Review of Petroleum and Hydrogeology Equations for Characterizing the Pressure Front Diffusion during Pumping Tests
Abstract
:1. Introduction
2. Background
3. Literature Review of Different Approaches Used to Characterize the Diffusion Equation
3.1. The Cooper Jacob Approximation (CJA) (1946) Approach
3.2. The Relative Critical Drawdown (RCD) Approach
3.3. The Drawdown Log-Radius Derivative (DLRD) Approach
3.4. The Relative Critical Flow (RCF) Approach
3.5. The Maximum Drawdown Rate (MDR) Approach
3.6. The Maximum Drawdown (MD) Approach for an Impulse Test
3.7. The Deviation Time (DT) Approach
3.8. Developing a New Approach: The Drawdown Log-Time Derivative (DLTD) Approach
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bridge, J.S.; Hyndman, D.W. Aquifer Characterization; Society for Sedimentary Geology: Tulsa, OK, USA, 2004; 172p. [Google Scholar]
- Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D. Comparison of Aquifer Characterization Approaches through Steady State Groundwater Model Validation: A Controlled Laboratory Sandbox Study. Water Resour. Res. 2010, 46, W04502. [Google Scholar] [CrossRef]
- Maliva, R.G. Aquifer Characterization Techniques; Springer: Cham, Switzerland, 2016; Volume 10. [Google Scholar]
- Shishaye, H.A.; Tait, D.R.; Befus, K.M.; Maher, D.T. An Integrated Approach for Aquifer Characterization and Groundwater Productivity Evaluation in the Lake Haramaya Watershed, Ethiopia. Hydrogeol. J. 2019, 27, 2121–2136. [Google Scholar] [CrossRef]
- Kabala, Z.J. The Dipole Flow Test: A New Single-borehole Test for Aquifer Characterization. Water Resour. Res. 1993, 29, 99–107. [Google Scholar] [CrossRef]
- Gernand, J.D.; Heidtman, J.P. Detailed Pumping Test to Characterize a Fractured Bedrock Aquifer. Groundwater 1997, 35, 632–637. [Google Scholar] [CrossRef]
- Vouillamoz, J.-M.; Favreau, G.; Massuel, S.; Boucher, M.; Nazoumou, Y.; Legchenko, A. Contribution of Magnetic Resonance Sounding to Aquifer Characterization and Recharge Estimate in Semiarid Niger. J. Appl. Geophys. 2008, 64, 99–108. [Google Scholar] [CrossRef]
- Theis, C.V. The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Cooper, H.H., Jr.; Jacob, C.E. A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans. Am. Geophys. Union 1946, 27, 526–534. [Google Scholar] [CrossRef]
- Le Borgne, T.; Bour, O.; De Dreuzy, J.R.; Davy, P.; Touchard, F. Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Bernard, S.; Delay, F.; Porel, G. A new method of data inversion for the identification of fractal characteristics and homogenization scale from hydraulic pumping tests in fractured aquifers. J. Hydrol. 2006, 328, 647–658. [Google Scholar] [CrossRef]
- Rafini, S.; Larocque, M. Insights from numerical modeling on the hydrodynamics of non-radial flow in faulted media. Adv. Water Resour. 2009, 32, 1170–1179. [Google Scholar] [CrossRef]
- Rafini, S.; Chesnaux, R.; Ferroud, A. A numerical investigation of pumping-test responses from contiguous aquifers. Appl. Hydrogeol. 2017, 25, 877–894. [Google Scholar] [CrossRef]
- Ferroud, A.; Chesnaux, R.; Rafini, S. Insights on pumping well interpretation from flow dimension analysis: The learnings of a multi-context field database. J. Hydrol. 2018, 556, 449–474. [Google Scholar] [CrossRef] [Green Version]
- Leveinen, J. Composite model with fractional flow dimensions for well test analysis in fractured rocks. J. Hydrol. 2000, 234, 116–141. [Google Scholar] [CrossRef]
- Kuusela-Lahtinen, A.; Niemi, A.; Luukkonen, A. Flow Dimension as an Indicator of Hydraulic Behavior in Site Characterization of Fractured Rock. Groundwater 2003, 41, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Lods, G.; Gouze, P. WTFM, software for well test analysis in fractured media combining fractional flow with double porosity and leakance approaches. Comput. Geosci. 2004, 30, 937–947. [Google Scholar] [CrossRef]
