State of the Art of CFD-DEM Coupled Modeling and Its Application in Turbulent Flow-Induced Soil Erosion
Abstract
:1. Introduction
2. Fluid–Soil Interaction
2.1. Numerical Methods in Fluid–Soil Interaction
2.2. CFD-DEM Coupled Models
2.3. Applications of CFD-DEM in Geotechnical Engineering
3. Challenges and Knowledge Gaps in CFD-DEM Methods
4. Future Directions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef] [PubMed]
- Koch, T.; Chifflard, P.; Aartsma, P.; Panten, K. A review of the characteristics of rainfall simulators in soil erosion research studies. Methodsx 2024, 12, 102506. [Google Scholar] [CrossRef]
- Wang, D.D.; Yuan, Z.J.; Cai, Y.T.; Jing, D.W.; Liu, F.; Tang, Y.; Song, N.N.; Li, Y.Y.; Zhao, C.Y.; Fu, X.Y. Characterisation of soil erosion and overland flow on vegetation-growing slopes in fragile ecological regions: A review. J. Environ. Manag. 2021, 285, 112165. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Chou, H.T.; Chen, S.C.; Wu, C.H.; Lin, B.S. Characteristics of rainfall-induced landslides in Miocene formations: A case study of the Shenmu watershed, Central Taiwan. Eng. Geol. 2014, 169, 133–146. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; Mcnair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Z.W.; Li, Z.J.; Liu, E.F.; Nie, X.D.; Liu, C.; Xiao, H.B. Effect of aggregate breakdown on the unevenly enriched organic carbon process in sediments under a rain-induced overland flow. Soil Tillage Res. 2020, 204, 104752. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.Y.; Li, X.B.; Li, Z.H.; Zhou, Z.L.; Li, T.B. Effects of seepage-induced erosion on nonlinear hydraulic properties of broken red sandstones. Tunn. Undergr. Space Tech. 2019, 91, 102993. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Fan, H.H.; Xie, F.H.; Lei, B.F.; Ren, G.Z. The role of soil dispersivity and initial moisture content in splash erosion: Findings from consecutive single-drop splash tests. Biosyst. Eng. 2024, 243, 27–41. [Google Scholar] [CrossRef]
- Mohebzadeh, H.; Biswas, A.; DeVries, B.; Rudra, R.; Shukla, R.; Daggupati, P. Evaluation of the impact of best management practices on ephemeral gully and sheet/rill erosion using the AnnAGNPS model. Catena 2024, 246, 108436. [Google Scholar] [CrossRef]
- Gao, R.L.; Gao, M.F.; Yao, S.H.; Wen, Y.R. Gully erosion susceptibility mapping considering seasonal variations of NDVI using a machine learning approach in the Mollisol region of China. Soil Tillage Res. 2025, 245, 106322. [Google Scholar] [CrossRef]
- Molina, N.; Walczak, M.; Kalbarczyk, M.; Celentano, D. Erosion under turbulent slurry flow: Effect of particle size in determining impact velocity and wear correlation by inverse analysis. Wear 2021, 474, 203651. [Google Scholar] [CrossRef]
- Sedano-de la Rosa, C.; Vite-Torres, M.; Gallardo-Hernández, E.A.; Laguna-Camacho, J.R.; Godínez-Salcedo, J.G.; Farfán-Cabrera, L.I. Effect of tangential velocity on erosion of ASTM A-106 Grade B steel pipe under turbulent swirling impinging jet. Tribol. Int. 2017, 113, 500–506. [Google Scholar] [CrossRef]
- Chao, H.; Tan, Y.; Su, Z.K. Ground failure and soil erosion caused by bursting of buried water pipeline: Experimental and numerical investigations. Eng. Fail. Anal. 2025, 167, 108965. [Google Scholar] [CrossRef]
- Hu, G.Y.; Zhou, B.; Yang, B.; Wang, H.B.; Liu, Z.J. An insight into the interaction between fluid and granular soil based on a resolved CFD-DEM method. Comput. Geo. 2023, 163, 105722. [Google Scholar] [CrossRef]
