Relationship Between Thermal Conductivity, Mineral Composition and Major Element Composition in Rocks from Central and South Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lithology
2.2. Thermal Conductivity Measurements
2.3. Geochemical Sample Preparation
2.4. Major Element Analytic
2.5. Mineral Phase Analytic
2.6. Density and Porosity Measurements
3. Results
3.1. Thermal Conductivity via Thermal Conductivity Scanner (TCS)
3.2. Major Element and Mineral Phase Analytic
4. Discussion
4.1. Contributing Factors Not Measurable in Laboratory Scale
4.2. Classification of Samples
4.3. Combination of Geochemical and Geothermal Properties
4.4. Influence of Porosity and Density
4.5. Comparison with Prior Studies
5. Conclusions
- A new dataset of geochemical and thermal properties of rocks from Central Germany was created. The rocks were selected to cover the main areas of central German geology.
- The resulting thermal conductivity values are in a range between 1.19 and 6.85 W/(m∙K) in a dry state and 2.24 and 8.06 W/(m∙K) in a water-saturated state.
- The chemical composition significantly impacts thermal properties, especially a high quartz content rather than SiO2 content, and increases thermal conductivity in SiO2-bearing rocks. Aluminum silicates, occurring in slates and clay stone, correlate with lower thermal conductivity. Rock density correlates partly with thermal conductivity.
- Heterogeneities due to mineral concentrations and structural differences can be well displayed and analyzed with TCS.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
b.g.l. | Below ground level |
RSD | Relative standard deviation |
TAS | Total alkali vs. silica (content) |
TCS | Thermal conductivity scanner |
XRF | X-ray fluorescence |
XRD | X-ray diffraction |
Variables | |
θ | water content [%] |
λ | thermal conductivity [W/(m∙K)] |
ρ | density [kg/m3]/[g/cm3] |
Appendix A
Sample Type | Ba | Cr | Ga | Nb | Ni | Pb | Rb |
---|---|---|---|---|---|---|---|
Clay slate I | 723 | 74.0 | 22.5 | 11.0 | 46.6 | 2.4 | 148 |
Clay slate II | 689 | 96.8 | 24.6 | 14.1 | 57.5 | 9.2 | 173 |
Clay slate III | 566 | 94.7 | 24.4 | 12.1 | 50.1 | 6.2 | 152 |
Clay slate IV | 660 | 96.2 | 27.3 | 14.7 | 58.5 | 13.6 | 174 |
Granite | 759 | 11.2 | 22.1 | 37.5 | 6.9 | 5.6 | 112 |
Greywacke I | 231 | 99.8 | 15.4 | 4.4 | 67.1 | 7.6 | 45.9 |
Greywacke II | 318 | 96.4 | 15.0 | 5.6 | 48.4 | 7.1 | 58.5 |
Greywacke III | 287 | 40.5 | 7.8 | 3.0 | 23.6 | 6.0 | 39.0 |
Claystone | 260 | 97.9 | 13.2 | 5.1 | 61.8 | 3.9 | 57.3 |
Sandstone I | 842 | 23.6 | 9.5 | 0.9 | 25.6 | 15.6 | 114 |
Sandstone II | 576 | 19.5 | 8.3 | 2.1 | 11.4 | 14.1 | 86.8 |
Sandstone III | 106 | 32.1 | 4.0 | 3.4 | 13.5 | 10.3 | 14.1 |
Fe-rich Sandstone | 102 | 99.3 | 8.8 | 7.6 | 57.4 | 7.1 | 12.7 |
Dolomite | 20.8 | 22.8 | 2.0 | <0.5 | 2.3 | <1.0 | <0.5 |
Limestone | 29.3 | 29.2 | 3.9 | 1.0 | <0.5 | 1.7 | <0.5 |
Basalt | 971 | 136 | 18.1 | 70.9 | 92.3 | 4.1 | 66.6 |
Quartzite | 54.7 | 16.9 | 2.4 | <0.5 | 13.2 | 19.0 | <0.5 |
Sample type | Sr | Th | V | Y | Zn | Zr | |