- Maréchal, J.-C.; Dewandel, B.; Subrahmanyam, K. Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Audouin, O.; Bodin, J.; Porel, G.; et Bourbiaux, B. Flowpath structure in a limestone aquifer: Multi-borehole logging investigations at the hydrogeological experimental site of Poitiers, France. Hydrogeol. J. 2008, 16, 939–950. [Google Scholar] [CrossRef]
- Verbovšek, T. Influences of Aquifer Properties on Flow Dimensions in Dolomites. Groundwater 2009, 47, 660–668. [Google Scholar] [CrossRef]
- Odling, N.; West, L.; Hartmann, S.; Kilpatrick, A. Fractional flow in fractured chalk; A flow and tracer test revisited. J. Contam. Hydrol. 2013, 147, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T. On the determination of transmissibility and storage coefficients from pumping test data. Trans. Am. Geophys. Union 1952, 33, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Tiab, D.; Kumar, A. Application of the PD’Function to Interference Analysis. J. Pet Technol 1980, 32, 1465–1470. [Google Scholar] [CrossRef]
- Bourdet, D.; Whittle, T.M.; Douglas, A.A.; et Pirard, Y.M. A new set of type curves simplifies well test analysis. World Oil 1983, 196, 95–106. [Google Scholar]
- Renard, P.; Glenz, D.; Mejias, M. Understanding diagnostic plots for well-test interpretation. Appl. Hydrogeol. 2008, 17, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Barker, J.A. A generalized radial flow model for hydraulic tests in fractured rock. Water Resour. Res. 1988, 24, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Issaka, M.; Ambastha, A. A Generalized Pressure Derivative Analysis For Composite Reservoirs. J. Can. Pet. Technol. 1999, 38. [Google Scholar] [CrossRef]
- Beauheim, R.L.; et Roberts, R.M. Flow-dimension analysis of hydraulic tests to characterize water-conducting features. In Dans Water-Conducting Features in Radionuclide Migration, GEOTRAP Project Workshop Proceedings, Barcelona, Spain, 10–12 June 1998; OECD NEA: Paris, France, 1998; pp. 287–294. ISBN 92-64-17124X. [Google Scholar]
- Bowman, D.O.; Roberts, R.M.; Holt, R.M. Generalized Radial Flow in Synthetic Flow Systems. Groundwater 2012, 51, 768–774. [Google Scholar] [CrossRef]
- Ferroud, A.; Rafini, S.; Chesnaux, R. Using flow dimension sequences to interpret non-uniform aquifers with constant-rate pumping-tests: A review. J. Hydrol. X 2018, 2, 100003. [Google Scholar] [CrossRef]
- Doe, T. Fractional dimension analysis of constant-pressure well tests. In Proceedings of the Dans SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 6–9 October 1991; Society of Petroleum Engineers. Paper No. SPE-22702-MS. pp. 461–467. [Google Scholar] [CrossRef]
- Chesnaux, R. Avoiding confusion between pressure front pulse displacement and groundwater displacement: Illustration with the pumping test in a confined aquifer. Hydrol. Process. 2018, 32, 3689–3694. [Google Scholar] [CrossRef]
- Rafini, S.; Larocque, M. Numerical modeling of the hydraulic signatures of horizontal and inclined faults. Appl. Hydrogeol. 2012, 20, 337–350. [Google Scholar] [CrossRef]
- Muskat, M. The Flow of Homogeneous Fluids through Porous Media: Analogies with Other Physical Problems; McGraw-Hill Incorporated: New York, NY, USA, 1937. [Google Scholar]
- Jones, P. Reservoir Limit Test on Gas Wells. J. Pet. Technol. 1962, 14, 613–619. [Google Scholar] [CrossRef]
- Lee, J. Well Testing; Society of Petroleum Engineers of AIME: Dallas, TX, USA, 1982; 159p. [Google Scholar]
- Rahman, N.M.A.; Pooladi-Darvish, M.; Santo, M.S.; Mattar, L. Use of PITA for Estimating Key Reservoir Parameters. J. Can. Pet. Technol. 2008, 47, PETSOC-08-08-24. [Google Scholar] [CrossRef]
- Horner, D.R. Pressure Build-up in Wells.; World Petroleum Congress. Available online: https://onepetro.org/WPCONGRESS/proceedings-abstract/WPC03/All-WPC03/WPC-4135/203521 (accessed on 27 February 2022).
