Integration and Application of a Fabric-Based Modified Cam-Clay Model in FLAC3D
Abstract
:1. Introduction
2. Constitutive Relation of Fabric-Based MCC Model
2.1. MCC Model, a Brief Review
2.2. MCC Model Enhanced by Fabirc Anisotropy and Lade’s Criterion
3. Integration of Fabric-Based MCC Model in FLAC3D
4. Application of Fabric-Based MCC Model in FLAC3D
4.1. Triaxial Tests
4.2. Embankment Loading Problem
4.3. Tunnel Excavation Problem
5. Conclusions
- (1)
- In the analysis of geotechnical engineering problems, incorporating the fabric anisotropy and three-dimensional strength of the soil is essential, as these factors significantly affect the mechanical response of the soil.
- (2)
- The validity of the model presented in this paper has been validated at both the macroscopic and microscopic levels. The model can reasonably reflect the anisotropic characteristics of the soil. Furthermore, at higher strain levels, the anisotropic soil can converge to a unique critical state, which is consistent with the ACST proposed by Li and Dafalias [69].
- (3)
- The preliminary simulation results of the model provide a reference for its practical application. Although the cases used in the study are relatively simple, the model effectively reflects the impact of factors such as anisotropy, over-consolidation, and the coefficient of lateral earth pressure on soil disturbance. This can serve as a valuable reference for the design and construction of real-world engineering projects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Xu, T.; Chen, Y. Unified modeling of the influence of consolidation conditions on monotonic soil response considering fabric evolution. J. Eng. Mech. 2018, 144, 04018073. [Google Scholar] [CrossRef]
- Papadimitriou, A.G.; Chaloulos, Y.K.; Dafalias, Y.F. A fabric-based sand plasticity model with reversal surfaces within anisotropic critical state theory. Acta Geotech. 2019, 14, 253–277. [Google Scholar] [CrossRef]
- Petalas, A.L.; Dafalias, Y.F.; Papadimitriou, A.G. SANISAND-FN: An evolving fabric-based sand model accounting for stress principal axes rotation. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 97–123. [Google Scholar] [CrossRef]
- Hu, N.; Yu, H.-S.; Yang, D.-S.; Zhuang, P.-Z. Constitutive modelling of granular materials using a contact normal-based fabric tensor. Acta Geotech. 2020, 15, 1125–1151. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Gao, Y. Stress-fractional model with rotational hardening for anisotropic clay. Comput. Geotech. 2020, 126, 103719. [Google Scholar] [CrossRef]
- Liao, D.; Yang, Z. Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading. Acta Geotech. 2021, 16, 2003–2029. [Google Scholar] [CrossRef]
- Yang, M.; Taiebat, M.; Dafalias, Y.F. SANISAND-MSf: A sand plasticity model with memory surface and semifluidised state. Géotechnique 2022, 72, 227–246. [Google Scholar] [CrossRef]
- Zhang, A.; Dafalias, Y.F.; Wang, D. SANISAND-H: A sand bounding surface model for high pressures. Comput. Geotech. 2023, 161, 105579. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M. Non-coaxial behavior modeling of sands subjected to principal stress rotation. Acta Geotech. 2020, 15, 655–669. [Google Scholar] [CrossRef]
- Xue, L.; Yu, J.K.; Pan, J.H.; Wang, R.; Zhang, J.M. Three-dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 353–381. [Google Scholar] [CrossRef]
- Du, Z.; Shi, Z.; Qian, J.; Huang, M.; Guo, Y. Constitutive modeling of three-dimensional non-coaxial characteristics of clay. Acta Geotech. 2022, 17, 2157–2172. [Google Scholar] [CrossRef]