Clay slate I | 71.9 | 13.5 | 92.7 | 31.5 | 99.3 | 210 | |
Clay slate II | 109 | 20.3 | 97.0 | 29.8 | 118 | 175 | |
Clay slate III | 91.0 | 18.4 | 102 | 26.8 | 91.3 | 181 | |
Clay slate IV | 85.4 | 21.2 | 96.9 | 33.2 | 118 | 184 | |
Granite | 62.6 | 10.4 | 2.9 | 48.4 | 33.3 | 486 | |
Greywacke I | 52.5 | 5.5 | 75.5 | 15.8 | 61.2 | 120 | |
Greywacke II | 63.6 | 5.8 | 92.9 | 17.9 | 42.8 | 139 | |
Greywacke III | 262 | 4.3 | 31.7 | 6.6 | 29.9 | 65.8 | |
Claystone | 60.1 | 6.6 | 91.1 | 18.1 | 58.3 | 149 | |
Sandstone I | 89.5 | 4.2 | 15.4 | 5.9 | 17.6 | 63.6 | |
Sandstone II | 69.0 | 5.7 | 16.9 | 1.5 | 15.7 | 64.1 | |
Sandstone III | 23.0 | 5.1 | 32.0 | 7.0 | 98.0 | 60.0 | |
Fe-rich Sandstone | 536 | 6.0 | 136 | 19.8 | 39.3 | 330 | |
Dolomite | 47.8 | 1.3 | 16.5 | 2.7 | 18.4 | 5.8 | |
Limestone | 248 | 2.1 | 20.1 | 5.8 | 34.9 | 10.1 | |
Basalt | 976 | 6.7 | 222 | 22.7 | 84.2 | 283 | |
Quartzite | 3.9 | <1.0 | 1.3 | <0.5 | 10.7 | 4.3 |
Clay Slate I | Clay Slate II | Clay Slate II | Clay Slate II | ||||
---|---|---|---|---|---|---|---|
Quartz | 50.2 | Quartz | 35.9 | Quartz | 42.6 | Quartz | 38.3 |
Muscovite | 37.1 | Muscovite | 43.1 | Muscovite | 38.2 | Muscovite | 40.7 |
Chlorite | 11.9 | Chlorite | 14.1 | Chlorite | 11.1 | Chlorite | 15.2 |
K-Feldspar | 0.7 | Plagioclase | 3.6 | Plagioclase | 6.8 | Plagioclase | 3.7 |
K-Feldspar | 3.1 | K-Feldspar | 1.1 | K-Feldspar | 1.9 | ||
Granite | Greywacke I | Greywacke II | Greywacke III | ||||
Quartz | 42 | Quartz | 55.3 | Quartz | 54.6 | Quartz | 56.4 |
Muscovite | 7.1 | Muscovite | 8.3 | Muscovite | 16.8 | Muscovite | 19.1 |
Chlorite | 1.7 | Chlorite | 13.2 | Chlorite | 7.8 | Chlorite | 7.2 |
Plagioclase | 27.5 | Plagioclase | 19.2 | Plagioclase | 19.9 | Plagioclase | 17.2 |
K-Feldspar | 21.5 | K-Feldspar | 1 | K-Feldspar | 0.6 | ||
Dolomite | 2.8 | ||||||
Sandstone I | Sandstone II | Sandstone III | Fe-rich Sandstone | ||||
Quartz | 56.3 | Quartz | 74 | Quartz | 89 | Quartz | 55 |
Muscovite | 3.8 | K-Feldspar | 14 | Goethite | 11 | Goethite | 38 |
K-Feldspar | 28.5 | Illite | 6 | Hematite | 7 | ||
Dolomite | 11.3 | Kaolinite | 6 | ||||
Claystone | Basalt | Quartzite | |||||
Quartz | 24 | Chlorite | 5 | Quartz | 100 | ||
Muscovite | 9 | Plagioclase | 36 | Dolomite | |||
Chlorite | 4 | Diopside | 33 | Dolomite | 100 | ||
K-Feldspar | 10 | Natrolite | 4 | Limestone | |||
Hematite | 3 | Analcime | 8 | Quartz | 1 | ||
Illite | 50 | Leucite | 2 | Calcite | 99 | ||
Nepheline | 5 | ||||||
Forsterite | 7 |
References
- Suft, O.; Bertermann, D. One-Year Monitoring of a Ground Heat Exchanger Using the In Situ Thermal Response Test: An Experimental Approach on Climatic Effects. Energies 2022, 15, 9490. [Google Scholar] [CrossRef]
- Sanner, B.; Mands, E.; Sauer, M.K.; Grundmann, E. Thermal Response Test, a routine method to determine thermal ground properties for GSHP design. In Proceedings of the International IEA Heat Pump Conference, Zürich, Switzerland, 20–22 May 2008. [Google Scholar]
- VDI 4640-5; Thermal use of the underground—Part 5: Thermal-Response-Test (TRT). VDI: Düsseldorf, Germany, 2020.