- Bresciani, E.; Shandilya, R.N.; Kang, P.K.; Lee, S. Well radius of influence and radius of investigation: What exactly are they and how to estimate them? J. Hydrol. 2020, 583, 124646. [Google Scholar] [CrossRef]
- Chang, J.; Yortsos, Y.C. Pressure-Transient Analysis of Fractal Reservoirs. SPE Form. Eval. 1990, 5, 31–38. [Google Scholar] [CrossRef]
- Acuna, J.A.; Yortsos, Y.C. Application of Fractal Geometry to the Study of Networks of Fractures and Their Pressure Transient. Water Resour. Res. 1995, 31, 527–540. [Google Scholar] [CrossRef]
- Cello, P.A.; Walker, D.D.; Valocchi, A.; Loftis, B. Flow Dimension and Anomalous Diffusion of Aquifer Tests in Fracture Networks. Vadose Zone J. 2009, 8, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Brixel, B.; Klepikova, M.; Lei, Q.; Roques, C.; Jalali, M.R.; Krietsch, H.; Loew, S. Tracking Fluid Flow in Shallow Crustal Fault Zones: Insights From Cross-Hole Forced Flow Experiments in Damage Zones. J. Geophys. Res. Solid Earth 2020, 125. [Google Scholar] [CrossRef]
- Walker, D.D.; Cello, P.A.; Valocchi, A.J.; Loftis, B. Flow dimensions corresponding to stochastic models of heterogeneous transmissivity. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Nicol, A.; Walsh, J.; Watterson, J.; Gillespie, P. Fault size distributions—Are they really power-law? J. Struct. Geol. 1996, 18, 191–197. [Google Scholar] [CrossRef]
- Hardacre, K.; Cowie, P. Variability in fault size scaling due to rock strength heterogeneity: A finite element investigation. J. Struct. Geol. 2003, 25, 1735–1750. [Google Scholar] [CrossRef]
- de Dreuzy, J.-R.; Davy, P.; Erhel, J.; D’Ars, J.D.B. Anomalous diffusion exponents in continuous two-dimensional multifractal media. Phys. Rev. E 2004, 70, 016306. [Google Scholar] [CrossRef] [Green Version]
- De Dreuzy, J.-R.; Davy, P. Relation between fractional flow models and fractal or long-range 2-D permeability fields. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Giese, M.; Reimann, T.; Liedl, R.; Maréchal, J.-C.; Sauter, M. Application of the flow dimension concept for numerical drawdown data analyses in mixed-flow karst systems. Appl. Hydrogeol. 2017, 25, 799–811. [Google Scholar] [CrossRef]
- Datta-Gupta, A.; Xie, J.; Gupta, N.; King, M.J.; Lee, W.J. Radius of Investigation and its Generalization to Unconventional Reservoirs. J. Pet. Technol. 2011, 63, 52–55. [Google Scholar] [CrossRef]
- Craig, D.P.; et Jackson, R.A. Calculating the Volume of Reservoir Investigated During a Fracture-Injection/Falloff Test DFIT. In Proceedings of the Dans SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 24 January 2017. Society of Petroleum Engineers. Paper No. SPE-184820-MS. [Google Scholar] [CrossRef]
- Gringarten, A.C.; Ramey, H.J.J. The Use of Source and Green’s Functions in Solving Unsteady-Flow Problems in Reservoirs. Soc. Pet. Eng. J. 1973, 13, 285–296. [Google Scholar] [CrossRef]
- Horne, R.N.; Temeng, K.O. Recognition and Location of Pinchout Boundaries by Pressure Transient Analysis. J. Pet. Technol. 1982, 34, 517–519. [Google Scholar] [CrossRef]
- Alabert, F.G. Constraining description of randomly heterogeneous reservoirs to pressure test data: A Monte Carlo study. In Proceedings of the Dans SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8 October 1989. Society of Petroleum Engineers. Paper No. SPE-19600-MS. [Google Scholar] [CrossRef]
