Dancing Towards the End—Ecological Oscillations in Mediterranean Coral Reefs Prior to the Messinian Salinity Crisis (Calcare di Rosignano Formation, Acquabona, Tuscany, Italy)
Abstract
:1. Introduction
2. Paleogeography, Paleoclimate, and Coral Reefs in the Mediterranean During the Late Miocene
3. Local Geological Setting
4. Materials and Methods
5. Results
6. Discussion
6.1. Paleoenvironmental Interpretation
6.2. The Significance of the Acquabona Reef
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J.; et al. Climate change, human impacts, and the resilience of coral reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Bialik, O.M.; Coletti, G.; Mariani, L.; Commissario, L.; Desbiolles, F.; Meroni, A.N. Availability and type of energy regulate the global distribution of neritic carbonates. Sci. Rep. 2023, 13, 19687. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral reefs under rapid climate change and ocean acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef]
- Van Woesik, R.; Shlesinger, T.; Grottoli, A.G.; Toonen, R.J.; Vega Thurber, R.; Warner, M.E.; Marie Hulver, A.; Chapron, L.; Mclachlan, R.H.; Albright, R.; et al. Coral-bleaching responses to climate change across biological scales. Glob. Change Biol. 2022, 28, 4229–4250. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef]
- Oliver, J.K.; Berkelmans, R.; Eakin, C.M. Coral bleaching in space and time. In Coral Bleaching: Patterns, Processes, Causes and Consequences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 27–49. [Google Scholar]
- Pisapia, C.; Hochberg, E.J.; Carpenter, R. Multi-decadal change in reef-scale production and calcification associated with recent disturbances on a Lizard Island reef flat. Front. Mar. Sci. 2019, 6, 575. [Google Scholar] [CrossRef]
- Yamano, H.; Hori, K.; Yamauchi, M.; Yamagawa, O.; Ohmura, A. Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 2001, 20, 9–12. [Google Scholar]
- Yamano, H.; Sugihara, K.; Watanabe, T.; Shimamura, M.; Hyeong, K. Coral reefs at 34 N, Japan: Exploring the end of environmental gradients. Geology 2012, 40, 835–838. [Google Scholar] [CrossRef]
- Greenstein, B.J.; Pandolfi, J.M. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 2008, 14, 513–528. [Google Scholar] [CrossRef]
- Harrison, P.L.; Dalton, S.J.; Carroll, A.G. Extensive coral bleaching on the world’s southernmost coral reef at Lord Howe Island, Australia. Coral Reefs 2011, 30, 775. [Google Scholar] [CrossRef]
- Price, N.N.; Muko, S.; Legendre, L.; Steneck, R.; van Oppen, M.J.H.; Albright, R.; Ang, P., Jr.; Carpenter, R.C.; Chui, A.P.Y.; Fan, T.Y.; et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 2019, 621, 1–17. [Google Scholar] [CrossRef]
- Sully, S.; van Woesik, R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob. Change Biol. 2020, 26, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Rosedy, A.; Ives, I.; Waheed, Z.; Syed Hussein, M.A.; Sosdian, S.; Johnson, K.; Santodomingo, N. Turbid reefs experience lower coral bleaching effects in NE Borneo (Sabah, Malaysia). Reg. Stud. Mar. Sci. 2023, 68, 103268. [Google Scholar] [CrossRef]
- Cacciapaglia, C.; van Woesik, R. Climate-change refugia: Shading reef corals by turbidity. Glob. Change Biol. 2016, 22, 1145–1154. [Google Scholar] [CrossRef]
- Green, R.H.; Lowe, R.J.; Buckley, M.L.; Foster, T.; Gilmour, J.P. Physical mechanisms influencing localized patterns of temperature variability and coral bleaching within a system of reef atolls. Coral Reefs 2019, 38, 759–771. [Google Scholar] [CrossRef]
- Hammerman, N.M.; Roff, G.; Lybolt, T.; Eyal, G.; Pandolfi, J.M. Unraveling Moreton Bay reef history: An urban high-latitude setting for coral development. Front. Ecol. Evol. 2022, 10, 884850. [Google Scholar] [CrossRef]
- Smith, L.D.; Gilmour, J.P.; Heyward, A.J. Resilience of coral communities on an isolated system of reefs following catastrophic mass-bleaching. Coral Reefs 2008, 27, 197–205. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Brooke, B.P.; Linklater, M.; Kennedy, D.M.; Jones, B.G.; Buchanan, C.; Mleczko, R.; Hua, Q.; Zhao, J. Response of coral reefs to climate change: Expansion and demise of the southernmost Pacific coral reef. Geophys. Res. Lett. 2010, 37, L156022010. [Google Scholar] [CrossRef]
- Graham, N.A.J.; Nash, K.L.; Kool, J.T. Coral reef recovery dynamics in a changing world. Coral Reefs 2011, 30, 283–294. [Google Scholar] [CrossRef]
- Pisapia, C.; Burn, D.; Yoosuf, R.; Najeeb, A.; Anderson, K.D.; Pratchett, M.S. Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998. Sci. Rep. 2016, 6, 34720. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.Y.; Yeung, Y.H.; Kwok, C.K.; Kei, K.; Ang, P., Jr.; Chan, L.L.; Cheang, C.C.; Chow, W.K.; Qiu, J.W. Localized bleaching and quick recovery in Hong Kong’s coral communities. Mar. Pollut. Bull. 2020, 153, 110950. [Google Scholar] [CrossRef] [PubMed]
- Leinbach, S.E.; Speare, K.E.; Rossin, A.M.; Holstein, D.M.; Strader, M.E. Energetic and reproductive costs of coral recovery in divergent bleaching responses. Sci. Rep. 2021, 11, 23546. [Google Scholar] [CrossRef] [PubMed]
- Huntington, B.; Weible, R.; Halperin, A.; Winston, M.; McCoy, K.; Amir, C.; Asher, J.; Vargas-Angel, B. Early successional trajectory of benthic community in an uninhabited reef system three years after mass coral bleaching. Coral Reefs 2022, 41, 1087–1096. [Google Scholar] [CrossRef]
- Vessaz, F.; Marsh, C.J.; Bijoux, J.; Gendron, G.; Mason-Parker, C. Recovery trajectories of oceanic reef ecosystems following multiple mass coral bleaching events. Mar. Biol. 2022, 169, 23. [Google Scholar] [CrossRef]