- Dalla Santa, G.; Pasquier, P.; Schenato, L.; Galgaro, A. Repeated ETRTs in a Complex Stratified Geological Setting: High-Resolution Thermal Conductivity Identification by Multiple Linear Regression. J. Geotech. Geoenviron. Eng. 2022, 148, 04022007. [Google Scholar] [CrossRef]
- Bertermann, D.; Suft, O. Determination of the Temperature Development in a Borehole Heat Exchanger Field Using Distributed Temperature Sensing. Energies 2024, 17, 4697. [Google Scholar] [CrossRef]
- Eppelbaum, L.; Kutasov, I.; Pilchin, A. Thermal properties of rocks and density of fluids. In Applied Geothermics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 99–149. [Google Scholar] [CrossRef]
- Clauser, C.; Huenges, E. Thermal Conductivity of Rocks and Minerals; American Geophyscial Union: Washington, DC, USA, 1995. [Google Scholar] [CrossRef]
- Midttømme, K.; Roaldset, E.; Aagaard, P. Thermal conductivity of selected claystones and mudstones from England. Clay Miner. 1998, 33, 131–145. [Google Scholar] [CrossRef]
- Barry-Macaulay, D.; Bouazza, A.; Singh, R.M.; Wang, B.; Ranjith, P.G. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng. Geol. 2013, 164, 131–138. [Google Scholar] [CrossRef]
- Long, M.; Murray, S.; Pasquali, R. Thermal conductivity of Irish rocks. Ir. J. Earth Sci. 2018, 36, 63–80. [Google Scholar] [CrossRef]
- Bloomer, J. Thermal conductivities of mudrocks in the United Kingdoms. Q. J. Eng. Geol. Hydrogeol. 1981, 14, 357–362. [Google Scholar] [CrossRef]
- Alishaev, M.G.; Abdulagatov, I.M.; Abdulagatova, Z.Z. Effective thermal conductivity of fluid-saturated rocks. Eng. Geol. 2012, 135–136, 24–39. [Google Scholar] [CrossRef]
- Rammler, M.; Schwarz, H.; Wagner, J.; Bertermann, D. Comparison of Measured and Derived Thermal Conductivities in the Unsaturated Soil Zone of a Large-Scale Geothermal Collector System (LSC). Energies 2023, 16, 1195. [Google Scholar] [CrossRef]
- Dissanayaka, S.H.; Hamamoto, S.; Kawamoto, K.; Komatsu, T.; Moldrup, P. Thermal Properties of Peaty Soils: Effects of Liquid-Phase Impedance Factor and Shrinkage. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef]
- Alrtimi, A.; Rouainia, M.; Haigh, S. Thermal conductivity of a sandy soil. Appl. Therm. Eng. 2016, 106, 551–560. [Google Scholar] [CrossRef]
- Horai, K.-I.; Simmons, G. Thermal conductivity of rock-forming minerals. Earth Planet. Sci. Lett. 1969, 6, 359–368. [Google Scholar] [CrossRef]
- Horai, K.i. Thermal conductivity of rock-forming minerals. J. Geophys. Res. 1971, 76, 1278–1308. [Google Scholar] [CrossRef]
- Chopra, N.; Ray, L.; Dey, S.; Mitra, A. Thermal conductivity, density, petrological and geochemical characteristics of granitoids from Singhbhum Craton, eastern India. Geothermics 2020, 87, 101855. [Google Scholar] [CrossRef]
- Ray, L.; Chopra, N.; Hiloidari, S.; Naidu, N.N.; Kumar, V. Thermal conductivity of granitoids of varying composition up to 300 °C and implications for crustal thermal models. Geophys. J. Int. 2021, 227, 316–332. [Google Scholar] [CrossRef]
- Horai, K.-I.; Baldridge, S. Thermal conductivity of nineteen igneous rocks, II estimation of the thermal conductivity of rock from the mineral and chemical compositions. Phys. Earth Planet. Inter. 1972, 5, 157–166. [Google Scholar] [CrossRef]
