Shoreline Change and Coastal Erosion in West Africa: A Systematic Review of Research Progress and Policy Recommendation
Abstract
:1. Introduction
1.1. West Africa: Location and Geomorphology
1.1.1. Geo-Environmental Characteristics
1.1.2. Meteo-Oceanographic Forcings
2. Materials and Methods
2.1. Resources and Search Procedure
2.2. Eligibility Criteria and Selection Process
2.3. Data Extraction and Analysis
3. Results
3.1. Publication Characteristics, Study Locations, and Journal Sources
3.2. Research Progress on Shoreline Change and Coastal Erosion in West Africa: A Qualitative Analysis of the Literature
3.2.1. Shoreline Change and Coastal Erosion Due to Natural Events
3.2.2. Shoreline Change and Coastal Erosion due to Human Activities
3.2.3. Policy Recommendation by Research Studies on Shoreline Change and Coastal Erosion in West Africa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.M.; Gulev, S.; Hanawa, K.; Le Quere, C.; Levitus, S.; Nojiri, Y.; et al. Observations: Oceanic climate change and sea level. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Contribution of Working Group I. Cambridge; Cambridge University Press: Cambridge, UK, 2007; pp. 385–428. [Google Scholar]
- Church, J.A.; Gregory, J.M.; Huybrechts, P.; Kuhn, M.; Lambeck, K.; Nhuan, M.T.; Qin, D. Changes in sea level. In Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ed.; Cambridge University Press: Cambridge, UK, 2001; pp. 639–694. [Google Scholar]
- Hinkel, J.; Nicholls, R.J.; Tol, R.S.J.; Wang, Z.B.; Hamilton, J.M.; Boot, G.; Vafeidis, A.T.; McFadden, L.; Ganopolski, A.; Klein, R.J.T. A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Glob. Planet. Change 2013, 111, 150–158. [Google Scholar] [CrossRef]
- Leatherman, S.P.; Zhang, K.; Douglas, B.C. Sea level rise shown to drive coastal erosion. Eos Trans. AGU 2000, 81, 55–57. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The state of the world’s beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Stronkhorst, J.; Huisman, B.; Giardino, A.; Santinelli, G.; Santos, D.F. Sand nourishment strategies to mitigate coastal erosion and sea level rise at the coasts of Holland (The Netherlands) and Aveiro (Portugal) in the 21st century. Ocean Coast. Manag. 2018, 156, 266–276. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Change 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Bruun, P. Sea-level rise as a cause of shore erosion. J. Waterw. Harb. Div. 1962, 88, 117–130. [Google Scholar] [CrossRef]
- Forbes, D.L.; Parkes, G.S.; Manson, G.K.; Ketch, L.A. Storms and shoreline retreat in the southern Gulf of St. Lawrence. Mar. Geol. 2004, 210, 169–204. [Google Scholar] [CrossRef]
- Jonah, F.E. Managing coastal erosion hotspots along the Elmina, Cape Coast and Moree area of Ghana. Ocean Coast. Manag. 2015, 109, 9–16. [Google Scholar] [CrossRef]
- Kuleli, T.; Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Eng. 2011, 38, 1141–1149. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal Systems and Low-Lying Areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Das, S.; Sangode, S.J.; Kandekar, A.M. Recent decline in streamflow and sediment discharge in the Godavari basin, India (1965–2015). Catena 2021, 206, 105537. [Google Scholar] [CrossRef]
- Del Río, L.; Gracia, F.J.; Benavente, J. Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 2013, 196, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Hache, I.; Niehüser, S.; Karius, V.; Arns, A.; von Eynatten, H. Assessing sediment accumulation at inundated anthropogenic marshland in the southeastern North Sea: Using particle tracking on modified coastal protection structures. Ocean Coast. Manag. 2021, 208, 105631. [Google Scholar] [CrossRef]
- Hapke, C.J.; Kratzmann, M.G.; Himmelstoss, E.A. Geomorphic and human influence on large-scale coastal change. Geomorphology 2013, 199, 160–170. [Google Scholar] [CrossRef]
- Pethick, J. Coastal management and sea-level rise. Catena 2001, 42, 307–322. [Google Scholar] [CrossRef]