- Westphal, H.; Halfar, J.; Freiwald, A. Heterozoan carbonates in subtropical to tropical settings in the present and past. Int. J. Earth Sci. 2010, 99, 153–169. [Google Scholar] [CrossRef]
- Pandolfi, J.M.; Kiessling, W. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 2014, 7, 52–58. [Google Scholar] [CrossRef]
- Tierney, J.E.; Poulsen, C.J.; Montanez, I.P.; Bhattacharya, T.; Feng, R.; Ford, H.L.; Honisch, B.; Inglis, G.N.; Petersen, S.V.; Sagoo, N.; et al. Past climates inform our future. Science 2020, 370, eaay3701. [Google Scholar] [CrossRef]
- Miller, K.G.; Browning, J.V.; Schmelz, W.J.; Kopp, R.E.; Mountain, G.S.; Wright, J.D. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 2020, 6, eaaz1346. [Google Scholar] [CrossRef]
- Di Stefano, A.; Verducci, M.; Lirer, F.; Ferraro, L.; Iaccarino, S.M.; Hüsing, S.K.; Hilgen, F. J Paleoenvironmental conditions preceding the Messinian Salinity Crisis in the Central Mediterranean: Integrated data from the Upper Miocene Trave section (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 297, 37–53. [Google Scholar] [CrossRef]
- Perrin, C.; Bosellini, F.R. Paleobiogeography of scleractinian reef corals: Changing patterns during the Oligocene–Miocene climatic transition in the Mediterranean. Earth-Sci. Rev. 2012, 111, 1–24. [Google Scholar] [CrossRef]
- Perrin, C.; Bosellini, F.R. The Late Miocene cold spot of z-corals diversity in the Mediterranean: Patterns and causes. Comptes. Rendus. Palevol. 2013, 12, 245–255. [Google Scholar] [CrossRef]
- Prista, G.A.; Agostinho, R.J.; Cachão, M.A. Observing the past to better understand the future: A synthesis of the Neogene climate in Europe and its perspectives on present climate change. Open Geosci. 2015, 7, 20150007. [Google Scholar] [CrossRef]
- Flecker, R.; Krijgsman, W.; Capella, W.; de Castro Martíns, C.; Dmitrieva, E.; Mayser, J.P.; Marzocchi, A.; Modestu, S.; Ochoa, D.; Simon, D.; et al. Evolution of the late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth Sci. Rev. 2015, 150, 365–392. [Google Scholar] [CrossRef]
- Steinthorsdottir, M.; Coxall, H.K.; De Boer, A.M.; Huber, M.; Barbolini, N.; Bradshaw, C.D.; Burls, N.J.; Feakins, S.J.; Gasson, E.; Henderiks, J.; et al. The Miocene: The future of the past. Paleoceanogr. Paleoclimatology 2021, 36, e2020PA004037. [Google Scholar] [CrossRef]
- Mertz-Kraus, R.; Brachert, T.C.; Reuter, M.; Galer, S.J.G.; Fassoulas, C.; Iliopoulos, G. Late Miocene sea surface salinity variability and paleoclimate conditions in the Eastern Mediterranean inferred from coral aragonite δ18O. Chem. Geol. 2009, 262, 202–216. [Google Scholar] [CrossRef]
- Simon, D.; Marzocchi, A.; Flecker, R.; Lunt, D.J.; Hilgen, F.J.; Meijer, P.T. Quantifying the Mediterranean freshwater budget throughout the late Miocene: New implications for sapropel formation and the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 2017, 472, 25–37. [Google Scholar] [CrossRef]
- Esteban, M. An overview of Miocene reefs from Mediterranean areas: General trends and facies models. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Region; SEPM Concepts in Sedimentology and Paleontology Series; Franseen, E.K., Estaban, M., Ward, W.C., Rouchy, J., Eds.; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 3–53. [Google Scholar]
- Vertino, A.; Stolarski, J.; Bosellini, F.R.; Taviani, M. Mediterranean corals through time: From Miocene to Present. In The Mediterranean Sea: Its History and Present Challenges; Springer: Berlin/Heidelberg, Germany, 2014; pp. 257–274. [Google Scholar]
- Pomar, L.; Baceta, J.I.; Hallock, P.; Mateu-Vicens, G.; Basso, D. Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar. Pet. Geol. 2017, 83, 261–304. [Google Scholar] [CrossRef]
- Bossio, A.; Bradley, F.; Esteban, M.; Giannelli, L.; Landini, W.; Mazzanti, R.; Mazzei, R.; Salvatorini, G. Alcuni aspetti del Miocene superiore della Val di Fine. In Proceedings of the Field Trip Guide IX Convegno della Società Paleontologica Italiana, Pisa, Italy, 3–8 October 1981; pp. 21–54. [Google Scholar]
- Bossio, A.; Esteban, M.; Mazzanti, R.; Mazzei, R.; Salvatorini, G. Rosignano reef complex (Messinian), Livornesi Mountains, Tuscany, central Italy. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of the Mediterranean Regions; SEPM Concepts in Sedimentology and Paleontology; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.M., Eds.; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 277–294. [Google Scholar]
- Franseen, E.K.; Esteban, M.; Ward, W.C.; Rouchy, J.M. Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions; SEPM Concepts in Sedimentology and Paleontology Series; SEPM: Tulsa, OK, USA, 1996; Volume 5, p. 391. [Google Scholar]
- Jokiel, P.; Martinelli, F.J. The vortex model of coral reef biogeography. J. Biogeogr. 1992, 19, 449–458. [Google Scholar] [CrossRef]
- Wood, S.; Paris, C.B.; Ridgwell, A.; Hendy, E.J. Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Glob. Ecol. Biogeogr. 2014, 23, 1–11. [Google Scholar] [CrossRef]
- Popov, S.V.; Rozanov, A.Y.; Rögl, F.; Steininger, F.F.; Shcherba, I.G.; Kovac, M. Lithological-paleogeographic maps of Paratethys. CFS Courier Forschungsinstitut Senckenberg 2004, 250, 1–46. [Google Scholar]
- Cornacchia, I.; Agostini, S.; Brandano, M. Miocene oceanographic evolution based on the Sr and Nd isotope record of the Central Mediterranean. Paleoceanogr. Paleoclimatology 2018, 33, 31–47. [Google Scholar] [CrossRef]
- Bialik, O.M.; Frank, M.; Betzler, C.; Zammit, R.; Waldmann, N.D. Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean. Sci. Rep. 2019, 9, 8842. [Google Scholar] [CrossRef]
- Von der Heydt, A.; Dijkstra, H.A. Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography 2006, 21, PA1011. [Google Scholar] [CrossRef]
