Depositional Setting, Diagenetic Processes, and Pressure Solution-Assisted Compaction of Mesozoic Platform Carbonates, Southern Apennines, Italy
Abstract
:1. Introduction
2. Geological Setting
Viggiano Mt.
3. Methods
3.1. Field Analyses
3.2. Petrographic and Microfacies Observations
3.3. Cathodoluminescence Observations
4. Results
4.1. Scarrone la Macchia (SLM) Site
4.1.1. Diagenetic Features
4.1.2. Pressure Solution Features
4.2. Il Monte (ILM) Site
4.2.1. Diagenetic Features
4.2.2. Pressure Solution Features
5. Discussion
5.1. Depositional Setting
5.2. Diagenetic Evolution
6. Conclusions
- -
- The high energy facies characterized by low mud content and represented by grainstone/packstones are less compacted due to early cementation. In this case, the pressure solution processes result in grain contact seams and stylolites. In detail, the bed-parallel stylolites are characterized by rougher morphology and show a low lateral extension. Moreover, in the case of larger grains (>2 mm, e.g., rudstone), the nucleation and diffusion of bed-parallel stylolites is inhibited, and pressure solution features are represented only by grain contact seams.
- -
- The low energy facies, characterized by a greater presence of mud and represented by wackestone/mudstone, lack grain contact seams, while bed-parallel stylolites are characterized by smooth morphology and good lateral extension. This is favored by the presence of carbonate mud that catalyzes the pressure solution processes, as evidenced by the greater amount of residual material. This type of bed-parallel stylolites promotes the circulation of fluids, thanks also to their lateral extension.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, L.; Wang, G.; Hao, F.; Xu, R.; Jin, Z.; Quan, L.; Zou, H. The Quantitative Characterization of Stylolites in the Limestone Reservoirs of the Lower Triassic Feixianguan Formation, Northeastern Sichuan Basin: Insights to the Influence of Pressure Solution on the Quality of Carbonate Reservoirs. Mar. Pet. Geol. 2022, 139, 105612. [Google Scholar] [CrossRef]
- Wong, P.K.; Oldershaw, A. Burial Cementation in the Devonian, Kaybob Reef Complex, Alberta, Canada. J. Sediment. Petrol. 1981, 51, 507–520. [Google Scholar] [CrossRef]
- Flugel, E. Microfacies of Carbonate Rocks Analysis, Interpretation and Application; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Rahim, H.u.; Ahmad, W.; Jamil, M.; Khalil, R. Sedimentary Facies, Diagenetic Analysis, and Sequence Stratigraphic Control on Reservoir Evaluation of Eocene Sakesar Limestone, Upper Indus Basin, NW Himalayas. Carbonates Evaporites 2024, 39, 15. [Google Scholar] [CrossRef]
- Khitab, U.; Umar, M.; Jamil, M. Microfacies, Diagenesis and Hydrocarbon Potential of Eocene Carbonate Strata in Pakistan. Carbonates Evaporites 2020, 35, 70. [Google Scholar] [CrossRef]
- Choquette, P.W.; James, N.P. Diagenesis# 12. Diagenesis in Limestones-3. The Deep Burial Environment. Geosci. Can. 1987, 14, 3–35. [Google Scholar]
- Marshak, S.; Engelder, T. Development of Cleavage in Limestones of a Fold-Thrust Belt in Eastern New York. J. Struct. Geol. 1985, 7, 345–359. [Google Scholar] [CrossRef]
- Korneva, I.; Tondi, E.; Agosta, F.; Rustichelli, A.; Spina, V.; Bitonte, R.; Di Cuia, R. Structural Properties of Fractured and Faulted Cretaceous Platform Carbonates, Murge Plateau (Southern Italy). Mar. Pet. Geol. 2014, 57, 312–326. [Google Scholar] [CrossRef]
- Rustichelli, A.; Tondi, E.; Agosta, F.; Cilona, A.; Giorgioni, M. Development and Distribution of Bed-Parallel Compaction Bands and Pressure Solution Seams in Carbonates (Bolognano Formation, Majella Mountain, Italy). J. Struct. Geol. 2012, 37, 181–199. [Google Scholar] [CrossRef]