- Church, J.A.; Aarup, T.; Woodworth, P.L.; Wilson, W.S.; Nicholls, R.J.; Rayner, R.; Lambeck, K.; Mitchum, G.T.; Steffen, K.; Cazenave, A.; et al. Sea-Level Rise and Variability: Synthesis and Outlook for the Future. In Understanding Sea-Level Rise and Variability; Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S., Eds.; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Change 2004, 64, 4. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Buccino, M.; Di Paola, G.; Ciccaglione, M.C.; Del Giudice, G.; Rosskopf, C.M. A Medium-Term Study of Molise Coast Evolution Based on the One-Line Equation and “Equivalent Wave” Concept. Water 2020, 12, 2831. [Google Scholar] [CrossRef]
- Manca, E.; Pascucci, V.; Deluca, M.; Cossu, A.; Andreucci, S. Shoreline evolution related to coastal development of a managed beach in Alghero, Sardinia, Italy. Ocean Coast. Manag. 2013, 85, 65–76. [Google Scholar] [CrossRef]
- Castelle, B.; Guillot, B.; Marieu, V.; Chaumillon, E.; Hanquiez, V.; Bujan, S.; Poppeschi, C. Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France. Estuar. Coast. Shelf Sci. 2018, 200, 212–223. [Google Scholar] [CrossRef]
- Fletcher, C.; Rooney, J.; Barbee, M.; Lim, S.-C.; Richmond, B. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J. Coast. Res. 2003, 106–124. [Google Scholar]
- Kermani, S.; Boutiba, M.; Guendouz, M.; Guettouche, M.S.; Khelfani, D. Detection and analysis of shoreline changes using geospatial tools and automatic computation: Case of jijelian sandy coast (East Algeria). Ocean Coast. Manag. 2016, 132, 46–58. [Google Scholar] [CrossRef]
- Di Paola, G.; Rodríguez, G.; Rosskopf, C.M. Short- to mid-term shoreline changes along the southeastern coast of Gran Canaria Island (Spain). Rend. Lincei. Sci. Fis. Nat. 2020, 31, 89–102. [Google Scholar] [CrossRef]
- Sarwar, M.G.M.; Woodroffe, C.D. Rates of shoreline change along the coast of Bangladesh. J. Coast. Conserv. 2013, 17, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Ford, M. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Tian, H.; Xu, K.; Goes, J.I.; Liu, Q.; Gomes, H.D.R.; Yang, M. Shoreline changes along the coast of mainland China—Time to pause and reflect? ISPRS Int. J. Geo-Inf. 2020, 9, 572. [Google Scholar] [CrossRef]
- Pennetta, M. Beach erosion in the Gulf of Castellammare di Stabia in response to the trapping of longshore drifting sediments of the Gulf of Napoli (Southern Italy). Geosciences 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Zaiton Ibrahim, Z.; Bin Mansor, S.; Abd Manaf, L.; Badarulzaman, N.; Vaghefi, N. Shoreline change analysis and erosion prediction using historical data of Kuala Terengganu, Malaysia. Environ. Earth Sci. 2019, 78, 477. [Google Scholar] [CrossRef]
- Burningham, H.; Fernandez-Nunez, M. 19—Shoreline change analysis. In Sandy Beach Morphodynamics; Derek, W.T., Jackson, A., Short, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 439–460. [Google Scholar] [CrossRef]
- Di Paola, G.; Minervino Amodio, A.; Dilauro, G.; Rodriguez, G.; Rosskopf, C.M. Shoreline evolution and erosion vulnerability assessment along the Central Adriatic coast with the contribution of UAV beach monitoring. Geosciences 2022, 12, 353. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Sadien, M.; Bheeroo, N.A.; Pasnin, O.; Gooroochurn, O.; Modoosoodun-Nicolas, K.; Ramchandur, V.; Ramharai, D. Assessment and management of coastal erosion: Insights from two tropical sandy shores in Mauritius Island. Ocean Coast. Manag. 2021, 212, 105823. [Google Scholar] [CrossRef]
- Borzì, L.; Anfuso, G.; Manno, G.; Distefano, S.; Urso, S.; Chiarella, D.; Di Stefano, A. Shoreline evolution and environmental changes at the NW area of the Gulf of Gela (Sicily, Italy). Land 2021, 10, 1034. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Wöppelmann, G.; Rohmer, J.; Bernon, N.; Idier, D.; Louisor, J.; Salas-y-Mélia, D. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manno, G.; Re, C.L.; Basile, M.; Ciraolo, G. A new shoreline change assessment approach for erosion management strategies. Ocean Coast. Manag. 2022, 225, 106226. [Google Scholar] [CrossRef]
- Penland, S.; Connor, P.F.; Beall, A.; Fearnley, S.; Williams, S.J. Changes in Louisiana’s shoreline: 1855–2002. J. Coast. Res. 2005, 44, 7–39. [Google Scholar]
- Laksono, F.A.T.; Borzì, L.; Distefano, S.; Di Stefano, A.; Kovács, J. Shoreline prediction modelling as a base Tool for coastal management: The Catania plain case study (Italy). J. Mar. Sci. Eng. 2022, 10, 1988. [Google Scholar] [CrossRef]