- Mihaljević, M.; Korpanty, C.; Renema, W.; Welsh, K.; Pandolfi, J.M. Identifying patterns and drivers of coral diversity in the Central Indo-Pacific marine biodiversity hotspot. Paleobiology 2017, 43, 343–364. [Google Scholar] [CrossRef]
- Vogt-Vincent, N.S.; Mitarai, S.; Johnson, H.L. High-frequency variability dominates potential connectivity between remote coral reefs. Limnol. Oceanogr. 2023, 68, 2733–2748. [Google Scholar] [CrossRef]
- Harzhauser, M.; Kroh, A.; Mandic, O.; Piller, W.E.; Göhlich, U.; Reuter, M.; Berning, B. Biogeographic responses to geodynamics: A key study all around the Oligo–Miocene Tethyan Seaway. Zoologischer Anzeiger-A J. Comp.Zool. 2007, 246, 241–256. [Google Scholar] [CrossRef]
- Hüsing, S.K.; Zachariasse, W.-J.; van Hinsbergen, D.J.J.; Krijgsman, W.; Inceöz, M.; Harzhauser, M.; Mandic, O.; Kroh, A. Oligocene-Miocene basin evolution in SE Anatolia, Turkey: Constraints on the closure of the eastern Tethys gateway. In Collision and Collapse at the Africa-Arabia–Eurasia Subduction Zone; Van Hinsbergen, D.J.J., Edwards, M.A., Govers, R., Eds.; Geological Society of London: London, UK, 2009; Volume 311, pp. 107–132. [Google Scholar]
- Simon, D.; Palcu, D.; Meijer, P.; Krijgsman, W. The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe. Geology 2019, 47, 35–38. [Google Scholar] [CrossRef]
- Krijgsman, W.; Palcu, D.V.; Andreetto, F.; Stoica, M.; Mandic, O. Changing seas in the late Miocene Northern Aegean: A Paratethyan approach to Mediterranean basin evolution. Earth-Sci. Rev. 2020, 210, 103386. [Google Scholar] [CrossRef]
- Cornacchia, I.; Munnecke, A.; Brandano, M. The potential of carbonate ramps to record C-isotope shifts: Insights from the upper Miocene of the Central Mediterranean area. Lethaia 2021, 54, 73–89. [Google Scholar] [CrossRef]
- Harzhauser, M.; Mandic, O.; Zuschin, M. Changes in Paratethyan marine molluscs at the Early/Middle Miocene transition: Diversity, palaeogeography and palaeoclimate. Acta Geol. Pol. 2003, 53, 323–339. [Google Scholar]
- Monegatti, P.; Raffi, S. The Messinian marine molluscs record and the dawn of the eastern Atlantic biogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 297, 1–11. [Google Scholar] [CrossRef]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef]
- Herbert, T.D.; Lawrence, K.T.; Tzanova, A.; Peterson, L.C.; Caballero-Gill, R.; Kelly, C.S. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 2016, 9, 843–847. [Google Scholar] [CrossRef]
- Bruch, A.A.; Utescher, T.; Mosbrugger, V. Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 202–211. [Google Scholar] [CrossRef]
- Bosellini, F.R.; Perrin, C. Estimating Mediterranean Oligocene–Miocene sea-surface temperatures: An approach based on coral taxonomic richness. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 258, 71–88. [Google Scholar] [CrossRef]
- Agiadi, K.; Hohmann, N.; Gliozzi, E.; Thivaiou, D.; Bosellini, F.R.; Taviani, M.; Bianucci, G.; Collareta, A.; Londeix, L.; Faranda, C.; et al. Late Miocene transformation of Mediterranean Sea biodiversity. Sci. Adv. 2024, 10, eadp1134. [Google Scholar] [CrossRef]
- Filippelli, G.M.; Sierro, F.J.; Flores, J.A.; Vázquez, A.; Utrilla, R.; Pérez-Folgado, M.; Latimer, J.C. A sediment–nutrient–oxygen feedback responsible for productivity variations in Late Miocene sapropel sequences of the western Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 190, 335–348. [Google Scholar] [CrossRef]
- Bulian, F.; Kouwenhoven, T.J.; Jiménez-Espejo, F.J.; Krijgsman, W.; Andersen, N.; Sierro, F.J. Impact of the Mediterranean-Atlantic connectivity and the late Miocene carbon shift on deep-sea communities in the Western Alboran Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 589, 110841. [Google Scholar] [CrossRef]
- Diester-Haass, L.; Billups, K.; Emeis, K.C. Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link? Paleoceanography 2006, 21, PA4216. [Google Scholar] [CrossRef]
- Böhme, M.; Ilg, A.; Winklhofer, M. Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 2008, 275, 393–401. [Google Scholar] [CrossRef]
- Chevalier, J.P. Recherches sur les madréporaires et les formations récifales miocènes de la Méditerranée occidentale. Mémoires Société Géologique Fr. 1962, 93, 1–558. [Google Scholar]
- Santisteban, G.; Taberner, C. Sedimentary models of siliciclastic deposits and coral reefs inter-relation. In: Doyle, L.J.; Roberts, H.H. (Eds.), Carbonate–Clastic Transitions. Dev. Sedimentol. 1988, 42, 35–77. [Google Scholar]
- Martin, J.M.; Braga, J.C.; Rivas, P. Coral successions in Upper Tortonian reefs in SE Spain. Lethaia 1989, 22, 271–286. [Google Scholar] [CrossRef]
- Braga, J.C.; Martin, J.M.; Alcala, B. Coral reefs in coarse-terrigenous sedimentary environments (Upper Tortonian, Granada Basin, southern Spain). Sediment. Geol. 1990, 66, 135–150. [Google Scholar] [CrossRef]
- Vennin, E.; Rouchy, J.M.; Chaix, C.; Blanc-Valleron, M.; Caruso, A.; Rommevau, V. Paleoecological constraints on reef-coral morphologies in the Tortonian–early Messinian of the Lorca basin, SE Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 213, 163–185. [Google Scholar] [CrossRef]
- Pomar, L. Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene reef complex, Mallorca, Spain. Sedimentology 1991, 38, 243–269. [Google Scholar] [CrossRef]
- Pomar, L.; Ward, W.C.; Green, D.G. Upper Miocene reef complex of the Llucmajor area, Mallorca, Spain. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.-M., Eds.; SEPM Concepts in Sedimentology and Paleontology Series; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 191–225. [Google Scholar]