- Bourdet, D. Well Test Analysis: The Use of Advanced Interpretation Models; Elsevier: New York, NY, USA, 2002; 426p. [Google Scholar]
- Taheri, A.; Shadizadeh, S.R. Investigation of Well Drainage Geometries in One of the Iranian South Oil Fields; Paper No. PETSOC-2005-028; Petroleum Society of Canada: Calgary, AB, Canada, 2005. [Google Scholar]
- Hossain, M.; Tamim, M.; Rahman, N. Effects of Criterion Values on Estimation of the Radius of Drainage and Stabilization Time. J. Can. Pet. Technol. 2007, 46, 24–30. [Google Scholar] [CrossRef]
- Ferroud, A.; Chesnaux, R.; Rafini, S. Drawdown log-derived analysis for interpreting constant-rate pumping tests in inclined substratum aquifers. Appl. Hydrogeol. 2019, 27, 2279–2297. [Google Scholar] [CrossRef]
- Chapuis, R.P. Guide des Essais de Pompage et Leurs Interprétations [Guide to Pumping Tests and Their Interpretation]; Gov. of Quebec: Quebec City, QC, Canada, 2007; 55p.
- Ferris, J.G.; Knowles, D.B.; Brown, R.; et Stallman, R.W. Theory of Aquifer Tests; US Geological Survey Denver: Denver, CO, USA, 1962.
- Todd, D.K.; et Mays, L.W.I. Groundwater Hydrology, 2nd ed.; John Willey&Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Todd, D.K.; et Mays, L.W. Groundwater Hydrology, 3rd ed.; John Wiley&Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; et Lightfoot, E.N. Transport Phenomena John; Department of Chemical Engineering, University of Wisconsin: Madison, WI, USA; John Wiley&Sons, Inc.: New York, NY, USA; London, UK, 1960. [Google Scholar]
- Aguilera, R. Radius and linear distance of investigation and interconnected pore volume in naturally fractured reservoirs. J. Can. Pet. Technol. 2006, 45. [Google Scholar] [CrossRef]
- Johnson, P.W. The Relationship Between Radius of Drainage and Cumulative Production (includes associated papers 18561 and 18601). SPE Form. Eval. 1988, 3, 267–270. [Google Scholar] [CrossRef]
- Bourdarot, G. Well Testing: Interpretation Methods; Editions Technip: Paris, France, 1998; ISBN 2-7108-0738-6. [Google Scholar]
- Tek, M.; Grove, M.; Poettmann, F. Method for Predicting the Back-Pressure Behavior of Low Permeability Natural Gas Wells. Trans. AIME 1957, 210, 302–309. [Google Scholar] [CrossRef]
- Wattenbarger, R.A.; El-Banbi, A.H.; Villegas, M.E.; et Maggard, J.B. Production analysis of linear flow into fractured tight gas wells. In Proceedings of the Dans SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium, Denver, CO, USA, 5–8 April 1998. Society of Petroleum Engineers. Paper No. SPE-39931-MS. [Google Scholar] [CrossRef]
- Nobakht, M.; Clarkson, C.R.; et Kaviani, D. New and improved methods for performing rate-transient analysis of shale gas reservoirs. SPE Reserv. Eval. Eng. 2012, 15, 335–350. [Google Scholar] [CrossRef]
Approaches and Definition of the Pressure Front | Pressure Front General Criteria and/or Expression of the Diffusion Coefficient | Pressure Front Specific Criteria | Hydraulic Test Condition | Flow Regimes | Authors | |
---|---|---|---|---|---|---|
The Cooper Jacob Approximation (CJA) Approach: For any position , the pressure front corresponds to the time when the drawdown predicted by the CJ model is zero. | Constant flow rate drawdown test | Radial | [9] | |||
The Relative Critical Drawdown (RCD) Approach: At any time , the pressure front is defined at the position , where the drawdown reaches a certain percentage of the total drawdown at the source. | Constant flow rate drawdown test | Radial | [35] | |||