- Quang Tuan, N.; Cong Tin, H.; Quang Doc, L.; Anh Tuan, T. Historical monitoring of shoreline changes in the Cua Dai estuary, Central Vietnam using multi-temporal remote sensing data. Geosciences 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Uda, T.; Noshi, Y. Recent shoreline changes due to high-angle wave instability along the east coast of Lingayen Gulf in the Philippines. Geosciences 2021, 11, 144. [Google Scholar] [CrossRef]
- Ford, M. Shoreline Changes on an Urban Atoll in the Central Pacific Ocean: Majuro Atoll, Marshall Islands. J. Coast. Res. 2012, 28, 11–22. [Google Scholar] [CrossRef]
- Ankrah, J.; Monteiro, A.; Madureira, H. Bibliometric analysis of data sources and tools for shoreline change analysis and detection. Sustainability 2022, 14, 4895. [Google Scholar] [CrossRef]
- Fan, Q.; Liang, L.; Liang, F.; Sun, X. Research progress on coastline change in China. J. Coast. Res. 2020, 99, 289–295. [Google Scholar] [CrossRef]
- Hapke, C.J.; Lentz, E.E.; Gayes, P.T.; McCoy, C.A.; Hehre, R.; Schwab, W.C.; Jeffress Williams, S. A review of sediment budget imbalances along fire island, New York: Can nearshore geologic framework and patterns of shoreline change explain the deficit? J. Coast. Res. 2010, 263, 510–522. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Garcin, M.; Yates, M.; Idier, D.; Meyssignac, B. Approaches to evaluate the recent impacts of sea-level rise on shoreline changes. Earth Sci. Rev. 2014, 138, 47–60. [Google Scholar] [CrossRef] [Green Version]
- McDougall, C. Erosion and the beaches of Negril. Ocean Coast. Manag. 2017, 148, 204–213. [Google Scholar] [CrossRef]
- Moussaid, J.; Fora, A.A.; Zourarah, B.; Maanan, M.; Maanan, M. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. Ocean Eng. 2015, 102, 71–77. [Google Scholar] [CrossRef]
- Phong, N.T.; Quang, N.H.; Sang, T.V. Shoreline change and community-based climate change adaptation: Lessons learnt from Brebes Regency, Indonesia. Ocean Coast. Manag. 2022, 218, 106037. [Google Scholar] [CrossRef]
- Rahman, M.K.; Crawford, T.W.; Islam, M.S. Shoreline change analysis along rivers and deltas: A systematic review and bibliometric analysis of the shoreline study literature from 2000 to 2021. Geosciences 2022, 12, 410. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Appeaning Addo, K. Changing morphology of Ghana’s Accra coast. J. Coast. Conserv. 2011, 15, 433–443. [Google Scholar] [CrossRef]
- Appeaning Addo, K. Shoreline morphological changes and the human factor. Case study of Accra Ghana. J. Coast. Conserv. 2013, 17, 85–91. [Google Scholar] [CrossRef]
- Evadzi, P.I.K.; Zorita, E.; Hünicke, B. Quantifying and predicting the contribution of sea-level rise to shoreline change in Ghana: Information for coastal adaptation strategies. J. Coast. Res. 2017, 33, 1283–1291. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Martín, M.; Tramontana, M.; Nimon, B.; Essotina Kpémoua, K. Shoreline Changes and Coastal Erosion: The case study of the coast of Togo (Bight of Benin, West Africa Margin). Geosciences 2021, 11, 40. [Google Scholar] [CrossRef]
- Jonah, F.E.; Mensah, E.A.; Edziyie, R.E.; Agbo, N.W.; Adjei-Boateng, D. Coastal erosion in Ghana: Causes, policies, and management. Coast. Manag. 2016, 44, 116–130. [Google Scholar] [CrossRef]
- Komolafe, A.A.; Apalara, P.A.; Ibitoye, M.O.; Adebola, A.O.; Olorunfemi, I.E.; Diallo, I. Spatio-temporal analysis of shoreline positional change of Ondo State coastline using remote sensing and GIS: A case study of Ilaje coastline at Ondo State in Nigeria. Earth Syst. Environ. 2022, 6, 281–293. [Google Scholar] [CrossRef]
- Ndour, A.; Laïbi, R.A.; Sadio, M.; Degbe, C.G.; Diaw, A.T.; Oyédé, L.M.; Anthony, E.J.; Dussouillez, P.; Sambou, H.; Dieye, E.H.B. Management strategies for coastal erosion problems in West Africa: Analysis, issues, and constraints drawn from the examples of Senegal and Benin. Ocean Coast. Manag. 2018, 156, 92–106. [Google Scholar] [CrossRef]
- Sadio, M.; Sakho, I.; Seujip, M.S.; Gueye, A.; Diouf, M.B.; Deloffre, J. Multi-decadal dynamics of the Saloum River delta mouth in climate change context. J. Afr. Earth Sci. 2022, 187, 104451. [Google Scholar] [CrossRef]