- Saint-Martin, J.P. Les formations récifales coralliennes du Miocène supérieur d’Algérie et du Maroc. Aspects paléoécologiques et paléogéographiques. Doctoral Thesis, Université Aix-Marseille I, Marseille, France, 1987. [Google Scholar]
- Pedley, H.M.; Grasso, M. Upper Miocene peri-Tyrrhenian Reefs in the Calabrian Arc: Sedimentological, Tectonic and Palaeogeographic Implications; Géologie Méditerranéenne: Marseille, France, 1994; Volume 21, pp. 123–136. [Google Scholar]
- Pedley, H.M.; Grasso, M. The Sedimentology of Late Miocene Peri-Tyrrhenian Reefs in Sicily and Calabria and Their Tectonic Implications; IAS Ischia94; Éditions de l’Université de Provence: Ischia, Italy, 1994; pp. 322–323. [Google Scholar]
- Grasso, M.; Lentini, F.; Pedley, H.M. Late Tortonian–lower Messinian (Miocene) palaeogeography of SE Sicily: Information from two new formations of the Sortino Group. Sediment. Geol. 1982, 32, 279–300. [Google Scholar] [CrossRef]
- Pedley, H.M. The petrology and palaeoenvironment of the Sortino Group (Miocene) of SE Sicily: Evidence for periodic emergence. J. Geol. Soc. Lond. 1983, 140, 335–350. [Google Scholar] [CrossRef]
- Pedley, H.M. Miocene reef facies of the Pelagian region (central Mediterranean). In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.-M., Eds.; SEPM Concepts in Sedimentology and Paleontology Series; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 247–259. [Google Scholar]
- Pedley, H.M. Miocene bioherms and associated structures in the Upper Coralline limestone of the Maltese Islands: Their lithification and palaeoenvironment. Sedimentology 1979, 26, 577–591. [Google Scholar] [CrossRef]
- Pedley, H.M. Miocene reef distributions and their associations in the central Mediterranean region: An overview. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.-M., Eds.; SEPM Concepts in Sedimentology and Paleontology Series; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 73–87. [Google Scholar]
- Grasso, M.; Pedley, H.M. The Pelagian Islands: A new geological interpretation from sedimentological and tectonic studies and its bearing on the evolution of the Central Mediterranean Sea (Pelagian Block). Geol. Romana 1985, 24, 13–34. [Google Scholar]
- Di Credico, N.; Fravega, P.; Giammarino, S.; Piazza, M.; Vannucci, G. Algal assemblages of Cala Pisana Member, Lampedusa Formation (Late Miocene, Lampedusa Island). Boll. Acc. Gioenia Sci. Nat 2004, 37, 217–243. [Google Scholar]
- Baron-Szabo, R. Taxonomy and paleoecology of Late Miocene corals of NW-Crete (Gramvoţssa, Roka- and Koukounaras-Fms.). Berl. Geowiss. Abh. 1995, E16, 569–577. [Google Scholar]
- Brachert, T.C.; Reuter, M.; Felis, T.; Kroeger, K.F.; Lohmann, G.; Micheels, A.; Fassoulas, C. Porites corals from Crete (Greece) open a window into Late Miocene (10 MA) seasonal and interannual climate variability. Earth Planet. Sci. Lett. 2006, 245, 81–94. [Google Scholar] [CrossRef]
- Hayward, A.B.; Robertson, A.H.F.; Scoffin, T.P. Miocene patch reefs from a Mediterranean marginal terrigenous setting in southwest Turkey. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions: SEPM Concepts in Sedimentology and Paleontology; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.-M., Eds.; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 1996; Volume 5, pp. 317–332. [Google Scholar]
- Follows, E.J.; Robertson, A.H.F.; Scoffin, T.P. Tectonic controls on Miocene reefs and related carbonate facies in Cyprus. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions; SEPM Concepts in Sedimentology and Paleontology Series; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.-M., Eds.; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 295–315. [Google Scholar]
- Coletti, G.; Balmer, E.M.; Bialik, O.M.; Cannings, T.; Kroon, D.; Robertson, A.H.; Basso, D. Microfacies evidence for the evolution of Miocene coral-reef environments in Cyprus. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 584, 110670. [Google Scholar] [CrossRef]
- Coletti, G.; Basso, D.; Betzler, C.; Robertson, A.H.; Bosio, G.; El Kateb, A.; Foubert, A.; Meilijson, A.; Spezzaferri, S. Environmental evolution and geological significance of the Miocene carbonates of the Eratosthenes Seamount (ODP Leg 160). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 530, 217–235. [Google Scholar] [CrossRef]
- Coletti, G.; Basso, D. Coralline algae as depth indicators in the Miocene carbonates of the Eratosthenes Seamount (ODP Leg 160, Hole 966F). Geobios 2020, 60, 29–46. [Google Scholar] [CrossRef]
- Hladil, J.; Otava, J.; Galle, A. Oligocene carbonate buildups of the Sirt Basin, Libya. In The Geology of Libya; Salem, M.J., Hammuda, O.S., Eliagoubi, B.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 4, pp. 1401–1420. [Google Scholar]
- Tomassetti, L.; Bosellini, F.R.; Brandano, M. Growth and demise of a Burdigalian coral bioconstruction on a granite rocky substrate (Bonifacio Basin, southeastern Corsica). Facies 2013, 59, 703–716. [Google Scholar] [CrossRef]
- Riding, R.; Martin, J.M.; Braga, J.C. Coral-stromatolite reef framework, upper Miocene, Almería, Spain. Sedimentology 1991, 38, 799–818. [Google Scholar] [CrossRef]
- Martin, J.M.; Braga, J.C. Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sediment. Geol. 1994, 90, 257–268. [Google Scholar] [CrossRef]
- Braga, J.C.; Martin, J.M. Geometries of reef advance in response to relative sea-level changes in a Messinian (uppermost Miocene) fringing reef (Cariatiz reef, Sorbas Basin, SE Spain). Sediment. Geol. 1996, 107, 61–81. [Google Scholar] [CrossRef]
- Martin, J.M.; Braga, J.C.; Riding, R. Late Miocene Halimeda algal–microbial segment reefs in the marginal Mediterranean Sorbas basin, Spain. Sedimentology 1997, 44, 441–456. [Google Scholar] [CrossRef]