- Popov, Y.A.; Pribnow, D.F.C.; Sass, J.H.; Williams, C.F.; Burkhardt, H. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 1999, 28, 253–276. [Google Scholar] [CrossRef]
- Woodside, W.; Messmer, J.H. Thermal Conductivity of Porous Media. I. Unconsolidated Sands. J. Appl. Phys. 1961, 32, 1688–1699. [Google Scholar] [CrossRef]
- Franz, C.; Schulze, M. Bestimmung thermischer Eigenschaften der Gesteine des Unteren und Mittleren Buntsandsteins. Grundwasser 2016, 21, 47–58. [Google Scholar] [CrossRef]
- Maqsood, A.; Kamran, K.; Gul, I.H. Prediction of thermal conductivity of granite rocks from porosity and density data at normal temperature and pressure: In situ thermal conductivity measurements. J. Phys. D Appl. Phys. 2004, 37, 3396. [Google Scholar] [CrossRef]
- Gegenhuber, N.; Schoen, J. New approaches for the relationship between compressional wave velocity and thermal conductivity. J. Appl. Geophys. 2012, 76, 50–55. [Google Scholar] [CrossRef]
- Yu, R.; Jiang, S.; Fuchs, S.; Peng, P.; Li, Y.; Wang, H. Estimating the thermal conductivity of plutonic rocks from major oxide composition using machine learning. Geophys. J. Int. 2023, 234, 2143–2159. [Google Scholar] [CrossRef]
- Jennings, S.; Hasterok, D.; Payne, J. A new compositionally based thermal conductivity model for plutonic rocks. Geophys. J. Int. 2019, 219, 1377–1394. [Google Scholar] [CrossRef]
- BGR. General Geological Map of the Federal Republic of Germany 1:200,000 (GUEK200); BGR: Stuttgart, Germany, 2003. [Google Scholar]
- Popov, Y.; Lippmann, E.; Rauen, A. TCS Manual. Achim, Germany. 2020. Available online: www.tcscan.de (accessed on 2 January 2025).
- Popov, Y.; Tertychnyi, V.; Romushkevich, R.; Korobkov, D.; Pohl, J. Interrelations between thermal conductivity and other physical properties of rocks: Experimental data. In Thermo-Hydro-Mechanical Coupling in Fractured Rock; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1137–1161. [Google Scholar] [CrossRef]
- EN 13755:2008; Natural Stone Test Methods—Determination of Water Absorption at Atmospheric Pressure. DIN: Berlin, Germany, 2008. [CrossRef]
- Bish, D.L.; Howard, S. Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 1988, 21, 86–91. [Google Scholar] [CrossRef]
- Rietveld, H.M. The rietveld method. Phys. Scr. 2014, 89, 098002. [Google Scholar] [CrossRef]
- EN 1936:2006; Natural Stone Test Method—Determination of Real Density and Apparent Density, and of Total and Open Porosity. Deutsches Institut für Normung e.V.: Berlin, Germany, 2007.
- VDI 4640-1; Thermal Use of the Underground—Part 1: Fundamentals, Approvals, Environmental Aspects. VDI: Düsseldorf, Germany, 2010.
- Kämmlein, M.; Stollhofen, H. Lithology-specific influence of particle size distribution and mineralogical composition on thermal conductivity measurements of rock fragments. Geothermics 2019, 80, 119–128. [Google Scholar] [CrossRef]
- Kämmlein, M.; Stollhofen, H. Pore-fluid-dependent controls of matrix and bulk thermal conductivity of mineralogically heterogeneous sandstones. Geotherm. Energy 2019, 7, 13. [Google Scholar] [CrossRef]
- Vosteen, H.-D.; Schellschmidt, R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys. Chem. Earth Parts A/B/C 2003, 28, 499–509. [Google Scholar] [CrossRef]
