B43 |
4 | Economic Activity | Economic activity | B44 |
4 | Economic Activity | Other | B45 |
5 | Other | Other |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vennari, C.; Parise, M. A Chronological Database about Natural and Anthropogenic Sinkholes in Italy. Geosciences 2022, 12, 200. https://doi.org/10.3390/geosciences12050200
Vennari C, Parise M. A Chronological Database about Natural and Anthropogenic Sinkholes in Italy. Geosciences. 2022; 12(5):200. https://doi.org/10.3390/geosciences12050200
Chicago/Turabian StyleVennari, Carmela, and Mario Parise. 2022. "A Chronological Database about Natural and Anthropogenic Sinkholes in Italy" Geosciences 12, no. 5: 200. https://doi.org/10.3390/geosciences12050200
APA StyleVennari, C., & Parise, M. (2022). A Chronological Database about Natural and Anthropogenic Sinkholes in Italy. Geosciences, 12(5), 200. https://doi.org/10.3390/geosciences12050200