- Li, X.; Ren, J.Q.; Xue, J.L.; Xu, Q.X.; Yuan, J.; Zhang, W. Interpretation of delayed suspended sediment transport during flood events from the perspective of movement characteristics. J. Hydrol. 2024, 644, 132127. [Google Scholar] [CrossRef]
- OuYang, H.R.; Dai, G.L.; Gao, L.C.; Zhu, W.B.; Du, S.; Gong, W.M. Local scour characteristics of monopile foundation and scour protection of cement-improved soil in marine environment-Laboratory and site investigation. Ocean Eng. 2022, 255, 111443. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, P.T.; Zhang, L.M.; Zhang, J.M.; Xue, J.H.; Lu, H. Internal erosion in granular soils with different microstructures under cyclically increased hydraulic gradients. J. Hydrol. 2024, 639, 131601. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, Y.; Shi, J.Q.; Stuedlein, A.W.; Evans, T.M. Small-strain shear strain and liquefaction resistance of sand. Geotechnique 2024, 1–14. [Google Scholar] [CrossRef]
- Baggio, T.; Martini, M.; Bettella, F.; D’Agostino, V. Debris flow and debris flood hazard assessment in mountain catchments. Catena 2024, 245, 108338. [Google Scholar] [CrossRef]
- Zhang, F.; Damjanac, B.; Furtney, J. Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses: Discrete Element Modeling and Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Wang, C.H.; Xu, C.X. Direct numerical simulation of a supersonic turbulent boundary layer with hydrogen combustion. J. Fluid Mech. 2024, 998, A1. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, C.Y.; Peng, D.Z.; Tse, T.K.T. Direct numerical simulation of sand particles transporting in the atmospheric Ekman boundary layer. Flow 2024, 4, E22. [Google Scholar] [CrossRef]
- Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D.; Périaux, J. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 2001, 169, 363–426. [Google Scholar] [CrossRef]
- Dou, J.X.; Wang, L.M.; Ge, W. Particle-resolved direct numerical simulation and bottom-up statistical analysis on solid-phase pressure in particle-fluid systems. Chem. Eng. J. 2024, 499, 156312. [Google Scholar] [CrossRef]
- Fatahian, H.; Mishra, R.; Jackson, F.F.; Fatahian, E. Data-driven multi-objective optimization of aerodynamics and aeroacoustics in dual Savonius wind turbines using large eddy simulation and machine learning. Phys. Fluids 2024, 36, 105176. [Google Scholar] [CrossRef]
- Mou, C.Q.; Che, B.X.; Wang, Y.X.; Zhang, J.S.; Cao, L.L.; Wu, D.Z. Large eddy simulation of micro vortex generator-controlled cavitation across multiple stages. Phys. Fluids 2024, 36, 104115. [Google Scholar] [CrossRef]
- Theja, C.; Sathia, K.R.; Mahesh, S.; Narasimhamurthy, V.D. Large eddy simulation of turbulent wake from dual-step cylinders. Phys. Fluids 2024, 36, 105163. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H.B.; Zhang, F.; Chen, X.P. Subgrid-scale model for large eddy simulations of incompressible turbulent flows within the lattice Boltzmann framework. Phys. Rev. E 2024, 110, 045305. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.A.; Assam, A. Addressing performance improvement of a neural network model for Reynolds-averaged Navier-Stokes solutions with high wake formation. Eng. Comput. 2024, 41, 1740–1765. [Google Scholar] [CrossRef]
- Bhattarai, B.; Hilliard, B.; Tonina, D.; Reeder, W.J.; Budwig, R.; Martin, B.T.; Xing, T. Evaluation of Reynolds-averaged Navier-Stokes turbulence models in open channel flow over salmon redds. J. Hydrodyn. 2024, 36, 741–756. [Google Scholar] [CrossRef]