- Saleem, A.; Awange, J.L. Coastline shift analysis in data deficient regions: Exploiting the high spatio-temporal resolution Sentinel-2 products. Catena 2019, 179, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Alves, B.; Angnuureng, D.B.; Morand, P.; Almar, R. A review on coastal erosion and flooding risks and best management practices in West Africa: What has been done and should be done. J. Coast. Conserv. 2020, 24, 38. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Change 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Läderach, P.; Martinez-Valle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Sci. Total Environ. 2016, 556, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.J. The muddy tropical coast of West Africa from Sierra Leone to Guinea-Bissau: Geological heritage, geomorphology and sediment dynamics. Afr. Geosci. Rev. 2006, 13, 227–237. [Google Scholar]
- Dada, O.A.; Almar, R.; Oladapo, M.I. Recent coastal sea-level variations and flooding events in the Nigerian Transgressive Mud coast of Gulf of Guinea. J. Afr. Earth Sci. 2020, 161, 103668. [Google Scholar] [CrossRef]
- Allersma, E.; Tilmans, W.M. Coastal conditions in West Africa—A review. Ocean Coast. Manag. 1993, 19, 199–240. [Google Scholar] [CrossRef]
- Thior, M.; Sané, T.; Sy, O.; Cissokho, D.; Ba, B.D.; Descroix, L. Coastline dynamics of the northern Lower Casamance (Senegal) and southern Gambia littoral from 1968 to 2017. J. Afr. Earth Sci. 2019, 160, 103611. [Google Scholar] [CrossRef]
- Giardino, A.; Schrijvershof, R.; Nederhoff, C.M.; De Vroeg, H.; Briere, C.; Tonnon, P.K.; Caires, S.; Walstra, D.J.; Sosa, J.; Van Verseveld, W.; et al. A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean Coast. Manag. 2018, 156, 249–265. [Google Scholar] [CrossRef]
- Angnuureng, B.D.; Appeaning Addo, K.; Wiafe, G. Impact of sea defense structures on downdrift coasts: The case of Keta in Ghana. Acad. J. Environ. Sci. 2013, 1, 104–121. [Google Scholar]
- Boateng, I. An application of GIS and coastal geomorphology for large scale assessment of coastal erosion and management: A case study of Ghana. J. Coast. Conserv. 2012, 16, 383–397. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Jayson-Quashigah, P.N.; Almar, R.; Stieglitz, T.C.; Anthony, E.J.; Aheto, D.W.; Appeaning Addo, K. Application of shore-based video and unmanned aerial vehicles (drones): Complementary tools for beach studies. Remote Sens. 2020, 12, 394. [Google Scholar] [CrossRef] [Green Version]
- Ozer, P.; Hountondji, Y.C.; De Longueville, F. Recent evolution of the coastline in the Gulf of Benin. Examples from Togo and Benin. Geo-Eco-Trop Int. J. Geol. Geogr. Trop. Ecol. 2017, 41. Available online: https://orbi.uliege.be/bitstream/2268/217276/1/Sardaigne-OZERetal-Togo%26B%c3%a9nin_Geo-Eco-Trop_Final.pdf (accessed on 15 September 2022).
- Sadio, M.; Anthony, E.J.; Diaw, A.T.; Dussouillez, P.; Fleury, J.T.; Kane, A.; Almar, R.; Kestenare, E. Shoreline Changes on the Wave-Influenced Senegal River Delta, West Africa: The Roles of Natural Processes and Human Interventions. Water 2017, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Almar, R.; Kestenare, E.; Reyns, J.; Jouanno, J.; Anthony, E.J.; Laibi, R.; Hemer, M.; Du Penhoat, Y.; Ranasinghe, R. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part1: Wave climate variability and impacts on the longshore sediment transport. Cont. Shelf Res. 2015, 110, 48–59. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffril, H.A.M.; Krauss, S.E.; Samsuddin, S.F. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci. Total Environ. 2018, 644, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Orupabo, S. Coastline migration in Nigeria. Hydro Int. 2004, 8, 54–57. [Google Scholar]
- Kusimi, J.M.; Dika, J.L. Sea erosion at Ada Foah: Assessment of impacts and proposed mitigation measures. Nat. Hazards 2012, 64, 983–997. [Google Scholar] [CrossRef]
- Jayson-Quashigah, P.-N.; Appeaning Addo, K.; Kufogbe, S.K. Shoreline monitoring using medium resolution satellite imagery. Case study of the eastern coast of Ghana. J. Coast. Res. 2013, 65, 511–516. [Google Scholar] [CrossRef]