- Du, Z.; Qian, J.; Zhang, J.; Liu, Y.; Huang, M. Elastoplastic modeling cyclic behavior of natural soft clay with principal stress rotation under traffic loading. Acta Geotech. 2023, 18, 3643–3660. [Google Scholar] [CrossRef]
- Cui, K.; Wang, X.-W.; Yuan, R. Unified modeling for clay and sand with a hybrid-driven fabric evolution law. Appl. Math. Model. 2024, 129, 522–544. [Google Scholar] [CrossRef]
- Yuan, R.; Yu, H.-H.; Wang, X.-W. Unified modeling for the simple shear behavior of clay and sand accounting for Principal stress rotations. Int. J. Geomech. 2024, 24, 04024239. [Google Scholar] [CrossRef]
- Sheng, D.; Sloan, S.; Yu, H. Aspects of finite element implementation of critical state models. Comput. Mech. 2000, 26, 185–196. [Google Scholar] [CrossRef]
- Cheng, Z.; Yannis, F.D.; Majid, T.M. Application of SANISAND Dafalias-Manzari model in FLAC 3D. In Proceedings of the 3rd International FLAC/DEM Symposium, Hangzhou, China, 22–24 October 2013; p. 09-03. [Google Scholar]
- Liu, K.; Chen, S.; Voyiadjis, G. Integration of anisotropic modified Cam Clay model in finite element analysis: Formulation, validation, and application. Comput. Geotech. 2019, 116, 103198. [Google Scholar] [CrossRef]
- Yuan, R.; Yu, H.S.; Hu, N.; He, Y. Non-coaxial soil model with an anisotropic yield criterion and its application to the analysis of strip footing problems. Comput. Geotech. 2018, 99, 80–92. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Li, Y.; Liu, S.; Zhou, P. Numerical simulation of cyclic shear tests considering the fabric change and principal stress rotation effects. Int. J. Numer. Anal. Methods Geomech. 2022, 46, 1409–1432. [Google Scholar] [CrossRef]
- Dai, Z.-H.; Qin, Z.-Z. Numerical and theoretical verification of modified cam-clay model and discussion on its problems. J. Cent. South Univ. 2013, 20, 3305–3313. [Google Scholar] [CrossRef]
- Hashash, Y.; Whittle, A. Integration of the modified Cam-Clay model in non-linear finite element analysis. Comput. Geotech. 1992, 14, 59–83. [Google Scholar] [CrossRef]
- Alnmr, A. Material Models to Study the Effect of Fines in Sandy Soils Based on Experimental and Numerical Results. Acta Tech. Jaurinensis 2021, 14, 651–680. [Google Scholar] [CrossRef]
- Xiao, S.; Xu, M.; Lan, R. Choice of Soil Constitutive Models in Numerical Analysis of Foundation Pit Excavation Based on FLAC3D. In Proceedings of the International Conference on Green Building, Civil Engineering and Smart City, Guiyang, China, 9–12 June 2023; Springer: Singapore, 2023; pp. 98–110. [Google Scholar]
- Alsirawan, R.; Sheble, A.; Alnmr, A. Two-dimensional numerical analysis for TBM tunneling-induced structure settlement: A proposed modeling method and parametric study. Infrastructures 2023, 8, 88. [Google Scholar] [CrossRef]
- Brinkgreve, R.B. Selection of soil models and parameters for geotechnical engineering application. In Soil Constitutive Models: Evaluation, Selection, and Calibration; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 69–98. [Google Scholar]
- Sui, C.-Y.; Shen, Y.-S.; Wen, Y.-M.; Gao, B. Application of the modified Mohr–Coulomb yield criterion in seismic numerical simulation of tunnels. Shock Vib. 2021, 2021, 9968935. [Google Scholar] [CrossRef]
- Qin, J.; Zeng, X.; Ming, H. Influence of fabric anisotropy on seismic responses of foundations. J. Rock Mech. Geotech. Eng. 2015, 7, 147–154. [Google Scholar] [CrossRef]
- Yao, Y.-P.; Sun, D.A. Application of Lade’s criterion to Cam-clay model. J. Eng. Mech. 2000, 126, 112–119. [Google Scholar] [CrossRef]
- Matsuoka, H.; Yao, Y.; Sun, D. The Cam-clay models revised by the SMP criterion. Soils Found. 1999, 39, 81–95. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, Z.; Liu, X. Development of an anisotropic nonlinear strength criterion for geomaterials based on SMP criterion. Int. J. Geomech. 2020, 20, 04019183. [Google Scholar] [CrossRef]