- Hu, K.S.; Shih, T.I.P. Large-Eddy vs. Reynolds-Averaged Navier-Stokes Simulations of Flow and Heat Transfer in a U-Duct with Unsteady Flow Separation. Energies 2024, 17, 2414. [Google Scholar] [CrossRef]
- Zhang, X.C.; Zhang, Z.; Chinnici, A.; Sun, Z.W.; Shi, J.Q.; Nathan, G.J.; Chin, R.C. Physics-informed data-driven unsteady Reynolds-averaged Navier-Stokes turbulence modeling for particle-laden jet flows. Phys. Fluids 2024, 36, 053325. [Google Scholar] [CrossRef]
- Joo, D.; You, D. A Reynolds-averaged Navier-Stokes closure for steady-state simulations of Rayleigh-Benard convection. Phys. Fluids 2024, 36, 085154. [Google Scholar] [CrossRef]
- Syawitri, T.P.; Yao, Y.F.; Chandra, B.; Yao, J. Comparison study of URANS and hybrid RANS-LES models on predicting vertical axis wind turbine performance at low, medium and high tip speed ratio ranges. Renew. Energ. 2021, 168, 247–269. [Google Scholar] [CrossRef]
- Haering, S.W.; Oliver, T.A.; Moser, R.D. Active model split hybrid RANS/LES. Phys. Rev. Fluids 2022, 7, 014603. [Google Scholar] [CrossRef]
- Mays, M.D.; Lardeau, S.; Laizet, S. Capturing the drag crisis in the flow around a smooth cylinder using a hybrid RANS-LES model on coarse meshes. Int. J. Heat Fluid Flow 2023, 103, 109203. [Google Scholar] [CrossRef]
- Menter, F.; Hüppe, A.; Matyushenko, A.; Kolmogorov, D. An Overview of Hybrid RANS-LES Models Developed for Industrial CFD. Appl. Sci. 2021, 11, 2459. [Google Scholar] [CrossRef]
- Wang, A.; Yang, X.I.A.; Ovchinnikov, M. An Investigation of LES Wall Modeling for Rayleigh-Be<acute accent>nard Convection via Interpretable and Physics-Aware Feedforward Neural Networks with DNS. J. Atmos. Sci. 2024, 81, 435–458. [Google Scholar]
- Iousef, S.; Montazeri, H.; Blocken, B.; van Wesemael, P.J.V. Wall-resolved versus wall-modeled LES of the flow field and surface forced convective heat transfer for a low-rise building. Build. Environ. 2023, 244, 110678. [Google Scholar] [CrossRef]
- Liefvendahl, M.; Johansson, M. Wall-Modeled LES for Ship Hydrodynamics in Model Scale. J. Ship. Res. 2021, 65, 41–54. [Google Scholar] [CrossRef]
- Iphineni, H.; Windén, B.; Girimaji, S.S. Toward high-fidelity Numerical Wave Tank development: Scale resolving Partially-Averaged Navier-Stokes simulations of dam-break flow. Ocean. Eng. 2024, 291, 116407. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, Y.; Yuan, X.; Liu, H.L.; Jiang, L.L.; Xiong, W. Numerical investigation of cavitating flow in centrifugal pump with improved partially-averaged Navier-Stokes method. J. Hydraul. Res. 2023, 61, 809–823. [Google Scholar] [CrossRef]
- Dzanic, T.; Girimaji, S.S.; Witherden, F.D. Partially-averaged Navier-Stokes simulations of turbulence within a high-order flux reconstruction framework. J. Comput. Phys. 2022, 456, 110992. [Google Scholar] [CrossRef]
- Fowler, T.S.; Witherden, F.D.; Girimaji, S.S. Partially-averaged Navier-Stokes simulations of turbulent flow past a square cylinder: Comparative assessment of statistics and coherent structures at different resolutions. Phys. Fluids 2020, 32, 125106. [Google Scholar] [CrossRef]
- Sun, X.; Sakai, M.; Yamada, Y. Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method. J. Comput. Phys. 2013, 248, 147–176. [Google Scholar] [CrossRef]
- Goldman, A.J.; Cox, R.G.; Brenner, H. Slow Viscous Motion of a Sphere Parallel to a Plane Wall—II Couette Flow. Chem. Eng. Sci. 1967, 22, 653–660. [Google Scholar] [CrossRef]
- Feng, R.F.; Fourtakas, G.; Rogers, B.D.; Lombardi, D. Modelling internal erosion using 2D smoothed particle hydrodynamics (SPH). J. Hydrol. 2024, 639, 131558. [Google Scholar] [CrossRef]