- Rustichelli, A.; Tondi, E.; Korneva, I.; Baud, P.; Vinciguerra, S.; Agosta, F.; Reuschlé, T.; Reuschlé, T. Bedding-Parallel Stylolites in Shallow-Water Limestone Successions of the Apulian Carbonate Platform (Central-Southern Italy). Ital. J. Geosci. 2015, 134, 513–534. [Google Scholar] [CrossRef]
- Laronne Ben-Itzhak, L.; Aharonov, E.; Karcz, Z.; Kaduri, M.; Toussaint, R. Sedimentary Stylolite Networks and Connectivity in Limestone: Large-Scale Field Observations and Implications for Structure Evolution. J. Struct. Geol. 2014, 63, 106–123. [Google Scholar] [CrossRef]
- Lavenu, A.P.; Lamarche, J.; Texier, L.; Marié, L.; Gauthier, B.D. Background Fractures in Carbonates: Inference on Control of Sedimentary Facies, Diagenesis and Petrophysics on Rock Mechanical Behavior. Example of the Murge Plateau (Southern Italy). Ital. J. Geosci. 2015, 134, 535–555. [Google Scholar] [CrossRef]
- Panza, E.; Agosta, F.; Rustichelli, A.; Zambrano, M.; Tondi, E.; Prosser, G.; Giorgioni, M.; Janiseck, J.M. Fracture Stratigraphy and Fluid Flow Properties of Shallow-Water, Tight Carbonates: The Case Study of the Murge Plateau (Southern Italy). Mar. Pet. Geol. 2016, 73, 350–370. [Google Scholar] [CrossRef]
- Toussaint, R.; Aharonov, E.; Koehn, D.; Gratier, J.-P.; Ebner, M.; Baud, P.; Rolland, A.; Renard, F. Stylolites: A Review. J. Struct. Geol. 2018, 114, 163–195. [Google Scholar] [CrossRef]
- La Bruna, V.; Lamarche, J.; Agosta, F.; Rustichelli, A.; Giuffrida, A.; Salardon, R.; Marié, L. Structural Diagenesis of Shallow Platform Carbonates: Role of Early Embrittlement on Fracture Setting and Distribution, Case Study of Monte Alpi (Southern Apennines, Italy). J. Struct. Geol. 2020, 131, 103940. [Google Scholar] [CrossRef]
- Beaudoin, N.; Gasparrini, M.; David, M.-E.; Lacombe, O.; Koehn, D. Bedding-Parallel Stylolites as a Tool to Unravel Maximum Burial Depth in Sedimentary Basins: Application to Middle Jurassic Carbonate Reservoirs in the Paris Basin, France. GSA Bull. 2019, 131, 1239–1254. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O.; Koehn, D.; David, M.-E.; Farrell, N.; Healy, D. Vertical Stress History and Paleoburial in Foreland Basins Unravelled by Stylolite Roughness Paleopiezometry: Insights from Bedding-Parallel Stylolites in the Bighorn Basin, Wyoming, USA. J. Struct. Geol. 2020, 136, 104061. [Google Scholar] [CrossRef]
- Araújo, R.E.; La Bruna, V.; Rustichelli, A.; Bezerra, F.H.; Xavier, M.M.; Audra, P.; Barbosa, J.A.; Antonino, A.C. Structural and Sedimentary Discontinuities Control the Generation of Karst Dissolution Cavities in a Carbonate Sequence, Potiguar Basin, Brazil. Mar. Pet. Geol. 2021, 123, 104753. [Google Scholar] [CrossRef]
- Manniello, C.; Abdallah, I.B.; Prosser, G.; Agosta, F. Pressure Solution-Assisted Diagenesis and Thrusting-Related Deformation of Mesozoic Platform Carbonates. J. Struct. Geol. 2023, 173, 104906. [Google Scholar] [CrossRef]
- Heap, M.J.; Baud, P.; Reuschlé, T.; Meredith, P.G. Stylolites in Limestones: Barriers to Fluid Flow? Geology 2014, 42, 51–54. [Google Scholar] [CrossRef]
- Heap, M.; Reuschlé, T.; Baud, P.; Renard, F.; Iezzi, G. The Permeability of Stylolite-Bearing Limestone. J. Struct. Geol. 2018, 116, 81–93. [Google Scholar] [CrossRef]
- Koehn, D.; Rood, M.P.; Beaudoin, N.; Chung, P.; Bons, P.D.; Gomez-Rivas, E. A New Stylolite Classification Scheme to Estimate Compaction and Local Permeability Variations. Sediment. Geol. 2016, 346, 60–71. [Google Scholar] [CrossRef]
