Accounting for the Compositional Nature of Geochemical Data to Improve the Interpretation of Their Univariate and Multivariate Spatial Patterns: A Case Study from the Campania Region (Italy)
Abstract
:1. Introduction
2. Geological and Pedological Setting of the Study Area
3. Materials and Methods
3.1. Sampling and Chemical Analysis
3.2. Data Preparation and Preliminary Analysis of Spatial Distribution
3.3. Principal Component Analysis (PCA)
4. Results and Discussion
4.1. Univariate Spatial Distribution
- The overall extent of areas marked by the highest values is reduced, especially in the inland territories of the Campanian Plain and the less urbanized areas of the Vesuvius volcanic complex;
- The western sector of the Cilento, in the southern part of the region, displays transformed values within a significantly higher range compared to the raw data;
- The inland areas of the region, generally characterized by siliciclastic formation, show transformed values that belong to a higher range than the original compositional data;
- The distribution of the clr transformed values appears to positively correlate with the road network distribution, with higher values corresponding to areas where the network is denser and associated with the presence of the principal roads.
4.2. Elementary Associations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reimann, C.; De Caritat, P. Chemical Elements in the Environment. Factsheets for the Geochemist and Environmental Scientist; Springer: Berlin, Germany, 1998; p. 398. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional Data Analysis: Theory and Applications; Wiley: Chichester, UK, 2011; p. 378. [Google Scholar]
- Buccianti, A.; Lima, A.; Albanese, S.; Cannatelli, C.; Esposito, R.; De Vivo, B. Exploring topsoil geochemistry from the CoDA (Compositional Data Analysis) perspective: The multi-element data archive of the Campania Region (Southern Italy). J. Geochem. Explor. 2015, 159, 302–316. [Google Scholar] [CrossRef]
- Egozcue, J.J.; Pawlowsky-Glahn, V. Simplicial Geometry for Compositional Data. In Compositional Data Analysis in the Geosciences: From Theory to Practice; Buccianti, A., Mateu-Figueras, G., Pawlwosky-Glahn, V., Eds.; Geological Society Special Publications: London, UK, 2006; Volume 264, pp. 145–159. [Google Scholar]
- Buccianti, A.; Grunsky, E. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? J. Geochem. Explor. 2014, 141, 1–5. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical contributions to the theory of evolution—On a form of spurious correlation which may arise when indices are used in the measurements of organs. Proc. R. Soc. 1897, 60, 489–498. [Google Scholar]
- Buccianti, A.; Mateu-Figueras, G.; Pawlowsky-Galhn, V. Compositional Data Analysis in the Geosciences: From Theory to Practice; Geological Society Special Publications: London, UK, 2006; Volume 264. [Google Scholar]
- Aitchison, J. The statistical analysis of compositional data (with discussion). J. R. Stat. Soc. Ser. B 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Aitchison, J. The single principle of compositional data analysis, continuing fallacies, confusions and misunderstandings and some suggested remedies. In Proceedings of the Keynote Address Presented at CoDaWork08, Girona, Spain, 27 May 2008; pp. 27–30. Available online: https://core.ac.uk/download/pdf/132548276.pdf (accessed on 5 January 2025).
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Minolfi, G.; Albanese, S.; Lima, A.; Tarvainen, T.; Fortelli, A.; De Vivo, B. A regional approach to the environmental risk assessment—Human health risk assessment case study in the Campania region. J. Geochem. Explor. 2018, 184, 400–416. [Google Scholar] [CrossRef]
- De Vivo, B.; Petrosino, P.; Lima, A.; Rolandi Belkin, H.E. Research progress in volcanology in Neapolitan area, southern Italy: A review and alternative views. Mineral. Petrol. 2010, 99, 1–28. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy. Petrology, Geochemistry, Geodynamics; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-540-29,092-6. [Google Scholar]
- Vitale, S.; Ciarcia, S. Tectono-stratigraphic setting of the Campania region (southern Italy). J. Maps 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Capozzi, V.; Rocco, A.; Annella, C.; Cretella, V.; Fusco, G.; Budillon, G. Signals of change in the Campania region rainfall regime: An analysis of extreme precipitation indices (2002–2021). Meteorol. Appl. 2023, 30, e2168. [Google Scholar] [CrossRef]
- Guarino, A.; Albanese, S.; Cicchella, D.; Ebrahimi, P.; Dominech, S.; Pacifico, L.R.; Rofrano, G.; Nicodemo, F.; Pizzolante, A.; Allocca, C.; et al. Factors influencing the bioavailability of some selected elements in the agricultural soil of a geologically varied territory: The Campania region (Italy) case study. Geoderma 2022, 428, 116207. [Google Scholar] [CrossRef]
- De Vivo, B.; Lima, A.; Albanese, S.; Cicchella, D.; Rezza, C.; Civitillo, D.; Minolfi, G.; Zuzolo, D. Atlante Geochimico–Ambientale dei Suoli Della Campania; Aracne Editrice: Roma, Italy, 2016; p. 364. [Google Scholar]