- Gehlin, S.; Hellström, G. Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew. Energy 2003, 28, 2221–2238. [Google Scholar] [CrossRef]
- Magraner, T.; Montero, Á.; Cazorla-Marín, A.; Montagud-Montalvá, C.; Martos, J. Thermal response test analysis for U-pipe vertical borehole heat exchangers under groundwater flow conditions. Renew. Energy 2021, 165, 391–404. [Google Scholar] [CrossRef]
- Diao, N.; Li, Q.; Fang, Z. Heat transfer in ground heat exchangers with groundwater advection. Int. J. Therm. Sci. 2004, 43, 1203–1211. [Google Scholar] [CrossRef]
- Verdoya, M.; Imitazione, G.; Chiozzi, P.; Orsi, M.; Armadillo, E.; Pasqua, C. Interpretation of thermal response tests in borehole heat exchangers affected by advection. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015; p. 7. [Google Scholar]
- Luo, J.; Tuo, J.; Huang, W.; Zhu, Y.; Jiao, Y.; Xiang, W.; Rohn, J. Influence of groundwater levels on effective thermal conductivity of the ground and heat transfer rate of borehole heat exchangers. Appl. Therm. Eng. 2018, 128, 508–516. [Google Scholar] [CrossRef]
- Pasquier, P.; Lamarche, L. Analytic expressions for the moving infinite line source model. Geothermics 2022, 103, 102413. [Google Scholar] [CrossRef]
- Haffen, S.; Géraud, Y.; Rosener, M.; Diraison, M. Thermal conductivity and porosity maps for different materials: A combined case study of granite and sandstone. Geothermics 2017, 66, 143–150. [Google Scholar] [CrossRef]
- Luo, J.; Rohn, J.; Xiang, W.; Bayer, M.; Priess, A.; Wilkmann, L.; Steger, H.; Zorn, R. Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers. Energy 2015, 84, 473–484. [Google Scholar] [CrossRef]
- Tao, H.; Sun, S.; Wang, Q.; Yang, X.; Jiang, L. Petrography and geochemistry of lower carboniferous greywacke and mudstones in Northeast Junggar, China: Implications for provenance, source weathering, and tectonic setting. J. Asian Earth Sci. 2014, 87, 11–25. [Google Scholar] [CrossRef]
- Herron, M.M. Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Res. 1988, 58, 820–829. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Mielke, P.; Weinert, S.; Bignall, G.; Sass, I. Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2016, 324, 179–189. [Google Scholar] [CrossRef]
- Devaraju, T.; Sudhakara, T.; Kaukonen, R.; Viljoen, R.; Alapieti, T.; Ahmed, S.; Sivakumar, S. Petrology and geochemistry of greywackes from Goa-Dharwar sector, western Dharwar Craton: Implications for volcanoclastic origin. J. Geol. Soc. India 2010, 75, 465–487. [Google Scholar] [CrossRef]
- Miao, H.; Guo, J.; Wang, Y.; Jiang, Z.; Zhang, C.; Li, C. Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: Implication for its formation mechanism. Solid Earth 2023, 14, 1031–1052. [Google Scholar] [CrossRef]
- Glaser, K.S.; Miller, C.K.; Johnson, G.M.; Toelle, B.; Kleinberg, R.L.; Miller, P.; Pennington, W.D. Seeking the sweet spot: Reservoir and completion quality in organic shales. Oilfield Rev. 2013, 25, 16–29. [Google Scholar]