- Humphrey, E.; Gomez-Rivas, E.; Koehn, D.; Bons, P.D.; Neilson, J.; Martín-Martín, J.D.; Schoenherr, J. Stylolite-Controlled Diagenesis of a Mudstone Carbonate Reservoir: A Case Study from the Zechstein_2_Carbonate (Central European Basin, NW Germany). Mar. Pet. Geol. 2019, 109, 88–107. [Google Scholar] [CrossRef]
- Baines, S.J.; Worden, R.H. The Long-Term Fate of CO2 in the Subsurface: Natural Analogues for CO2 Storage. Geol. Soc. Lond. Spec. Publ. 2004, 233, 59–85. [Google Scholar] [CrossRef]
- Shedid, S.A.; Salem, A.M. Experimental Investigations of CO2 Solubility and Variations in Petrophysical Properties Due to CO2 Storage in Carbonate Reservoir Rocks. In Proceedings of the North Africa Technical Conference and Exhibition, Cairo, Egypt, 15–17 April 2013; OnePetro: Richardson, TX, USA, 2013. [Google Scholar]
- Cello, G.; Gambini, R.; Mazzoli, S.; Read, A.; Tondi, E.; Zucconi, V. Fault Zone Characteristics and Scaling Properties of the Val d’Agri Fault System (Southern Apennines, Italy). J. Geodyn. 2000, 29, 293–307. [Google Scholar] [CrossRef]
- Maschio, L.; Ferranti, L.; Burrato, P. Active Extension in Val d’Agri Area, Southern Apennines, Italy: Implications for the Geometry of the Seismogenic Belt. Geophys. J. Int. 2005, 162, 591–609. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Della Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- Palladino, G.; Prosser, G.; Olita, F.; Avagliano, D.; Dello Iacovo, B.; Giano, S.I.; Bentivenga, M.; Agosta, F.; Grimaldi, S. Reconstruction of the Structural Setting of the North-Eastern Side of the High Agri Valley (Southern Apennines, Italy) Based on Detailed Field Mapping. J. Maps 2023, 19, 2257729. [Google Scholar] [CrossRef]
- Manniello, C.; Agosta, F.; Todaro, S.; Cavalcante, F.; Prosser, G. Fracture Stratigraphy of Mesozoic Platform Carbonates, Agri Valley, Southern Italy. Geol. Mag. 2022, 159, 1874–1896. [Google Scholar] [CrossRef]
- Abdallah, I.B.; Manniello, C.; Prosser, G.; Agosta, F. Multiscale Structural Analyses of Mesozoic Shallow-Water Carbonates, Viggiano Mt., Southern Italy. J. Struct. Geol. 2023, 176, 104978. [Google Scholar] [CrossRef]
- Vezzani, L.; Festa, A.; Ghisetti, F.C. Geology and Tectonic Evolution of the Central-Southern Apennines, Italy; Geological Society of America: Boulder, CO, USA, 2010; Volume 469, ISBN 0-8137-2469-4. [Google Scholar]
- Shiner, P.; Beccacini, A.; Mazzoli, S. Thin-Skinned versus Thick-Skinned Structural Models for Apulian Carbonate Reservoirs: Constraints from the Val d’Agri Fields, S Apennines, Italy. Mar. Pet. Geol. 2004, 21, 805–827. [Google Scholar] [CrossRef]
- Piedilato, S.; Prosser, G. Thrust Sequences and Evolution of the External Sector of a Fold and Thrust Belt: An Example from the Southern Apennines (Italy). J. Geodyn. 2005, 39, 386–402. [Google Scholar] [CrossRef]
- Noguera, A.M.; Rea, G. Deep Structure of the Campanian–Lucanian Arc (Southern Apennine, Italy). Tectonophysics 2000, 324, 239–265. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P.; Bellatalla, M.; Perilli, N.; Santini, U. The Numidian-Sand Event in the Southern Apennines. Mem. Sci. Geol. Padova 1992, 43, 297–337. [Google Scholar]
- Cello, G.; Mazzoli, S. Apennine Tectonics in Southern Italy: A Review. J. Geodyn. 1998, 27, 191–211. [Google Scholar] [CrossRef]
- Doglioni, C.; Harabaglia, P.; Martinelli, G.; Mongelli, F.; Zito, G. A Geodynamic Model of the Southern Apennines Accretionary Prism. Terra Nova 1996, 8, 540–547. [Google Scholar] [CrossRef]
- Giano, S.I.; Maschio, L.; Alessio, M.; Ferranti, L.; Improta, S.; Schiattarella, M. Radiocarbon Dating of Active Faulting in the Agri High Valley, Southern Italy. J. Geodyn. 2000, 29, 371–386. [Google Scholar] [CrossRef]