- Brachert, T.C.; Hultzsch, N.; Knoerich, A.C.; Krautworst, U.M.R.; Stückrad, O.M. Climatic signatures in shallow-water carbonates: High-resolution stratigraphic markers in structurally controlled carbonate buildups (Late Miocene, southern Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 175, 211–237. [Google Scholar] [CrossRef]
- Brachert, T.C.; Krautworst, U.M.R.; Stueckrad, O.M. Tectono-climatic evolution of a Neogene intramontane basin (Late Miocene Carboneras subbasin, southeast Spain): Revelations from basin mapping and biofacies analysis. BasinRes. 2002, 14, 503–521. [Google Scholar] [CrossRef]
- Saint-Martin, J.P.; Cornée, J.J.; Muller, J. Nouvelles données sur le système de plate-forme carbonatée du Messinien des environs d’Oran (Algérie). Consé- quences. Comptes Rendus de l’Académie des Sciences de Paris, Série IIA 1995, 320, 837–843. [Google Scholar]
- Barrier, P.; Cauquil, E.; Raffi, S.; Russo, A.; Tran Van Huu, M. Signification du plus septentrional des récifs messiniens à Algues et Porites connus en Méditerranée (Vigoleno, Piacenza, Italie). In Interim Colloquium Regional Committee of Mediterranean Neogene Stratigraphy; IGCP 343; Université de Provence Centre Saint Charles: Marseille, France, 1994; pp. 2–3. [Google Scholar]
- Russo, A.; Artoni, A.; Scarponi, D.; Serventi, P. Coral-algal Reef Complex of Vigoleno, Piacenza, Northern Italy. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 032034. [Google Scholar] [CrossRef]
- Danese, E. Upper Miocene carbonate ramp deposits from the southermost part of Maiella Mountain (Abruzzo), Central Italy. Facies 1999, 41, 41–54. [Google Scholar] [CrossRef]
- Bosellini, F.R.; Russo, A.; Vescogni, A. Messinian reef-building assemblages of the Salento Peninsula (southern Italy): Palaeobathymetric and palaeoclimatic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 175, 7–26. [Google Scholar] [CrossRef]
- Bosellini, F.R.; Russo, A.; Vescogni, A. The Messinian reef complex of the Salento Peninsula (Southern Italy): Stratigraphy, facies and paleoenvironmental interpretation. Facies 2002, 47, 91–112. [Google Scholar] [CrossRef]
- Bosence, D.W.J.; Pedley, H.M. Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982, 38, 9–43. [Google Scholar] [CrossRef]
- Grasso, M.; Pedley, H.M. The sedimentology and development of Terravecchia Formation carbonates (Upper Miocene) of North central Sicily: Possible eustatic influence on facies development. Sediment. Geol. 1988, 57, 131–149. [Google Scholar] [CrossRef]
- Grasso, M.; Pedley, H.M. Palaeoenvironment of the Upper Miocene coral build-ups along the northern margins of the Caltanisetta Basin (Central Sicily). In Regressive Pleistocene Sequence near Gravina in Puglia, Southern Italy: Sedimentological and Palaeoecological Analyses, Proceedings of the 3° Simposio di Ecologia e Paleoecologia delle Comunità Bentoniche, Catania-Taormina, Italy, 12–16 October 1985; Università di Catania; Catania, Italy, 1989; pp. 373–389. [Google Scholar]
- Pedley, H.M.; Grasso, M. A model for the Late Miocene reef-tripolaceous associations of Sicily and its relevance to aberrant growth-forms and reduced biological diversity within the Palaeomediterranean. In Interim Colloquium Regional Committee of Mediterranean Neogene Stratigraphy; IGCP 343; Université de Provence Centre Saint Charles: Marseille, France, 1994; p. 47. [Google Scholar]
- Saint-Martin, J.P. Messinian coral reefs of western Orania, Algeria. InModels for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.-M., Eds.; SEPM Concepts in Sedimentology and Paleontology Series; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 239–246. [Google Scholar]
- Saint-Martin, J.P. Implications de la présence de mud-mounds microbiens au Messinien (Sicile, Italie). Comptes Rendus de l’Académie des Sciences de Paris, Série IIA 2001, 332, 527–534. [Google Scholar]
- Biely, A.; Chevalier, J.P. Présence de scléractiniaires dans le Miocène inférieur de la Tunisie septentrionale. Travaux de Géologie Tunisienne n° 8. Notes Serv. Géologique 1972, 40, 55–68. [Google Scholar]
- Buchbinder, B. Middle and Upper Miocene reefs and carbonate platforms in Israel. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions: SEPM Concepts in Sedimentology and Paleontology; Franseen, E.K., Esteban, M., Ward, W.C., Rouchy, J.-M., Eds.; SEPM: Tulsa, OK, USA, 1996; Volume 5, pp. 333–345. [Google Scholar]
- Meilijson, A.; Hilgen, F.; Sepúlveda, J.; Steinberg, J.; Fairbank, V.; Flecker, R.; Waldmann, N.D.; Spaulding, S.A.; Bialik, O.M.; Boudinot, F.G.; et al. Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity. Earth-Sci. Rev. 2019, 194, 374–398. [Google Scholar] [CrossRef]
- Garcia-Castellanos, D.; Villaseñor, A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 2011, 480, 359–363. [Google Scholar] [CrossRef]
- Lozar, F.; Violanti, D.; Pierre, F.D.; Bernardi, E.; Cavagna, S.; Clari, P.; Irace, A.; Martinetto, E.; Trenkwalder, S. Calcareous nannofossils and foraminifers herald the Messinian salinity crisis: The Pollenzo section (Alba, Cuneo; NW Italy). Geobios 2010, 43, 21–32. [Google Scholar] [CrossRef]
- Pérez-Asensio, J.N.; Aguirre, J.; Schmiedl, G.; Civis, J. Messinian paleoenvironmental evolution in the lower Guadalquivir Basin (SW Spain) based on benthic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 326, 135–151. [Google Scholar] [CrossRef]
- Carnevale, G.; Gennari, R.; Lozar, F.; Natalicchio, M.; Pellegrino, L.; Dela Pierre, F. Living in a deep desiccated Mediterranean Sea: An overview of the Italian fossil record of the Messinian salinity crisis. Boll. Della Soc. Paleontol. Ital. 2019, 58, 109–140. [Google Scholar]