- Appeaning-Addo, K.; Lamptey, E. Innovative technique of predicting shoreline change in developing countries: Case of Accra erosion and causal Factors. In Coastal Hazards. Coastal Research Library, vol 1000; Finkl, C., Ed.; Springer: Dordrecht, Germany, 2013. [Google Scholar] [CrossRef]
- Jonah, F.E.; Boateng, I.; Osman, A.; Shimba, M.J.; Mensah, E.A.; Adu-Boahen, K.; Chuku, E.O.; Effah, E. Shoreline change analysis using end point rate and net shoreline movement statistics: An application to Elmina, Cape Coast and Moree section of Ghana’s coast. Reg. Stud. Mar. Sci. 2016, 7, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Dada, O.A.; Li, G.; Qiao, L.; Ding, D.; Ma, Y.; Xu, J. Seasonal shoreline behaviours along the arcuate Niger Delta coast: Complex interaction between fluvial and marine processes. Cont. Shelf Res. 2016, 122, 51–67. [Google Scholar] [CrossRef]
- Danladi, I.B.; Kore, B.M.; Gül, M. Vulnerability of the Nigerian coast: An insight into sea level rise owing to climate change and anthropogenic activities. J. Afr. Earth Sci. 2017, 134, 493–503. [Google Scholar] [CrossRef]
- Awange, J.L.; Saleem, A.; Konneh, S.S.; Goncalves, R.M.; Kiema, J.B.K.; Hu, K.X. Liberia’s coastal erosion vulnerability and LULC change analysis: Post-civil war and Ebola epidemic. Appl. Geogr. 2018, 101, 56–67. [Google Scholar] [CrossRef]
- Gomes, C.; Silva, A.N.; Taborda, R.; Santos, F.; Rebelo, L.; Medina, A. Drivers of island beach evolution: Insights from an island-scale study at Boa Vista (Cabo Verde). Earth Surf. Process. Landforms 2019, 44, 2810–2822. [Google Scholar] [CrossRef]
- Appeaning Addo, K.; Brempong, E.K.; Jayson-Quashigah, P.N. Assessment of the dynamics of the Volta river estuary shorelines in Ghana. Geoenviron. Disasters 2020, 7, 19. [Google Scholar] [CrossRef]
- Boye, C.B.; Fiadonu, E.B. Lithological effects on rocky coastline stability. Heliyon 2020, 6, e03539. [Google Scholar] [CrossRef] [PubMed]
- Adeaga, O.; Folorunsho, R.; Foli, B.A.K.; Akinbaloye, O. Assessment of shoreline change along the coast of Lagos, Nigeria. Remote Sens. Earth Syst. Sci. 2021, 4, 186–198. [Google Scholar] [CrossRef]
- Brempong, E.K.; Angnuureng, D.B.; Appeaning Addo, K.; Jayson-Quashigah, P.-N. Short-term seasonal changes of the Dzita beach of Ghana using geographic information system and photogrammetry. Interpretation 2021, 9, SH87–SH97. [Google Scholar] [CrossRef]
- Koulibaly, C.T.; Ayoade, J.O. The application of GIS and remote sensing in a spatiotemporal analysis of coastline retreat in Rufisque, Senegal. Geomat. Environ. Eng. 2021, 15, 55–80. [Google Scholar] [CrossRef]
- Balle, G.R.A.; Ahouansou, D.M.M.; Sintondji, L.C.O.; Agbossou, E.K. Analyses of short-and long-term shoreline trends of the southwest Benin coast. J. Coast. Res. 2021, 37, 316–325. [Google Scholar]
- Osanyintuyi, A.J.; Wang, Y.; Mokhtar, N.A.H. Nearly five decades of changing shoreline mobility along the densely developed Lagos barrier-lagoon coast of Nigeria: A remote sensing approach. J. Afr. Earth Sci. 2022, 194, 104628. [Google Scholar] [CrossRef]
- Yang, C.S.; Shin, D.W.; Kim, M.J.; Choi, W.J.; Jeon, H.K. Shoreline changes and erosion protection effects in Cotonou of Benin in the Gulf of Guinea. Korean J. Remote Sens. 2021, 37, 803–813. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Brempong, K.E.; Jayson-Quashigah, P.N.; Dada, O.A.; Akuoko, S.G.I.; Frimpomaa, J.; Mattah, P.A.; Almar, R. Satellite, drone and video camera multi-platform monitoring of coastal erosion at an engineered pocket beach: A showcase for coastal management at Elmina Bay, Ghana (West Africa). Reg. Stud. Mar. Sci. 2022, 53, 102437. [Google Scholar] [CrossRef]
- Oloyede, M.O.; Williams, A.B.; Ode, G.O.; Benson, N.U. Coastal vulnerability assessment: A case study of the Nigerian coastline. Sustainability 2022, 14, 2097. [Google Scholar] [CrossRef]
- Foli, B.A.K.; Williams, I.K.; Boakye, A.A.; Azumah, D.M.Y.; Agyekum, K.A.; Wiafe, G. Earth observation services in support of West Africa’s blue economy: Coastal resilience and climate impacts. Remote Sens. Earth Syst. Sci. 2021, 5, 59–70. [Google Scholar] [CrossRef]
- Nairn, R.; MacIntosh, K.; Hayes, M.; Nai, G.; Anthonio, S.; Valley, W. Coastal erosion at Keta Lagoon, Ghana—Large scale solution to a large scale problem. Coast. Eng. Proc. 1998, 1, 3192–3205. [Google Scholar] [CrossRef]