- Scrocca, D.; Carminati, E.; Doglioni, C. Deep Structure of the Southern Apennines, Italy: Thin-skinned or Thick-skinned? Tectonics 2005, 24, TC3005. [Google Scholar] [CrossRef]
- Agosta, F.; Aydin, A. Architecture and Deformation Mechanism of a Basin-Bounding Normal Fault in Mesozoic Platform Carbonates, Central Italy. J. Struct. Geol. 2006, 28, 1445–1467. [Google Scholar] [CrossRef]
- Bucci, F.; Novellino, R.; Guglielmi, P.; Prosser, G.; Tavarnelli, E. Geological Map of the Northeastern Sector of the High Agri Valley, Southern Apennines (Basilicata, Italy). J. Maps 2012, 8, 282–292. [Google Scholar] [CrossRef]
- Novellino, R.; Prosser, G.; Spiess, R.; Viti, C.; Agosta, F.; Tavarnelli, E.; Bucci, F. Dynamic Weakening along Incipient Low-Angle Normal Faults in Pelagic Limestones (Southern Apennines, Italy). J. Geol. Soc. 2015, 172, 283–286. [Google Scholar] [CrossRef]
- Ferraro, F.; Koutalonis, I.; Vallianatos, F.; Agosta, F. Application of Non-Extensive Statistical Physics on the Particle Size Distribution in Natural Carbonate Fault Rocks. Tectonophysics 2019, 771, 228219. [Google Scholar] [CrossRef]
- Schettino, A.; Turco, E. Tectonic History of the Western Tethys since the Late Triassic. GSA Bull. 2011, 123, 89–105. [Google Scholar] [CrossRef]
- Lechler, M.; Frijia, G.; Mutti, M.; Palladino, G.; Prosser, G. Stratigraphic Setting of a Segment from the Eastern Margin of the Apennine Platform (Monte Di Viggiano, Southern Apennines). Rend. Online SGI 2012, 21, 1012. [Google Scholar]
- Dunham, R.J. Classification of Carbonate Rocks According to Depositional Textures. In M 1: Classification of Carbonate Rocks—A Symposium; AAPG: Tulsa, OK, USA, 1962; AAPG Special Volume, pp. 108–121. [Google Scholar]
- Marshall, D.J. Cathodoluminescence of Geological Materials; Unwin Hyman Ltd.: London, UK, 1988; p. 146. ISBN 004 5520267. [Google Scholar]
- Chiocchini, M.; Mancinelli, A. Microbiostratigrafia Del Mesozoico in Facies Di Piattaforma Carbonatica Dei Monti Aurunci (Lazio Meridionale). Studi Geol. Camerti 1977, 3, 109–153. [Google Scholar]
- Chiocchini, M.; Farinacci, A.; Mancinelli, A.; Molinari, V.; Potetti, M. Biostratigrafia a Foraminiferi, Dasicladali e Calpionelle Delle Successioni Carbonatiche Mesozoiche Dell’Appennino Centrale (Italia). Studi Geol. Camerti 1994, special volume part A, 9–128. [Google Scholar]
- BouDagher-Fadel, M.K.; Bosence, D.W. Early Jurassic Benthic Foraminiferal Diversification and Biozones in Shallow-Marine Carbonates of Western Tethys. Senckenberg. Lethaea 2007, 87, 1–39. [Google Scholar] [CrossRef]
- Preto, N.; Breda, A.; Dal Corso, J.; Franceschi, M.; Rocca, F.; Spada, C.; Roghi, G. The Loppio Oolitic Limestone (Early Jurassic, Southern Alps): A Prograding Oolitic Body with High Original Porosity Originated by a Carbonate Platform Crisis and Recovery. Mar. Pet. Geol. 2017, 79, 394–411. [Google Scholar] [CrossRef]
- Trecalli, A.; Spangenberg, J.; Adatte, T.; Föllmi, K.B.; Parente, M. Carbonate Platform Evidence of Ocean Acidification at the Onset of the Early Toarcian Oceanic Anoxic Event. Earth Planet. Sci. Lett. 2012, 357–358, 214–225. [Google Scholar] [CrossRef]
- Barattolo, F.; Romano, R. Shallow Carbonate Platform Bioevents during the Upper Triassic-Lower Jurassic: An Evolutive Interpretation. Ital. J. Geosci. 2005, 124, 123–142. [Google Scholar]
- Di Stefano, P.; Ruberti, D. Cenomanian Rudist-Dominated Shelf-Margin Limestones from the Panormide Carbonate Platform (Sicily, Italy): Facies Analysis and Sequence Stratigraphy. Facies 2000, 42, 133–160. [Google Scholar] [CrossRef]