- Wang, R.; Cao, W.; Zhang, J.-M. Dependency of dilatancy ratio on fabric anisotropy in granular materials. J. Eng. Mech. 2019, 145, 04019076. [Google Scholar] [CrossRef]
- He, Y.-Q.; Liao, H.-J.; Wu, W.; Wang, S. Hypoplastic modeling of inherent anisotropy in normally and overconsolidated clays. Acta Geotech. 2023, 18, 6315–6333. [Google Scholar] [CrossRef]
- Miura, K.; Miura, S.; Toki, S. Deformation Behavior of Anisotropic Dense Sand Under Principal Stress Axes Rotation—ScienceDirect. Soils Found. 1986, 26, 36–52. [Google Scholar] [CrossRef]
- Yoshimine, M.; Ishihara, K.; Vargas, W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils Found. 1998, 38, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Nakata, Y.; Hyodo, M.; Murata, H.; Yasufuku, N. Flow deformation of sands subjected to principal stress rotation. Soils Found. 1998, 38, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yu, H.-S.; Wanatowski, D.; Li, X. Noncoaxial behavior of sand under various stress paths. J. Geotech. Geoenviron. Eng. 2013, 139, 1381–1395. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Yu, H.-S.; Roberts, G.W. Monotonic direct simple shear tests on sand under multidirectional loading. Int. J. Geomech. 2017, 17, 04016038. [Google Scholar] [CrossRef]
- Zamanian, M.; Jafarzadeh, F. Experimental study of stress anisotropy and noncoaxiality of dense sand subjected to monotonic and cyclic loading. Transp. Geotech. 2020, 23, 100331. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Yang, J. Undrained anisotropy and rotational shear in granular soil. Géotechnique 2007, 57, 371–384. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Li, B.; Guo, L.; Cai, Y.; Mahfouz, A.H. Influence of initial state and intermediate principal stress on undrained behavior of soft clay during pure principal stress rotation. Acta Geotech. 2019, 14, 1379–1401. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, M.; Wang, D. Effect of fabric anisotropy on the cyclic liquefaction of sands: Insight from DEM simulations. Comput. Geotech. 2023, 155, 105188. [Google Scholar] [CrossRef]
- Wang, R.; Cao, W.; Xue, L.; Zhang, J.-M. An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotech. 2021, 16, 43–65. [Google Scholar] [CrossRef]
- Fang, Y.; Cui, J.; Wanatowski, D.; Nikitas, N.; Yuan, R.; He, Y. Subsurface settlements of shield tunneling predicted by 2D and 3D constitutive models considering non-coaxiality and soil anisotropy: A case study. Can. Geotech. J. 2022, 59, 424–440. [Google Scholar] [CrossRef]
- Hu, C.; Liu, H. Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay. Comput. Geotech. 2014, 55, 27–41. [Google Scholar] [CrossRef]
- Yuan, R.; Yang, W.; Yu, H.; Zhou, B. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements. Chin. J. Geotech. Eng. 2018, 40, 673–680. [Google Scholar]
- Yuan, R.; Yu, H.-S.; Zhang, J.-R.; Fang, Y. Noncoaxial theory of plasticity incorporating initial soil anisotropy. Int. J. Geomech. 2019, 19, 06019017. [Google Scholar] [CrossRef]
- Wheeler, S.J.; Näätänen, A.; Karstunen, M.; Lojander, M. An anisotropic elastoplastic model for soft clays. Can. Geotech. J. 2003, 40, 403–418. [Google Scholar] [CrossRef]
- Taiebat, M.; Dafalias, Y.F. SANISAND: Simple anisotropic sand plasticity model. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 915–948. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, C.; Shi, Z. Drained expansion analyses of a cylindrical cavity in sands incorporating the SANISAND model with fabric change effect. Appl. Math. Model. 2023, 120, 711–732. [Google Scholar] [CrossRef]