- Bas, M.L.; Maitre, R.L.; Streckeisen, A.; Zanettin, B.; IUGS Subcommission on the Systematics of Igneous Rocks. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Jung, S.; Hoernes, S. The major-and trace-element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhön area (central Germany): Petrology, mantle source characteristics and implications for asthenosphere–lithosphere interactions. J. Volcanol. Geotherm. Res. 2000, 99, 27–53. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Hickman, A.H.; Wright, A.E. Geochemistry and chemostratigraphical correlation of slates, marbles and quartzites of the Appin Group, Argyll, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 1983, 73, 251–278. [Google Scholar] [CrossRef]
- Wagner, W.; Baumann, H.; Negendank, J.; Roschig, F. Geological, petrographic, geochemical and petrophysical investigations on roofing slates. Mainz. Geowiss. Mitt. 1997, 26, 131–184. [Google Scholar]
- Dalla Santa, G.; Galgaro, A.; Sassi, R.; Cultrera, M.; Scotton, P.; Mueller, J.; Bertermann, D.; Mendrinos, D.; Pasquali, R.; Perego, R.; et al. An updated ground thermal properties database for GSHP applications. Geothermics 2020, 85, 101758. [Google Scholar] [CrossRef]
- Balkan, E.; Erkan, K.; Şalk, M. Thermal conductivity of major rock types in western and central Anatolia regions, Turkey. J. Geophys. Eng. 2017, 14, 909–919. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Ren, T.; Horton, R. Quartz contents derived from particle density measurements improve the accuracy of soil thermal conductivity estimates. Geoderma 2023, 436, 116526. [Google Scholar] [CrossRef]
- Tarnawski, V.; Momose, T.; Leong, W. Assessing the impact of quartz content on the prediction of soil thermal conductivity. Géotechnique 2009, 59, 331–338. [Google Scholar] [CrossRef]
- Fuchs, S.; Förster, H.J.; Braune, K.; Förster, A. Calculation of thermal conductivity of low-porous, isotropic plutonic rocks of the crust at ambient conditions from modal mineralogy and porosity: A viable alternative for direct measurement? J. Geophys. Res. Solid Earth 2018, 123, 8602–8614. [Google Scholar] [CrossRef]
- Popov, Y.; Ostrizhniy, D.; Chekhonin, E.; Spasennykh, M.; Romushkevich, R.; Moiseenko, E.; Bogatov, S.; Kirik, S. Investigation of Rock Thermal Properties for Nuclear Waste Disposal Using Advanced Hardware-Methodical Basis. Rock Mech. Rock Eng. 2023, 56, 4583–4612. [Google Scholar] [CrossRef]
- Francl, J.; Kingery, W. Thermal conductivity: IX, experimental investigation of effect of porosity on thermal conductivity. J. Am. Ceram. Soc. 1954, 37, 99–107. [Google Scholar] [CrossRef]
- Surma, F.; Geraud, Y. Porosity and thermal conductivity of the Soultz-sous-Forêts granite. Pure Appl. Geophys. 2003, 160, 1125–1136. [Google Scholar] [CrossRef]
- LGB-RLP. Wärmeleitfähigkeiten von Gesteinen in Rheinland-Pfalz; Landesamt für Geologie und Bergbau Rheinland-Pfalz: Mainz, Germany, 2024.
Sample Type | Sampling Depth [m b. g. l.] | Geological Period /System | Lithostratigraphic Information |
---|---|---|---|
Clay slate I | 6.2–6.5 | Ordovician | Phycodenschiefer-Formation oPS |
Clay slate II | 5.0–5.25 | Ordovician | Phycodenschiefer-Formation oPS |
Clay slate III | 7.5–7.9 | Ordovician | Phycodenschiefer-Formation oPS |
Clay slate IV | 12.7–12.9 | Ordovician | Phycodenschiefer-Formation oPS |
Granite | 12.7–13.0 | Devonian | Görkwitz-Formation doG |
Greywacke II | 7.0–8.0 | Carboniferous | Ziegenrück-Formation cuZ |