Constant flow rate drawdown test | Radial | [57] | ||||
The Drawdown Log-Radius Derivative (DLRD) Approach: At any time , the pressure front is defined at the distance , where the drawdown log-radius derivative reaches the absolute criterion . | Constant flow rate drawdown test | Radial | [37] | |||
The Relative Critical Flow (RCF) Approach: At any time , the pressure front is defined at the distance , where the fluid flow reaches a certain percentage of the pumping flow rate at the source. | Constant flow rate drawdown test | Radial | [67] | |||
The Maximum Drawdown Rate (MDR) Approach: At any distance the pressure front is defined at the time when the pressure variation rate is maximum. | Constant flow rate drawdown test | Radial | [66] | |||
The Maximum Drawdown (MD) Approach: At any distance the pressure front is defined at the time when the pressure disturbance is maximum. | Flow impulse test (injection) | Radial | [36] | |||
The Deviation Time (DT) Approach: The pressure front is defined at the dimensionless time when a deviation is observed on the normalized drawdown curve. | Starting of the deviation | Constant flow rate drawdown test | Linear | [68] | ||
The Drawdown Log-Time Derivative (DLTD) Approach: The pressure front is defined at the time when the deviation on the drawdown log-derivative curve reaches the absolute criterion . | Constant flow rate drawdown test | Radial | This work |
Approaches | Initial Criteria | Equivalent Critical Drawdown Criteria | Authors | |
---|---|---|---|---|
Standardization Step 1: Summary of different approaches | Standardization Step 2: Determining the expression of the pressure front criteria | Standardization Step 3: Combining the pressure front criteria in step 1 and their expressions given in step 2 leads to obtaining the expression of the parameter | Standardization Step 4: Introducing the expression of the parameter u into the drawdown solution leads to the equivalent critical drawdown criterion | |
The Cooper Jacob Approximation (CJA) Approach | [9] | |||
The relative critical drawdown (RCD) Approach | [35,57,69] | |||
The Drawdown Log-Radius Derivative (DLRD) Approach | [37] | |||
The Relative Critical Flow (RCF) Approach | [67] | |||
The Maximum Drawdown Rate (MDR) Approach | [66] | |||
The Maximum Drawdown (MD) Approach | [36] | |||
The Drawdown Log-Time Derivative (DLTD) Approach | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méité, D.; Rafini, S.; Chesnaux, R.; Ferroud, A. Review of Petroleum and Hydrogeology Equations for Characterizing the Pressure Front Diffusion during Pumping Tests. Geosciences 2022, 12, 201. https://doi.org/10.3390/geosciences12050201
Méité D, Rafini S, Chesnaux R, Ferroud A. Review of Petroleum and Hydrogeology Equations for Characterizing the Pressure Front Diffusion during Pumping Tests. Geosciences. 2022; 12(5):201. https://doi.org/10.3390/geosciences12050201
Chicago/Turabian StyleMéité, Daouda, Silvain Rafini, Romain Chesnaux, and Anouck Ferroud. 2022. "Review of Petroleum and Hydrogeology Equations for Characterizing the Pressure Front Diffusion during Pumping Tests" Geosciences 12, no. 5: 201. https://doi.org/10.3390/geosciences12050201
APA StyleMéité, D., Rafini, S., Chesnaux, R., & Ferroud, A. (2022). Review of Petroleum and Hydrogeology Equations for Characterizing the Pressure Front Diffusion during Pumping Tests. Geosciences, 12(5), 201. https://doi.org/10.3390/geosciences12050201