- Salminen, R.; Tarvainen, T.; Demetriades, A.; Duris, M.; Fordyce, F.M.; Gregorauskiene, V.; Kahelin, H.; Kivisilla, J.; Klaver, G.; Klein, H.; et al. FOREGS Geochemical Mapping Field Manual; Geological Survey of Finland: Espoo, Finland, 1998; Guide 47. [Google Scholar]
- Albanese, S.; De Vivo, B.; Lima, A.; Cicchella, D. Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J. Geochem. Explor. 2007, 93, 21–34. [Google Scholar] [CrossRef]
- Cheng, Q.; Bonham-Carter, G.F.; Raines, G.L. GeoDAS: A new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment. In Proceedings of the 20th International Geochemical Exploration Symposium (IGES), Santiago, Chile, 6–10 May 2001; pp. 42–43. [Google Scholar]
- Zuo, R.; Wang, J. ArcFractal: An ArcGIS add-in for processing geoscience data using fractal/multifractal models. Nat. Resour. Res. 2020, 29, 3–12. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. Giving meaningful interpretation to ordination axes: Assessing loading significance in principal component analysis. Ecology 2003, 84, 2347–2363. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C. Principal component analysis for compositional data with outliers. Environmetrics 2009, 20, 621–632. [Google Scholar] [CrossRef]
- Sulpizio, R.; Cioni, R.; Di Vito, M.A.; Mele, D.; Bonasia, R.; Dellino, P. The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP). Part I: Stratigraphy, compositional variability and eruptive dynamics. Bull. Volcanol. 2010, 72, 539–558. [Google Scholar] [CrossRef]
- Cioni, R.; Sbrana, A.; Gurioli, L. The Deposits of A.D. 79 Eruption. In Vesuvius Decade Volcano Workshop Handbook; Santacroce, R., Rosi, M., Sbrana, A., Cioni, R., Civetta, L., Eds.; Consiglio Nazionale delle Ricerche: Rome, Italy, 1996; pp. E1–E31. [Google Scholar]
- Fagnano, M.; Agrelli, D.; Pascale, A.; Adamo, P.; Fiorentino, N.; Rocco, C.; Pepe, O.; Ventorino, V. Copper accumulation in agricultural soils: Risks for the food chain and soil microbial populations. Sci. Total Environ. 2020, 734, 139434. [Google Scholar] [CrossRef] [PubMed]
- Roviello, V.; Caruso, U.; Dal Poggetto, G.; Naviglio, D. Assessment of Copper and Heavy Metals in Family-Run Vineyard Soils and Wines of Campania Region, South Italy. Int. J. Environ. Res. Public Health 2021, 18, 8465. [Google Scholar] [CrossRef] [PubMed]
Source | Cu | Pb | Zn | Sn | Cd | Hg | Ni | V | Cr | As | Sb | Other Elements |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Urban areas | + | + | + | + | + | |||||||
Mining activities | + | + | + | |||||||||
Foundries | + | + | + | + | + | + | + | + | ||||
Steelworks | + | + | + | + | + | + | + | Ca, P2O5 | ||||
Heavy engineering, tool construction | + | + | + | + | + | Mn, Mo, W | ||||||
Metal plating and finishing | + | + | + | + | + | |||||||
Manufacturing of electronic components | + | + | + | + | + | + | Rare Earth Element | |||||
Production/processing of ceramics and glass | + | + | + | + | ||||||||
Incinerators | + | + | ||||||||||
Coal-fired power plants | + | + | + | + | ||||||||
Vehicles and transportation | + | + | + | + | + | + | + | Ba, Mn, Pt, Pd | ||||
Cremation furnaces | + | |||||||||||
Agriculture (vineyards) | + | + | P |
Element | Loadings | ||
PC1 | PC2 | PC3 | |
Cu | −0.07 | 0.34 | 0.10 |
Pb | −0.12 | −0.15 | −0.13 |
Ag | −0.31 | −0.09 | −0.14 |
Ni | 0.15 | −0.08 | 0.11 |
U | 0.20 | 0.13 | −0.24 |
Au | −0.58 | −0.06 | −0.07 |
Cd | 0.06 | −0.21 | 0.16 |
Sb | −0.16 | −0.20 | −0.04 |
Bi | 0.14 | −0.11 | −0.22 |
Ca | −0.03 | −0.09 | 0.61 |
La | 0.25 | −0.13 | −0.23 |
Cr | 0.09 | −0.20 | 0.15 |
Ti | 0.24 | −0.03 | −0.17 |
Na | −0.12 | 0.63 | −0.05 |
K | 0.01 | 0.45 | −0.02 |
Sc | 0.31 | −0.15 | −0.09 |
Tl | 0.19 | 0.07 | −0.14 |
S | −0.02 | −0.02 | 0.44 |
Hg | −0.37 | −0.19 | −0.24 |
Se | 0.14 | 0.09 | 0.21 |
Variance % | 29.97 | 21.74 | 13.22 |
Variance cum. % | 29.97 | 51.71 | 64.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacifico, L.R.; Guarino, A.; Iannone, A.; Albanese, S. Accounting for the Compositional Nature of Geochemical Data to Improve the Interpretation of Their Univariate and Multivariate Spatial Patterns: A Case Study from the Campania Region (Italy). Geosciences 2025, 15, 20. https://doi.org/10.3390/geosciences15010020
Pacifico LR, Guarino A, Iannone A, Albanese S. Accounting for the Compositional Nature of Geochemical Data to Improve the Interpretation of Their Univariate and Multivariate Spatial Patterns: A Case Study from the Campania Region (Italy). Geosciences. 2025; 15(1):20. https://doi.org/10.3390/geosciences15010020
Chicago/Turabian StylePacifico, Lucia Rita, Annalise Guarino, Antonio Iannone, and Stefano Albanese. 2025. "Accounting for the Compositional Nature of Geochemical Data to Improve the Interpretation of Their Univariate and Multivariate Spatial Patterns: A Case Study from the Campania Region (Italy)" Geosciences 15, no. 1: 20. https://doi.org/10.3390/geosciences15010020
APA StylePacifico, L. R., Guarino, A., Iannone, A., & Albanese, S. (2025). Accounting for the Compositional Nature of Geochemical Data to Improve the Interpretation of Their Univariate and Multivariate Spatial Patterns: A Case Study from the Campania Region (Italy). Geosciences, 15(1), 20. https://doi.org/10.3390/geosciences15010020