Greywacke II | 14.4–14.8 | Carboniferous | Ziegenrück-Formation cuZ |
Greywacke III | 5.2–5.5 | Carboniferous | Ziegenrück-Formation cuZ |
Claystone | 8.65–8.8 | Lower Triassic | Calvörde-Formation suC |
Sandstone I | 7.4–7.6 | Lower Triassic | Bernburg-Formation suB |
Sandstone II | 3.0–5.0 | Upper Triassic | Löwenstein-Formation kmB |
Sandstone III | Outcrop | Middle Jurassic | Eisensandstein-Formation jmES |
Fe-rich Sandstone | Outcrop | Middle Jurassic | Eisensandstein-Formation jmES |
Dolomite | Outcrop | Upper Jurassic | Frankenalb-Formation wFr |
Limestone | Outcrop | Upper Jurassic | Ebermannstadt-Formation wE |
Basalt | Outcrop | Oligocene | Not applicable |
Quartzite | 4.6–7.3 | Pleistocene * | Bench gravel |
Parameter | Range | Accuracy |
---|---|---|
Thermal conductivity | 0.2–25 W/(m∙K) | ±3% |
Thermal diffusivity | 0.6–3.0 ∙ 10−6 m2/s | ±5% |
Sample Dimensions | 30–500 mm | 1 |
Standard | TC/TD Value [W/(m∙K)]/[mm2/s] | Dimension [mm] |
Technical glass | 0.709/0.401 | 55 × 55 × 10 |
Quartz glass | 1.350/0.850 | 60 × 60 × 20 |
Gabbro | 2.370/1.020 | 60 × 50 × 28 |
Titanium alloy | 5.94/2.685 | 73 × 62 × 34 |
Stainless steel | 13.3/3.619 | 80 × 70 × 40 |
Element | LOD [ppm] | LOQ [ppm] | LOQ [%] |
---|---|---|---|
SiO2 | 10.7 | 21.1 | 0.00321 |
TiO2 | 3.3 | 9.9 | 0.00099 |
Al2O3 | 37.8 | 113.4 | 0.01134 |
Fe2O3 | 1.4 | 4.2 | 0.00042 |
MnO | 1.3 | 3.9 | 0.00039 |
MgO | 33.2 | 99.6 | 0.00996 |
CaO | 14.0 | 42.0 | 0.0042 |
Na2O | 134.8 | 404.4 | 0.04044 |
K2O | 12.0 | 36.0 | 0.0036 |
P2O5 | 6.9 | 20.7 | 0.00207 |
Sample Type | Thermal Conductivity λdry [W/(m∙K)] | RSD λdry [%] | Thermal Conductivity λsat [W/(m∙K)] | RSD λsat [%] | Porosity ϕ [%] | True Density ρ [g/cm3] | Bulk Density [g/cm3] |
---|---|---|---|---|---|---|---|
Clay slate I | 1.79 | 8.9 | 2.44 | 4.3 | 14.78 | 2.77 | 2.36 |
Clay slate II | 1.64 | 4.3 | 2.56 | 3.7 | 10.39 | 2.78 | 2.49 |
Clay slate III | 1.39 | 7.9 | 2.64 | 7.0 | 9.79 | 2.78 | 2.51 |
Clay slate IV 1 | 1.40 | 7.5 | 2.43 | 7.6 | 8.63 | 2.80 | 2.56 |
Clay slate IV 2 | 1.69 | 12.4 | 2.96 | 12.1 | 8.63 | 2.80 | 2.56 |
Granite | 1.98 | 6.6 | 2.96 | 5.3 | 0.69 | 2.66 | 2.62 |
Greywacke I | 2.62 | 6.9 | 3.22 | 3.7 | 4.79 | 2.72 | 2.61 |
Greywacke II | 3.94 | 4.5 | 3.75 | 4.5 | 2.50 | 2.69 | 2.63 |
Greywacke III | 3.17 | 6.5 | 3.65 | 3.3 | 3.50 | 2.71 | 2.62 |
Clay stone | 1.19 | 8.2 | 2.24 | 8.9 | 16.16 | 2.63 | 2.39 |
Sandstone I | 1.72 | 3.5 | 2.94 | 3.6 | 17.48 | 2.65 | 2.18 |
Sandstone II | 3.27 | 6.7 | 2.96 | 5.1 | 12.9 | 2.64 | 2.30 |
Sandstone III | 2.21 | 8.2 | 2.83 | 7.1 | 28.94 | 2.70 | 1.91 |
Fe-rich Sandstone | 1.96 | 9.4 | 2.42 | 5.2 | 19.51 | 2.92 | 2.25 |
Dolomite | 3.91 | 5.6 | 3.07 | 6.2 | 5.93 | 2.81 | 2.64 |
Limestone | 2.85 | 4.7 | 2.35 | 5.1 | 27.3 | 2.71 | 1.97 |
Basalt | 1.84 | 4.3 | 1.57 | 2.1 | <0.1 | 2.90 | 2.94 3 |
Quartzite | 6.85 | 13.6 | 8.06 | 20.7 | <0.1 | 2.63 | 2.69 3 |
Sample Type | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | LOI |
---|---|---|---|---|---|---|---|---|---|
Clay slate I | 66.1 | 0.82 | 17.76 | 5.58 | 1.48 | 0.11 | 0.66 | 3.39 | 3.70 |
Clay slate II | 60.4 | 1.0 | 20.89 | 6.58 | 1.62 | 0.11 | 1.14 | 3.78 | 4.19 |
Clay slate III | 65.3 | 0.91 | 18.60 | 5.34 | 1.31 | 0.08 | 1.32 | 3.47 | 3.30 |