- Agiadi, K.; Hohmann, N.; Gliozzi, E.; Thivaiou, D.; Bosellini, F.R.; Taviani, M.; Bianucci, G.; Collareta, A.; Londeix, L.; Faranda, C.; et al. The marine biodiversity impact of the Late Miocene Mediterranean salinity crisis. Science 2024, 385, 986–991. [Google Scholar] [CrossRef]
- Agiadi, K.; Hohmann, N.; Gliozzi, E.; Thivaiou, D.; Bosellini, F.R.; Taviani, M.; Bianucci, G.; Collareta, A.; Londeix, L.; Faranda, C.; et al. A revised marine fossil record of the Mediterranean before and after the Messinian Salinity Crisis. Earth Syst. Sci. Data 2024, 16, 4767–4775. [Google Scholar] [CrossRef]
- Bossio, A.; Costantini, A.; Lazzarotto, A.; Liotta, D.; Mazzanti, R.; Mazzei, R.; Salvatorini, G.; Sandrelli, F. Rassegna delle conoscenze sulla stratigrafia del neoautoctono toscano. Mem. Soc. Geol. Ital. 1993, 49, 17–98. [Google Scholar]
- Martini, I.P.; Sagri, M. Tectono-sedimentary characteristic of Late Miocene-Quaternary extensional basins of the Northern Apennines, Italy. Earth Sci. Rev. 1993, 34, 197–233. [Google Scholar] [CrossRef]
- Doglioni, C.; Gueguen, E.; Harabagli, P.; Mongelli, E. On the origin of west-directed subduction zones and applications to the western Mediterranean. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen; Durand, B., Jolivet, L., Horvath, E., Siranne, M., Eds.; Geological Society: London, UK, 1999; Volume 156, pp. 541–561. [Google Scholar]
- Mazzanti, R.; Bossio, A.; Cascella, A.; Foresi, M.; Mazzei, R.; Salvatorini, G.; Putignano, M.L. Note Illustrative della Carta Geologica d’Italia alla scala 1: 50.000, Foglio 284 Rosignano Marittimo; Servizio Geologico d’Italia; ISPRA: Roma, Italy, 2016; 189p. [Google Scholar]
- Fravega, P.; Piazza, M.; Vannucci, G. Nongeniculate coralline algae associations from the Calcare di Rosignano Formation, lower Messinian, Tuscany (Italy). In Studies on Ecology and Paleoecology of Benthic Communities; Matteucci, R., Ed.; Bollettino della Società Paleontologica Italiana: Modena, Italy, 1994; Volume 2, pp. 127–140. [Google Scholar]
- Bartoletti, E.; Giannelli, L.; Mazzanti, R.; Mazzei, R.; Salvatorini, G.; Sanesi, G.; Squarci, P. Carta Geologica del Comune di Rosignano Marittimo (Provincia di Livorno), Scala 1:25000. SELCA: Firenze, Italy, 1983.
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks; Ham, W.E., Ed.; American Association of Petroleum Geologist: Tulsa, OK, USA, 1962; Volume 1, pp. 108–121. [Google Scholar]
- Embry, A.F.; Klovan, J.E. A Late Devonian reef tract on Northeastern Banks Island, NWT. Bull. Can. Pet. Geol. 1971, 19, 730–781. [Google Scholar]
- Lokier, S.W.; Al Junaibi, M. The petrographic description of carbonate facies: Are we all speaking the same language? Sedimentology 2016, 63, 1843–1885. [Google Scholar] [CrossRef]
- Flügel, E.; Munnecke, A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin/Heidelberg, Germany, 2010; p. 2004. [Google Scholar]
- Mariani, L.; Coletti, G.; Bosio, G.; Vicens, G.M.; Ali, M.; Cavallo, A.; Mittempergher, S.; Malinverno, E. Tectonically-controlled biofacies distribution in the Eocene Foraminiferal Limestone (Pag, Croatia): A quantitative-based palaeontological analysis. Sediment. Geol. 2024, 472, 106743. [Google Scholar] [CrossRef]
- Riding, R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Sci. Rev. 2002, 58, 163–231. [Google Scholar] [CrossRef]
- Capella, W.; Flecker, R.; Hernández-Molina, F.J.; Simon, D.; Meijer, P.T.; Rogerson, M.; Sierro, F.J.; Krijgsman, W. Mediterranean isolation preconditioning the earth system for late Miocene climate cooling. Sci. Rep. 2019, 9, 3795. [Google Scholar] [CrossRef]
- Braga, J.C.; Vescogni, A.; Bosellini, F.R.; Aguirre, J. Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 275, 113–128. [Google Scholar] [CrossRef]
- Pomar, L. Types of carbonate platforms: A genetic approach. Basin Res. 2001, 13, 313–334. [Google Scholar] [CrossRef]
- Hallock, P.; Glenn, E.C. Larger foraminifera: A tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1986, 1, 55–64. [Google Scholar] [CrossRef]
- Dabrio, C.J.; Esteban, M.; Martin, J.M. The coral reef of Nijar, Messinian (Uppermost Miocene), Almeria Province, S.E. Spain. Jour. Sed. Pet. 1981, 51, 521–539. [Google Scholar]
- Saint-Martin, J.P. Les formations récifales coralliennes du Miocène supérieur d’Algérie et du Maroc. Mém. Mus. Nat. Hist. Nat. 1990, 56, 1–366. [Google Scholar]
- Basso, D. Deep rhodolith distribution in the Pontian Islands, Italy: A model for the paleoecology of a temperate sea. Palaeogeography, Palaeoclimatology. Palaeoecology 1998, 137, 173–187. [Google Scholar] [CrossRef]
- Ten Hove, H.A. Different causes of mass occurrence in serpulids. Biol. Syst. Colon. Org. 1979, 11, 281–298. [Google Scholar]
- Bianchi, C.N. Present-day serpulid reefs, with reference to an on-going research project on Ficopomatus enigmaticus. Pubblications Serv. Géologique Luxemb. 1995, 29, 61–65. [Google Scholar]
- Bianchi, C.N.; Morri, C. The battle is not to the strong: Serpulid reefs in the lagoon of Orbetello (Tuscany, Italy). Estuar. Coast. Shelf Sci. 2001, 53, 215–220. [Google Scholar] [CrossRef]
- Piller, W.E.; Harzhauser, M. Nubecularia-coralline algal-serpulid-microbial bioherms of the Paratethys Sea—Distribution and paleoecological significance (upper Serravallian, upper Sarmatian, Middle Miocene). Geobiology 2024, 22, e125902024. [Google Scholar] [CrossRef]
- Plaziat, J.C.; Perrin, C. Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): Palaeoecologic relations with coral reefs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1992, 96, 195–231. [Google Scholar] [CrossRef]