- Jonah, F.E.; Adjei-Boateng, D.; Agbo, N.W.; Mensah, E.A.; Edziyie, R.E. Assessment of sand and stone mining along the coastline of Cape Coast, Ghana. Ann. GIS 2015, 21, 223–231. [Google Scholar] [CrossRef] [Green Version]
Country | Specific Location | Length | Shoreline Change Rates: Erosion (−), Accretion (+), and Uncertainty (±) | Reference |
---|---|---|---|---|
Ghana | Elmina, Moree, Cape Coast | 1974–2012 | −1.22 m/year ± 0.16 | Jonah [13] |
Ghana | Ghana | 1974–2015 | −2 m/year | Evadzi et al. [57] |
Togo | Coast of Togo | 2014–2020 | 5 m/year | Guerrera et al. [58] |
Nigeria | Ilaje-Ondo State | 1986–2017 | +1.08 m/year and −1.40 m/year | Komolafe et al. [60] |
Senegal | Saloum River mouth between Diakhanor and Sangomar | 1954–2018 | −3.56 m/year | Sadio et al. [62] |
Gambia | southern beaches in Gambia | 1968–2017 | −1.28 m/year and +4.15 m/year | Thior et al. [70] |
Senegal | Northern Lower Casamance | 1968–2017 | −1.28 m/year and +4.15 m/year | Thior et al. [70] |
Nigeria | Victoria Isalnd Bar beach, Awoye-Molume, Escravos and Forcados | 1900–2002 | −1.7 m/year | Orupabo [81] |
Ghana | Ada Foah | 1926–2008 | 3.46 m/year | Kusimi and Dika [82] |
Ghana | Volta estuary to Blekusu east of Keta | 1986–2011 | −2 m/year ± 0.44 m | Jayson-Quashigah et al. [83] |
Ghana | Accra | 1904–2002 | −1.13 m/year | Appeaning-Addo and Lamptey [84] |
Ghana | Elmina, Moree, Cape Coast | 1974–2012 | −1.22 m/year ± 0.22 | Jonah et al. [85] |
Nigeria | Niger Delta | 2010–2012 | −4.55 ± 1.21 km2/year | Dada et al. [86] |
Cape Verde | Boavista | 1968–2010 | 0.18 m/year | Gomes et al. [89] |
Ghana | Volta river estuary | 1895–2015 | −1.94 m/year and 0.58 m/year (western side) and 2.19 m/year and 0.62 m/year (marine side) | Appeaning Addo et al. [90] |
Nigeria | Victoria Island and Lagos | 2001–2020 | −1.94 m/year and +4.84 m/year (for Lagos shoreline) and −5.2 m/year and 81.99 m/year (Victoria Island) | Adeaga et al. [92] |
Ghana | Dzita | 2018–2019 | −7.23 ± 0.23 and −4.85 ± 0.23 m/year, and +8.44 m/year ± 0.23 | Brempong et al. [93] |
Senegal | Rufisque | 1978–2018 | −19.48 m/year from 1978–1988, close to −8 m/year from 1988–1998, −5.88 m/year from 1998–2008 and −6.67 m/year from 2008–2018, and 4.94 m/year for 1988–1998, 7.29 m/year from 1998–2008 and 7.68 m/year during the period 2008–2018 | Koulibaly and Ayoade [94] |
Benin | Grand-Popo area | 1988–2018 | −4.54 m/year and 7.98 m/year | Balle et al. [95] |
Nigeria | Lagos Lagoon Barrier coast | 1973–2019 | −1.73 m/year and +4.46 m/year. −11.79 m/year from 1986 to 1999 (serious erosion). +92.16 m/year and −6.50 m/year at Lekki peninsula | Osanyintuyi et al. [96] |
Ghana | Elmina | 2018–2019 | −3 m | Angnuureng et al. [98] |
Nigeria | Entire coastline of Nigeria | 1986–2015 | <−2.0 to 1.0 m/year | Oloyede et al. [99] |
Senegal, Guinea-Bissau, Guinea, Liberia, Nigeria, and Ghana | 2015–2018 | –10 m/year ±0.5 | Foli et al. [100] |
Author | Study Location | Methods (Data Sources/Tools) | Findings |
---|---|---|---|
Natural Events | |||
Jonah [13] | Elmina, Cape Coast and Moree, Ghana | GIS, field survey (orthophoto, ArcGIS/ArcMap, DSAS, GPS tracking survey) | The Elmina, Cape Coast, and Moree coasts in Ghana eroded at a rate of 1.22 m/year ± 0.16 m between 1974 and 2012 |
Evadzi et al. [57] | Ghana | Remote sensing and GIS (Landsat images, orthophotos, DEM data, aerial photograph, ArcGIS, DSAS) | An annual coastal erosion rate of about 2 m/year in Ghana due to sea level rise |
Guerrera et al. [58] | Coast of Togo | Remote sensing, field observation (Landsat images | A maximum shoreline retreat rate of 5 m/year along the Togo coastline |
Komolafe et al. [60] | Ilaje-Ondo State, Nigeria | Remote sensing and GIS (Landsat images, ArcGIS/ArcMap, DSAS,) | The results show that approximately 40 km of the shoreline of Ilaje-Ondo State, Nigeria, was accreting with an average of 1.08 m/year and an average erosion rate of −1.40 m/year |
Sadio et al. [62] | Saloum River mouth between Diakhanor and Sangomar, Senegal | Remote sensing and GIS (DSAS, ArcGIS/ArcMap, aerial photograph, Corona satellite photograph, Landsat satellite images) | The average erosion rate −3.56 m/year for the entire coast |