- Karstunen, M.; Wiltafsky, C.; Krenn, H.; Scharinger, F.; Schweiger, H. Modelling the behaviour of an embankment on soft clay with different constitutive models. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 953–982. [Google Scholar] [CrossRef]
- Yildiz, A.; Karstunen, M.; Krenn, H. Effect of anisotropy and destructuration on behavior of Haarajoki test embankment. Int. J. Geomech. 2009, 9, 153–168. [Google Scholar] [CrossRef]
- Sivasithamparam, N.; Rezania, M. The comparison of modelling inherent and evolving anisotropy on the behaviour of a full-scale embankment. Int. J. Geotech. Eng. 2017, 11, 343–354. [Google Scholar] [CrossRef]
- Wang, R.; Dafalias, Y.F.; Fu, P.; Zhang, J.-M. Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM. Int. J. Solids Struct. 2020, 188, 210–222. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Zhang, H.; Yu, H.-S. Experimental and DEM Study of Two Dimensional Simple Shear. In Challenges and Innovations in Geomechanics: Proceedings of the 16th International Conference of IACMAG; Springer: Turin, Italy, 2021; Volume 1, pp. 303–310. [Google Scholar]
- Wu, Q.; Yan, L.; Yang, Z. Discrete element simulations of drained granular material response under multidirectional rotational shear. Comput. Geotech. 2021, 139, 104375. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, J.; Yang, Z. Effects of initial fabric anisotropy on the undrained rotational shear responses of granular material using discrete element simulations. Acta Geotech. 2023, 18, 5175–5194. [Google Scholar] [CrossRef]
- Wu, Q.; Faraji, S.F.; Zheng, Y.; Zheng, J.-J. Effects of intermediate principal stress on the granular material behavior under partial drainage conditions. Acta Geotech. 2024, 19, 2629–2648. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Yang, J. Quantifying and modelling fabric anisotropy of granular soils. Geotechnique 2008, 58, 237–248. [Google Scholar] [CrossRef]
- Yin, Z.-Y.; Chang, C.S.; Hicher, P.-Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int. J. Solids Struct. 2010, 47, 1933–1951. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, J.; Li, X.-S.; Dafalias, Y.F. A critical state sand plasticity model accounting for fabric evolution. Int. J. Numer. Anal. Methods Geomech. 2014, 38, 370–390. [Google Scholar] [CrossRef]
- Yuan, R.; Yu, H.-S.; Yang, D.-S.; Hu, N. On a fabric evolution law incorporating the effects of b-value. Comput. Geotech. 2019, 105, 142–154. [Google Scholar] [CrossRef]
- Yao, Y.-P.; Kong, Y.-X. Extended UH model: Three-dimensional unified hardening model for anisotropic clays. J. Eng. Mech. 2012, 138, 853–866. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, Y.; Gao, Z. Anisotropic UH model for soils based on a simple transformed stress method. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 54–78. [Google Scholar] [CrossRef]
- Tian, Y.; Yao, Y.-P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils. Acta Geotech. 2018, 13, 1299–1311. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, H.; Yao, Z.; Fang, Y. A Multiscale Method to Develop Three-Dimensional Anisotropic Constitutive Model for Soils. Buildings 2024, 14, 307. [Google Scholar] [CrossRef]
- Oda, M. Inherent and induced anisotropy in plasticity theory of granular soils. Mech. Mater. 1993, 16, 35–45. [Google Scholar] [CrossRef]
- Li, X.; Dafalias, Y. A constitutive framework for anisotropic sand including non-proportional loading. Géotechnique 2004, 54, 41–55. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y. Critical state for anisotropic granular materials: A discrete element perspective. Int. J. Geomech. 2016, 17, 04016054. [Google Scholar] [CrossRef]