- Bosellini, F.R.; Papazzoni, C.A. Palaeoecological significance of coral-encrusting foraminiferan associations: A case-study from the Upper Eocene of northern Italy. Acta Palaeontol. Pol. 2003, 48, 279–292. [Google Scholar]
- Coletti, G.; Commissario, L.; Mariani, L.; Bosio, G.; Desbiolles, F.; Soldi, M.; Bialik, O.M. Palaeocene to Miocene southern Tethyan carbonate factories: A meta-analysis of the successions of South-western and Western Central Asia. Depos. Rec. 2022, 8, 1031–1054. [Google Scholar] [CrossRef]
- Granier, B.R. Reassessment of Iberopora bodeuri, a primitive plurilocular calcareous encrusting foraminifer from the “Upper Jurassic” (including Berriasian) carbonate platforms of the northern and central Tethys. Cretac. Res. 2024, 155, 105782. [Google Scholar] [CrossRef]
- Prager, E.J.; Ginsburg, R.N. Carbonate nodule growth on Florida’s outer shelf and its implications for fossil interpretations. Palaios 1989, 4, 310–317. [Google Scholar] [CrossRef]
- Walker, S.E.; Parsons-Hubbard, K.; Richardson-White, S.; Brett, C.; Powell, E. Alpha and beta diversity of encrusting foraminifera that recruit to long-term experiments along a carbonate platform-to-slope gradient: Paleoecological and paleoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 312, 325–349. [Google Scholar] [CrossRef]
- Strathearn, G.E. Homotrema rubrum: Symbiosis identified by chemical and isotopic analyses. Palaios 1986, 1, 48–54. [Google Scholar] [CrossRef]
- Leutenegger, S. Symbiosis in benthic foraminifera; specificity and host adaptations. J. Foraminifer. Res. 1984, 14, 16–35. [Google Scholar] [CrossRef]
- Tichenor, H.R.; Lewis, R.D. Distribution of Encrusting Foraminifera At San Salvador, Bahamas: A Comparison by Reef Types and Onshore− offshore Zonation. J. Foraminifer. Res. 2018, 48, 373–387. [Google Scholar] [CrossRef]
- Van der Meij, S.E.; Bravo, H.; Scholten, Y.J.; Dromard, C.R. Host use of the elkhorn coral crab Domecia acanthophora (Brachyura: Domeciidae), with a phylogeny of the genus. Cahiers Biologie Marine 2022, 63, 239–246. [Google Scholar]
- Abele, L.G. Species diversity of decapod crustaceans in marine habitats. Ecology 1974, 55, 156–161. [Google Scholar] [CrossRef]
- De Angeli, A.; Garassino, A.; Pasini, G. New report of the coral-associated decapods from the early Messinian (Late Miocene) of Acquabona, Rosignano Marittimo (Toscana, Italy). Nat. Hist. Sci. 2011, 152, 107–122. [Google Scholar] [CrossRef]
- Dercourt, J.; Gaetani, M.; Vrielynk, B.; Barrier, E.; Biju-Duval, B.; Brunet, M.F.; Cadet, J.P.; Crasquin, S.; Sandulescu, M. Atlas Peri-Tethys—Palaeogeographical Maps; CCGM/CGMW; Gauthier-Villars: Paris, France, 2000. [Google Scholar]
- Mosbrugger, V.; Utescher, T.; Dilcher, D.L. Cenozoic continental climatic evolution of Central Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 14964–14969. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, P.F.; Bucci, M.; Tommasini, M.; Innocenti, M. Monthly averages of sea surface temperature. Int. J. Remote Sens. 2006, 27, 2519–2539. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals of Australia and the IndoPacific; Angus and Robertson: London, UK; Sydney, Australia, 1986. [Google Scholar]
- Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 1999, 50, 839–866. [Google Scholar] [CrossRef]
- Benzoni, F.; Basso, D.; Caragnano, A.; Rodondi, G. Hydrolithon spp. (Rhodophyta, Corallinales) overgrow live corals (Cnidaria, Scleractinia) in Yemen. Mar. Biol. 2011, 158, 2419–2428. [Google Scholar] [CrossRef]
- Barott, K.L.; Williams, G.J.; Vermeij, M.J.; Harris, J.; Smith, J.E.; Rohwer, F.L.; Sandin, S.A. Natural history of coral− algae competition across a gradient of human activity in the Line Islands. Mar. Ecol. Prog. Ser. 2012, 460, 1–12. [Google Scholar] [CrossRef]
- McCook, L.; Jompa, J.; Diaz-Pulido, G. Competition between corals and algae on coral reefs: A review of evidence and mechanisms. Coral reefs 2001, 19, 400–417. [Google Scholar] [CrossRef]
- Lokier, S.W.; Wilson, M.E.; Burton, L.M. Marine biota response to clastic sediment influx: A quantitative approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 25–42. [Google Scholar] [CrossRef]
- Esteban, M. Significance of the Upper Miocene coral reefs of the western Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1979, 29, 169–188. [Google Scholar] [CrossRef]
- Vescogni, A.; Guido, A.; Cipriani, A.; Gennari, R.; Lugli, F.; Lugli, S.; Manzi, V.; Reghizzi, M.; Roveri, M. Palaeoenvironmental setting and depositional model of upper Messinian microbialites of the Salento Peninsula (Southern Italy): A central Mediterranean Terminal Carbonate Complex. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 595, 110970. [Google Scholar] [CrossRef]
- Bialik, O.M.; Zammit, R.; Micallef, A. Architecture and sequence stratigraphy of the Upper Coralline Limestone formation, Malta—Implications for Eastern Mediterranean restriction prior to the Messinian Salinity Crisis. Depos. Rec. 2021, 7, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, S.; Iannace, A.; Jadoul, F.; Zamparelli, V. Microbial–serpulid build-ups in the Norian–Rhaetian of the Western Mediterranean area: Ecological response of shelf margin communities to stressed environments. Terra Nova 1999, 11, 195–202. [Google Scholar] [CrossRef]
- Schubert, J.K.; Bottjer, D.J. Early Triassic stromatolites as post-mass extinction disaster forms. Geology 1992, 20, 883–886. [Google Scholar] [CrossRef]
- Whalen, M.T.; Day, J.; Eberli, G.P.; Homewood, P.W. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from the Late Devonian, Alberta basin, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 181, 127–151. [Google Scholar] [CrossRef]