Clay slate IV | 60.6 | 0.96 | 20.71 | 6.72 | 1.62 | 0.06 | 1.24 | 3.74 | 3.88 |
Granite | 75.7 | 0.39 | 13.10 | 1.34 | 0.19 | 0.10 | 3.32 | 3.91 | 1.65 |
Greywacke I | 73.3 | 0.52 | 10.51 | 4.78 | 2.23 | 1.17 | 2.19 | 1.16 | 3.73 |
Greywacke II | 73.7 | 0.59 | 11.80 | 3.71 | 1.66 | 0.511 | 2.59 | 1.71 | 3.22 |
Greywacke III | 83.0 | 0.18 | 4.07 | 0.99 | 0.33 | 6.52 | 0.79 | 1.14 | 2.52 |
Clay stone | 73.7 | 0.59 | 11.16 | 3.92 | 1.27 | 0.225 | 2.36 | 1.50 | 4.87 |
Sandstone I | 73.0 | 0.09 | 7.84 | 0.54 | 3.03 | 3.61 | 0.55 | 4.50 | 6.45 |
Sandstone II | 88.7 | 0.12 | 5.92 | 0.33 | 0.084 | 0.04 | 0.61 | 2.80 | 1.18 |
Sandstone III | 93.2 | 0.18 | 1.35 | 2.59 | 0.066 | 0.07 | 0.55 | 0.56 | 1.22 |
Fe-rich Sandstone | 69.7 | 0.39 | 4.52 | 19.05 | 0.351 | 0.06 | 0.54 | 0.49 | 4.20 |
Dolomite | 0.3 | 0.03 | 0.81 | 0.25 | 20.79 | 31.10 | 0.11 | 0.01 | 46.43 |
Limestone | 1.4 | 0.04 | 0.39 | 0.34 | 1.11 | 53.52 | <0.01 | 0.02 | 42.89 |
Basalt | 45.1 | 2.56 | 15.80 | 9.56 | 7.73 | 10.01 | 3.31 | 2.10 | 2.50 |
Quartzite | 99.3 | 0.22 | <0.01 | 0.11 | <0.01 | 0.01 | 0.33 | 0.01 | 0.22 |
Previous Studies | Sample Type | TC [W/(m∙K)] | Further Investigations | TC (This Work) [W/(m∙K)] |
---|---|---|---|---|
Franz & Schulze (2016) [23] | Sandstones suBB | λdry: 2.91 ± 0.31 λsat: 3.96 ± 0.37 | Quarzitic cementation | λdry: 2.78 ± 0.36 λsat: 2.29 ± 0.37 |
Sandstones suBT | λdry: 2.54 ± 0.35 λsat: 3.85 ± 0.38 | Inter-bedded claystone | ||
Barry-Macaulay et al. (2013) [9] | Basalts | λdry: 0.56–1.05 λsat: 1.08–1.57 | ρ = 1.75–2.61 g/cm3 | λdry: 1.84 λsat: 1.57 |
Landesamt für Geologie und Bergbau Rheinland-Pfalz [67] | Clay slates | λdry: 1.27–3.45 λsat: 2.09–3.63 | Devonian clay slates | λdry: 1.40–1.79 λsat: 2.43–2.96 |
Arkose | λdry: 1.44–2.00 λsat: 1.93–2.57 | Carboniferous (Rotliegend) arkose | λdry: 2.62–3.75 λsat: 3.22–3.94 | |
Long et al. (2017) [10] | Limestones | 1.12–1.85 | Varying TC range depending on mudstone percentage | λdry: 2.85–3.91 λsat: 2.35–3.07 |
Muddy limestones | 1.97–3.70 | |||
Sandstone | 1.40–4.38 | Depending on clay/mud/calcareous cementation | λdry: 2.78 ± 0.36 λsat: 2.29 ± 0.37 | |
Granites (+rhyolite) | 1.4–3.07 | λdry: 2.96 λsat: 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suft, O.; Hagenauer, H.; Bertermann, D. Relationship Between Thermal Conductivity, Mineral Composition and Major Element Composition in Rocks from Central and South Germany. Geosciences 2025, 15, 19. https://doi.org/10.3390/geosciences15010019
Suft O, Hagenauer H, Bertermann D. Relationship Between Thermal Conductivity, Mineral Composition and Major Element Composition in Rocks from Central and South Germany. Geosciences. 2025; 15(1):19. https://doi.org/10.3390/geosciences15010019
Chicago/Turabian StyleSuft, Oliver, Hannes Hagenauer, and David Bertermann. 2025. "Relationship Between Thermal Conductivity, Mineral Composition and Major Element Composition in Rocks from Central and South Germany" Geosciences 15, no. 1: 19. https://doi.org/10.3390/geosciences15010019
APA StyleSuft, O., Hagenauer, H., & Bertermann, D. (2025). Relationship Between Thermal Conductivity, Mineral Composition and Major Element Composition in Rocks from Central and South Germany. Geosciences, 15(1), 19. https://doi.org/10.3390/geosciences15010019