- Li, X.S.; Dafalias, Y.F. Anisotropic critical state theory: Role of fabric. J. Eng. Mech. 2012, 138, 263–275. [Google Scholar] [CrossRef]
- Liao, D.; Yang, Z. Hypoplastic model for sand under multidirectional shearing conditions considering fabric change effect. Soil Dyn. Earthq. Eng. 2022, 155, 107168. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, J. A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution. Int. J. Solids Struct. 2017, 106, 200–212. [Google Scholar] [CrossRef]
- Roscoe, K.H.; Burland, J.B. On the generalized stress-strain behaviour of wet clay. In Engineering Plasticity; Cambridge University Press: Cambridge, UK, 1968; pp. 535–609. [Google Scholar]
- Budhu, M. Soil Mechanics and Foundations, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Yu, H.-S. CASM: A unified state parameter model for clay and sand. Int. J. Numer. Anal. Methods Geomech. 1998, 22, 621–653. [Google Scholar] [CrossRef]
- Dafalias, Y.F.; Manzari, M.T.; Akaishi, M. A simple anisotropic clay plasticity model. Mech. Res. Commun. 2002, 29, 241–245. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.S.; Li, X.S. Macro–micro relations in granular mechanics. Int. J. Solids Struct. 2009, 46, 4331–4341. [Google Scholar] [CrossRef]
- Li, X.S.; Dafalias, Y.F. Constitutive modeling of inherently anisotropic sand behavior. J. Geotech. Geoenviron. Eng. 2002, 128, 868–880. [Google Scholar] [CrossRef]
- Yao, Y.-P.; Zhou, A.-N.; Lu, D.-C. Extended transformed stress space for geomaterials and its application. J. Eng. Mech. 2007, 133, 1115–1123. [Google Scholar] [CrossRef]
- Hashiguchi, K. Elastoplasticity Theory; Springer: Fukuoka, Japan, 2014. [Google Scholar]
- Sun, Z.C.; Chu, J.; Xiao, Y. Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 2682–2708. [Google Scholar] [CrossRef]
- Yin, Z.-Y.; Hicher, P.-Y.; Jin, Y.-F. Practice of Constitutive Modelling for Saturated Soils; Springer: Singapore, 2020. [Google Scholar]
- Taiebat, M. Advanced Elastic-Plastic Constitutive and Numerical Modeling in Geomechanics. Ph.D. Thesis, University of California, Davis, CA, USA, 2008. [Google Scholar]
- Modified Cam-Clay Model. Available online: https://docs.itascacg.com/flac3d700/common/models/camclay/doc/modelcamclay.html?highlight=cam%20clay (accessed on 20 November 2024).
- Doanh, T.; Ibraim, E.; Matiotti, R. Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: Experimental observations. Mech. Cohes.-Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 1997, 2, 47–70. [Google Scholar] [CrossRef]
- Nakai, T.; Matsuoka, H.; Okuno, N.; Tsuzuki, K. True triaxial tests on normally consolidated clay and analysis of the observed shear behavior using elastoplastic constitutive models. Soils Found. 1986, 26, 67–78. [Google Scholar] [CrossRef]
- Tian, Y. UH Model Based on the Anisotropic Transformed Stress Method and Its Application. Ph.D. Thesis, Beihang University, Beijing, China, 2018. [Google Scholar]
- Qian, J.-G.; Du, Z.-B.; Yin, Z.-Y. Cyclic degradation and non-coaxiality of soft clay subjected to pure rotation of principal stress directions. Acta Geotech. 2018, 13, 943–959. [Google Scholar] [CrossRef]
- Yang, D. Microscopic Study of Granular Material Behaviours Under General Stress Paths. Ph.D. Thesis, University of Nottingham Nottingham, Nottingham, UK, 2014. [Google Scholar]
- Li, X.; Li, X.-S. Micro-macro quantification of the internal structure of granular materials. J. Eng. Mech. 2009, 135, 641–656. [Google Scholar] [CrossRef]
- Embankment Loading on a Cam-Clay Foundation. Available online: https://docs.itascacg.com/flac3d700/flac3d/zone/test3d/ExampleApplications/EmbankmentLoad/embankmentload.html?node3604 (accessed on 20 November 2024).