Thior et al. [71] | Northern Lower Casamance-Senegal and southern beaches in Gambia | Remote sensing and GIS (Landsat images, aerial photograph, Google Earth images, ArcGIS/ArcMap, DSAS) | The northern lower, Casamance, Senegal, and the southern beaches in Gambia accreted between 1968 and 1986, while higher erosion was observed between 1986 and 2004 |
Orupabo [81] | Victoria Bar Beach, Awoye-Molume, Escravos and Forcados, Nigeria | Remote sensing (Aerial photograph) | According to the findings, the current rate of areal shoreline retreat at the eroding Victoria Island Bar Beach is put at 7.3 m/year, while shoreline retreat is on average 1.7 m/year. |
Kusimi and Dika [82] | Ada Foah, Ghana | Remote sensing, GIS, and survey (Landsat images, ArcGIS/ArcMap, DSAS) | Since 1926 to the present, the shoreline in Ada Foah, Ghana has eroded with a mean change of 280.49 m and an average annual rate of 3.46 m/year. |
Jayson-Quashigah et al. [83] | Volta estuary to Blekusu east of Keta, Ghana | GIS (Landsat images, ASTER data, ArcGIS/ArcMap, DSAS) | The Keta coast in Ghana has an average erosion rate of 2 m/year ± 0.44 m |
Appeaning Addo and Lamptey [84] | Accra, Ghana | Remote sensing, GIS, and field survey (Aerial photograph, bathymetric map, topographic map, ArcGIS, DSAS, GPS survey | The Accra, Ghana, shoreline has receded at an average rate of 1.13 m/year |
Jonah et al. [85] | Elmina, Cape Coast and Moree, Ghana | GIS, field survey (topographic map, orthophotos, ArcGIS, DSAS, GPS survey) | Results showed average shoreline change rates of −1.24 m/year and −0.85 m/year in the medium- and short-term periods along the Elmina, Cape Coast, and Moree coastlines in Ghana. |
Dada et al. [86] | Niger Delta, Nigeria | Remote sensing, photo interpretation (Landsat images, ERA-Interim) | Between 2010 and 2012, erosion dominated accretion, with a total of 9.1 km2 of deltaic land lost to shoreline erosion at an average rate of 4.55 ± 1.21 km2/year |
Danladi et al. [87] | Coastal regions- Lekki, Nigeria | Remote sensing and GIS (ASTER GDEM, Google Earth images, ArcGIS/ArcMap, CorelDraw) | The results revealed remarkable erosion along the coastal regions of Lekki, Nigeria |
Awange et al. [88] | The coast of Liberia | Remote sensing, GIS, and field survey (Landsat images, Sentinel-2 data, GPS survey) | More erosion along the Liberian coast between 1998 and 2002 |
Gomes et al. [89] | Boavista, Cape Verde | Remote sensing and GIS (Aerial photograph, orthophoto map, ArcGIS/ArcMap) | A stable state of the Boavista, Cape Verde shoreline between 1968 and 2010 |
Appeaning Addo et al. [90] | Volta river estuary, Ghana | Remote sensing and GIS (Landsat satellite images, orthophoto, topographic maps, DSAS, ArcGIS/ArcMap | The eastern and western shorelines of the Volta River estuary in Ghana are eroding at an average rate of 1.94 m/year and 0.58 m/year, respectively |
Boye and Fiadonu [91] | Coastal towns in the Western region of Ghana | GIS and Field survey (topographic maps, geological map, orthophotos, ArcGIS/ArcMap, DSAS, GPS survey) | In the western region of Ghana, few areas of the shoreline are accreting, while most areas with a rocky shoreline are eroding at varying rates |
Adeaga et al. [92] | Eti-Osa Local Government Area of Victoria Island-entire Lagos, Nigeria | Remote sensing and GIS (Google Earth images, QGIS, AMBUR-R programming) | The Lagos, Nigeria, shoreline cumulatively recorded a mean rate change of 0.93 m/year, a mean erosion rate of −1.94 m/year, and a mean accretion rate of 4.84 m/year |
Brempong et al. [93] | Dzita, Ghana | Remote sensing and GIS (UAV, ArcGIS) | Results showed that in coastal Dzita, Ghana, shoreline changes indicated dominance of erosion at a rate of −7.23 ± 0.23 and −4.85 ± 0.23 m/year between May and December 2018, and June and December 2019 |
Koulibaly and Ayoade [94] | Rufisque, Senegal | Remote sensing, GIS, and Field visit (Landsat images 3, 5, 7, 8, ArcGIS/ArcMap, DSAS) | A serious erosion reaching −19.48 m/year from 1978–1988, about −8 m/year from 1988–1998, −5.88 m/year from 1998–2008, and −6.67 m/year from 2008–2018 |
Balle et al. [95] | Benin | Remote sensing, GIS, and field survey (SPOT, Sentinel-2, ArcGIS/ArcMap, DSAS, GPS survey) | Results shows that from 1988 to 2001, a high rate of shoreline accretion was observed at an average rate of 3.46 m/year and an erosion rate of –4.54 m/year from 2001 to 2012 along the Benin shoreline |