- Meilijson, A.; Bialik, O.M.; Benjamini, C. Stromatolitic biotic systems in the mid-Triassic of Israel—A product of stress on an epicontinental margin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 440, 696–711. [Google Scholar] [CrossRef]
- Guido, A.; Vescogni, A.; Mastandrea, A.; Demasi, F.; Tosti, F.; Naccarato, A.; Tagarelli, A.; Russo, F. Characterization of the micrites in the Late Miocene vermetid carbonate bioconstructions, Salento Peninsula, Italy: Record of a microbial/metazoan association. Sediment. Geol. 2012, 263–264, 133–143. [Google Scholar] [CrossRef]
- Guido, A.; Sposato, M.; Palladino, G.; Vescogni, A.; Miriello, D. Biomineralization of primary carbonate cements: A new biosignature in the fossil record from the Anisian of Southern Italy. Lethaia 2021, 55, 1–21. [Google Scholar] [CrossRef]
- Guido, A.; Rosso, A.; Sanfilippo, R.; Miriello, D.; Belmonte, G. Skeletal vs. microbialite geobiological role in bioconstructions of confined marine environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 593, 110920. [Google Scholar] [CrossRef]
- Guido, A.; Calcagnile, M.; Talà, A.; Tredici, S.M.; Belmonte, G.; Alifano, P. Microbial consortium involved in ferromanganese and francolite biomineralization in an anchialine environment (Zinzulùsa Cave, Castro, Italy). Sci. Total Environ. 2024, 936, 173423. [Google Scholar] [CrossRef]
- Cipriani, M.; Apollaro, C.; Basso, D.; Bazzicalupo, P.; Bertolino, M.; Bracchi, V.A.; Bruno, F.; Costa, G.; Dominici, R.; Gallo, A.; et al. Origin and role of non-skeletal carbonate in coralligenous build-ups: New geobiological perspectives in biomineralization processes. Biogeosciences 2024, 21, 49–72. [Google Scholar] [CrossRef]
- Kouwenhoven, T.J.; Seidenkrantz, M.S.; Van der Zwaan, G.J. Deep-water changes: The near-synchronous disappearance of a group of benthic foraminifera from the Late Miocene Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 152, 259–281. [Google Scholar] [CrossRef]
Lithofacies | Coral Boundstone (Core) | Transition from the Coral Boundstone to the Coralline Algal Rudstone | Coralline Algal Rudstone | Serpulid Floatstone to Wackestone |
---|---|---|---|---|
Thickness (m) | 7 | 3 | 1 | 1 |
Skeletal fraction | 1/2–2/3 | 1/3–1/2 | 1/2–2/3 | 1/4–1/3 |
Matrix | 1/3–1/2 | 1/2–2/3 | 1/3–1/2 | 2/3–3/4 |
Composition of the skeletal assemblage (% point counting) | ||||
Symbiont-bearing colonial corals | 46 | 7.5 | 3 | 0 |
Red calcareous algae | 26.5 | 39 | 66.5 | 0.5 |
Green calcareous algae | 0.5 | 3.5 | 8.5 | 0 |
LBF | 0 | 1 | 0 | 0 |
Encrusting benthic foraminifera | 8.5 | 3 | 2 | 0 |
SBF | 2 | 3 | 8 | 6.5 |
Planktic foraminifera | 0 | 0 | 0 | 0 |
Mollusks | 3 | 9.5 | 2 | 11.5 |
Echinoderms | 4 | 9.5 | 2.5 | 19 |
Bryozoans | 1.5 | 5.5 | 1.5 | 0 |
Serpulids | 0 | 2 | 3 | 60.5 |
Ostracods | 0.5 | 0.5 | 1 | 1.5 |
Decapods | 7.5 | 16 | 2 | 0.5 |
Foraminiferal assemblage (area counting; individuals cm2) | ||||
Porcellaneous SBF | 1.12 | 1.71 | 9.39 | 7.25 |
Hyaline SBF | 2.04 | 2.13 | 10.34 | 8.46 |
Agglutinated SBF | 0.03 | 0.02 | 0 | 0 |
Porcellaneous/hyaline ratio | 0.55 | 0.75 | 0.91 | 0.86 |
P/B ratio | Entirely benthic | Entirely benthic | Entirely benthic | Entirely benthic |
Composition of the Skeletal Assemblage (% Point-Counting) | Coral Boundstone—Core (Acquabona) | Coral Boundstone—Transitional (Acquabona) | Coral Reef (Eratosthenes Seamount [92]) | Coral Reef (Cyprus [91]) |
---|---|---|---|---|
Symbiont-bearing colonial corals | 46 | 7.5 | 38 | 25 |
Red calcareous algae | 26.5 | 39 | 32.5 | 35 |
Green calcareous algae | 0.5 | 3.5 | 0 | 1 |
Large benthic foraminifera | 0 | 1 | 9.5 | 0.5 |
Encrusting benthic foraminifera | 8.5 | 3 | 5 | 24 |
Small benthic foraminifera | 2 | 3 | 7 | 2 |
Planktic foraminifera | 0 | 0 | 0 | 0 |
Mollusks | 3 | 9.5 | 4 | 6 |
Echinoderms | 4 | 9.5 | 3 | 2 |
Decapods | 7.5 | 16 | 0.5 | 2.5 |
Sessile heterotrophs | 1.5 | 7.5 | 0.5 | 1.5 |
Others | 0.5 | 0.5 | 0 | 0.5 |
Autotrophs + mixotrophs | 73 | 51 | 80 | 61.5 |
Heterotrophs | 26.5 | 48.5 | 20 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coletti, G.; Vimercati, A.; Bosellini, F.R.; Collareta, A.; Bosio, G.; Guido, A.; Vescogni, A.; Basso, D.; Bialik, O.M. Dancing Towards the End—Ecological Oscillations in Mediterranean Coral Reefs Prior to the Messinian Salinity Crisis (Calcare di Rosignano Formation, Acquabona, Tuscany, Italy). Geosciences 2024, 14, 285. https://doi.org/10.3390/geosciences14110285
Coletti G, Vimercati A, Bosellini FR, Collareta A, Bosio G, Guido A, Vescogni A, Basso D, Bialik OM. Dancing Towards the End—Ecological Oscillations in Mediterranean Coral Reefs Prior to the Messinian Salinity Crisis (Calcare di Rosignano Formation, Acquabona, Tuscany, Italy). Geosciences. 2024; 14(11):285. https://doi.org/10.3390/geosciences14110285
Chicago/Turabian StyleColetti, Giovanni, Alberto Vimercati, Francesca R. Bosellini, Alberto Collareta, Giulia Bosio, Adriano Guido, Alessandro Vescogni, Daniela Basso, and Or M. Bialik. 2024. "Dancing Towards the End—Ecological Oscillations in Mediterranean Coral Reefs Prior to the Messinian Salinity Crisis (Calcare di Rosignano Formation, Acquabona, Tuscany, Italy)" Geosciences 14, no. 11: 285. https://doi.org/10.3390/geosciences14110285
APA StyleColetti, G., Vimercati, A., Bosellini, F. R., Collareta, A., Bosio, G., Guido, A., Vescogni, A., Basso, D., & Bialik, O. M. (2024). Dancing Towards the End—Ecological Oscillations in Mediterranean Coral Reefs Prior to the Messinian Salinity Crisis (Calcare di Rosignano Formation, Acquabona, Tuscany, Italy). Geosciences, 14(11), 285. https://doi.org/10.3390/geosciences14110285