- Cui, J. Study on Soil Deformation Induced by Shield Construction Considering Non-Coaxiality and Anisotropy of Soil. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2022. [Google Scholar]
- Nakase, A.; Kamei, T.; Kusakabe, O. Constitutive parameters estimated by plasticity index. J. Geotech. Eng. 1988, 114, 844–858. [Google Scholar] [CrossRef]
- Tu, W.; Huang, M.; Zhong, R. Scour effects on the dynamic lateral response of composite caisson-piles foundations considering stress history of sand. Jpn. Geotech. Soc. Spec. Publ. 2015, 1, 23–28. [Google Scholar] [CrossRef]
- Mayne, P.W.; Kulhawy, F.H. Ko-OCR relationships in soil. J. Geotech. Eng. Div. 1982, 108, 851–872. [Google Scholar] [CrossRef]
- Dolezalova, M. Approaches to numerical modelling of ground movements due to shallow tunnelling. In Proceedings of the Planning and Engineering for the Cities of Tomorrow. Second International Conference on Soil Structure Interaction in Urban Civil Engineering Swiss Federal Inst of Technology, Zurich, Switzerland, 7–8 March 2002. [Google Scholar]
- Shi, J.; Ding, C.; Ng, C.W.W.; Lu, H.; Chen, L. Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay. Tunn. Undergr. Space Technol. 2020, 97, 103247. [Google Scholar] [CrossRef]
- Wu, H.; Li, M.-G.; Chen, J.-J.; Ye, G.-L. Effects of Overconsolidation and Structural Behaviors of Shanghai Clay on Deformation Caused by Deep Excavation. Int. J. Geomech. 2024, 24, 04024139. [Google Scholar] [CrossRef]
- Shahin, H.M.; Nakai, T.; Okuno, T. Numerical study on 3D effect and practical design in shield tunneling. Undergr. Space 2019, 4, 201–209. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, Q.; Liu, J.; Zhang, L.; Yu, C.; Jin, K. DEM Study About Influence of Fabric Anisotropy on Formation Disturbance. J. Southwest Jiaotong Univ. 2024, OL, 1–10. [Google Scholar]
- Chen, S.; Ma, W.; Li, G.; Li, J.; Ma, X. Study on the characterization method and evolution law of the three-dimensional pore structure in frozen loess under loading. Cold Reg. Sci. Technol. 2024, 221, 104151. [Google Scholar] [CrossRef]
Model | Basic Parameters [72] | Fabric Parameters [63,64,65] |
---|---|---|
MCC model | ) | / |
Fabric-based MCC model | ) |
Case | Basic Parameters | Fabric Parameters |
---|---|---|
Triaxial tests | ||
Embankment loading | ||
Tunnel excavation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-W.; Cui, K.; Ran, Y.; Tian, Y.; Wu, B.-H.; Xiao, W.-B. Integration and Application of a Fabric-Based Modified Cam-Clay Model in FLAC3D. Geosciences 2025, 15, 18. https://doi.org/10.3390/geosciences15010018
Wang X-W, Cui K, Ran Y, Tian Y, Wu B-H, Xiao W-B. Integration and Application of a Fabric-Based Modified Cam-Clay Model in FLAC3D. Geosciences. 2025; 15(1):18. https://doi.org/10.3390/geosciences15010018
Chicago/Turabian StyleWang, Xiao-Wen, Kai Cui, Yuan Ran, Yu Tian, Bo-Han Wu, and Wen-Bin Xiao. 2025. "Integration and Application of a Fabric-Based Modified Cam-Clay Model in FLAC3D" Geosciences 15, no. 1: 18. https://doi.org/10.3390/geosciences15010018
APA StyleWang, X.-W., Cui, K., Ran, Y., Tian, Y., Wu, B.-H., & Xiao, W.-B. (2025). Integration and Application of a Fabric-Based Modified Cam-Clay Model in FLAC3D. Geosciences, 15(1), 18. https://doi.org/10.3390/geosciences15010018