Osanyintuyi et al. [96] | Lagos Lagoon Barrier coast, Nigeria | Remote sensing and GIS (Landsat images 1–5, 7, ArcGIS/ArcMap, DSAS) | An average erosion rate of −1.73 m/year and −3.59 m/year and an accretion rate of 0.57 m/year and +4.46 m/year, respectively, for marginal Lagos and Eko city coasts in Nigeria |
Yang et al. [97] | Cotonou, Benin | Remote sensing and GIS (Google Earth images, QGIS) | The shoreline revealed accretion of 1.20 km2, while 3.67 km2 disappeared due to coastal erosion |
Angnuureng et al. [98] | Elmina, Ghana | Remote sensing (dumpy level and GPS survey, UAV-drone, video camera system, ARCGIS/ArcMap, satellite images-CoastSat, GEE, sentinel, ERA-5) | A high erosion rate of about −3 m along the Elmina coast in Ghana |
Oloyede et al. [99] | Nigeria | GIS (DSAS) | A shoreline change rate of <−2.0 to 1.0 m/year over the entire coastline of Nigeria |
Foli et al. [100] | Guinea, Nigeria, Liberia, Senegal, Guinea Bissau and Ghana | Remote sensing (Sentinel-1) | The rate of erosion ranged between 1 and 30 m/year for the period 2015–2018 in Ghana, Guinea, Guinea Bissau, Liberia, Nigeria, and Senegal |
Human activities | |||
Jonah [13] | Elmina, Cape Coast and Moree, Ghana | GIS, field survey (orthophoto, ArcGIS/ArcMap, DSAS, GPS tracking survey) | The widespread practice of beach sand mining along the Elmina, Cape Coast, and Moree coasts in Ghana has significantly contributed to the erosion of the sections of coastline |
Appeaning Addo [55] | Accra, Ghana | Remote sensing, GIS, and Field survey (topographic map, wave data, site visits) | Human activities, including dam construction, sand mining, and engineering interventions in Accra have resulted in a sediment deficit that has exacerbated coastal erosion in the area |
Appeaning Addo [56] | Accra, Ghana | Remote sensing (Aerial photographs, orthomaps, GIS, DSAS) | The estimated total area of land lost by human encroachment on the coast is about 242,139.7 m2 and the rate of erosion of the Accra coast is 1.92 m/year |
Ndour et al. [61] | “Langue de Barbarie,” sand spit in Saint-Louis Region, Senegal, and Mono River, the “Bouche du Roi,” Cotonou, Benin | Remote sensing and GIS (Landsat 4,5,7,8 satellite images, aerial photograph, ArcGIS, ArcMap, DSAS) | After the construction of the Nangbéto Dam on the Mono River in 1987 in Benin, the Bouche du Roi river outlet has exhibited marked instabilities, with an eastward migration exceeding 700 m/year |
Nairn et al. [101] | Victoria Bar Beach, Awoye-Molume, Escravos and Forcados, Nigeria | Remote sensing (Aerial photograph) | The undeveloped area of the Keta sea defense system will erode to make up the remaining 60,000 m3/year deficit between the transport through the project area and the potential rate downdrift of the sea defense system |
Jonah et al. [102] | Cape Coast, Ghana | GIS, field survey (ArcGIS, DSAS, orthophotos, GPS survey) | Tipper truck-based sand mining activities alone account for the loss of about 285,376 m3/year along the Cape Coast coastline, which results in erosion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ankrah, J.; Monteiro, A.; Madureira, H. Shoreline Change and Coastal Erosion in West Africa: A Systematic Review of Research Progress and Policy Recommendation. Geosciences 2023, 13, 59. https://doi.org/10.3390/geosciences13020059
Ankrah J, Monteiro A, Madureira H. Shoreline Change and Coastal Erosion in West Africa: A Systematic Review of Research Progress and Policy Recommendation. Geosciences. 2023; 13(2):59. https://doi.org/10.3390/geosciences13020059
Chicago/Turabian StyleAnkrah, Johnson, Ana Monteiro, and Helena Madureira. 2023. "Shoreline Change and Coastal Erosion in West Africa: A Systematic Review of Research Progress and Policy Recommendation" Geosciences 13, no. 2: 59. https://doi.org/10.3390/geosciences13020059
APA StyleAnkrah, J., Monteiro, A., & Madureira, H. (2023). Shoreline Change and Coastal Erosion in West Africa: A Systematic Review of Research Progress and Policy Recommendation. Geosciences, 13(2), 59. https://doi.org/10.3390/geosciences13020059