- Andrews, L.M.; Railsback, L.B. Controls on Stylolite Development: Morphologic, Lithologic, and Temporal Evidence from Bedding-Parallel and Transverse Stylolites from the US Appalachians. J. Geol. 1997, 105, 59–73. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Bjørkum, P.A.; Walderhaug, O.; Nadeau, P.H.; Murphy, W.M. Making Diagenesis Obey Thermodynamics and Kinetics: The Case of Quartz Cementation in Sandstones from Offshore Mid-Norway. Appl. Geochem. 2000, 15, 295–309. [Google Scholar] [CrossRef]
- Renard, F.; Dysthe, D.; Feder, J.; Bjørlykke, K.; Jamtveit, B. Enhanced Pressure Solution Creep Rates Induced by Clay Particles: Experimental Evidence in Salt Aggregates. Geophys. Res. Lett. 2001, 28, 1295–1298. [Google Scholar] [CrossRef]
- Sheldon, H.A.; Wheeler, J.; Worden, R.H.; Cheadle, M.J. An Analysis of the Roles of Stress, Temperature, and pH in Chemical Compaction of Sandstones. J. Sediment. Res. 2003, 73, 64–71. [Google Scholar] [CrossRef]
- Kristiansen, K.; Valtiner, M.; Greene, G.W.; Boles, J.R.; Israelachvili, J.N. Pressure Solution–The Importance of the Electrochemical Surface Potentials. Geochim. Cosmochim. Acta 2011, 75, 6882–6892. [Google Scholar] [CrossRef]
- Aharonov, E.; Katsman, R. Interaction between Pressure Solution and Clays in Stylolite Development: Insights from Modeling. Am. J. Sci. 2009, 309, 607–632. [Google Scholar] [CrossRef]
- Koehn, D.; Renard, F.; Toussaint, R.; Passchier, C. Growth of Stylolite Teeth Patterns Depending on Normal Stress and Finite Compaction. Earth Planet. Sci. Lett. 2007, 257, 582–595. [Google Scholar] [CrossRef]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F.; Schmittbuhl, J. Stress Sensitivity of Stylolite Morphology. Earth Planet. Sci. Lett. 2009, 277, 394–398. [Google Scholar] [CrossRef]
- Park, W.C.; Schot, E.H. Stylolites; Their Nature and Origin. J. Sediment. Res. 1968, 38, 175–191. [Google Scholar]
- Ebner, M.; Toussaint, R.; Schmittbuhl, J.; Koehn, D.; Bons, P. Anisotropic Scaling of Tectonic Stylolites: A Fossilized Signature of the Stress Field? J. Geophys. Res. 2010, 115, B06403. [Google Scholar] [CrossRef]
- Bruns, B.; Di Primio, R.; Berner, U.; Littke, R. Petroleum system evolution in the inverted Lower Saxony Basin, northwest Germany: A 3D basin modeling study. Geofluids 2013, 13, 246–271. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todaro, S.; Manniello, C.; Pietragalla, A.; Preto, N.; Agosta, F. Depositional Setting, Diagenetic Processes, and Pressure Solution-Assisted Compaction of Mesozoic Platform Carbonates, Southern Apennines, Italy. Geosciences 2024, 14, 89. https://doi.org/10.3390/geosciences14040089
Todaro S, Manniello C, Pietragalla A, Preto N, Agosta F. Depositional Setting, Diagenetic Processes, and Pressure Solution-Assisted Compaction of Mesozoic Platform Carbonates, Southern Apennines, Italy. Geosciences. 2024; 14(4):89. https://doi.org/10.3390/geosciences14040089
Chicago/Turabian StyleTodaro, Simona, Canio Manniello, Alessia Pietragalla, Nereo Preto, and Fabrizio Agosta. 2024. "Depositional Setting, Diagenetic Processes, and Pressure Solution-Assisted Compaction of Mesozoic Platform Carbonates, Southern Apennines, Italy" Geosciences 14, no. 4: 89. https://doi.org/10.3390/geosciences14040089
APA StyleTodaro, S., Manniello, C., Pietragalla, A., Preto, N., & Agosta, F. (2024). Depositional Setting, Diagenetic Processes, and Pressure Solution-Assisted Compaction of Mesozoic Platform Carbonates, Southern Apennines, Italy. Geosciences, 14(4), 89. https://doi.org/10.3390/geosciences14040089