- Hoomans, B.P.B.; Kuipers, J.A.M.; Briels, W.J.; vanSwaaij, W.P.M. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. Chem. Eng. Sci. 1996, 51, 99–118. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.D.; Yang, Z.X. Suffusion-induced deformation and microstructural change of granular soils: A coupled CFD-DEM study. Acta Geotech. 2019, 14, 795–814. [Google Scholar] [CrossRef]
- Jiang, M.J.; Sun, C.; Crosta, G.B.; Zhang, W.C. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach. Eng. Geol. 2015, 190, 1–16. [Google Scholar] [CrossRef]
- Sun, R.; Xiao, H. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport. Comput. Geosci. 2016, 89, 207–219. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, L.H.; Liu, X.N.; Di, Y.T. A resolved CFDEM algorithm based on the immersed boundary for the simulation of fluid-solid interaction. Powder Technol. 2020, 374, 290–303. [Google Scholar] [CrossRef]
- Shen, Z.H.; Wang, G.; Huang, D.R.; Jin, F. A resolved CFD-DEM coupling model for modeling two-phase fluids interaction with irregularly shaped particles. J. Comput. Phys. 2022, 448, 110695. [Google Scholar] [CrossRef]
- Tao, H.; Tao, J.L. Quantitative analysis of piping erosion micro-mechanisms with coupled CFD and DEM method. Acta Geotech. 2017, 12, 573–592. [Google Scholar] [CrossRef]
- Bao, X.H.; Wu, H.; Xiong, H.; Chen, X.S. Particle shape effects on submarine landslides via CFD-DEM. Ocean. Eng. 2023, 284, 115140. [Google Scholar] [CrossRef]
- Sun, J.Q.; Li, X.A.; Li, J.; Zhang, J.; Zhang, Y.T. Numerical investigation of characteristics and mechanism of tunnel erosion of loess with coupled CFD and DEM method. Catena 2023, 222, 106729. [Google Scholar] [CrossRef]
- Cui, Y.F.; Nouri, A.; Chan, D.; Rahmati, E. A new approach to DEM simulation of sand production. J. Pet. Sci. Eng. 2016, 147, 56–67. [Google Scholar] [CrossRef]
- Nian, T.K.; Li, D.Y.; Liang, Q.H.; Wu, H.; Guo, X.S. Multi-phase flow simulation of landslide dam formation process based on extended coupled DEM-CFD method. Comput. Geotech. 2021, 140, 104438. [Google Scholar] [CrossRef]
- Teng, P.H.; Johansson, F.; Hellström, J.G.I. Modelling erosion of a single rock block using a coupled CFD-DEM approach. J. Rock Mech. Geotech. 2023, 15, 2375–2387. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, K.; Yang, Y.F.; Tao, Y.C.; Li, Y.W. Microscopic mechanical analysis of sand production using a new arbitrary resolved-unresolved CFD-DEM model. Int. J. Multiph. Flow 2022, 149, 103979. [Google Scholar] [CrossRef]
- Peng, Y.; Yin, Z.Y.; Zhou, C.; Ding, X.M. Micromechanical analysis of capillary suction effect on bearing capacity of unsaturated fine granular foundation soil using coupled CFD-DEM method. Comput. Geotech. 2023, 153, 105092. [Google Scholar] [CrossRef]
- Qian, J.G.; Zhou, C.; Yin, Z.Y.; Li, W.Y. Investigating the effect of particle angularity on suffusion of gap-graded soil using coupled CFD-DEM. Comput. Geotech. 2021, 139, 104383. [Google Scholar] [CrossRef]
- Qian, J.G.; Li, W.Y.; Yin, Z.Y.; Yang, Y. Influences of buried depth and grain size distribution on seepage erosion in granular soils around tunnel by coupled CFD-DEM approach. Transp. Geotech. 2021, 29, 100574. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.; Yu, X. Influence of particle shape on the erodibility of non-cohesive soil: Insights from coupled CFD-DEM simulations. Particuology 2018, 39, 12–24. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, T.; Wang, P.; Qin, S.; Zhou, W.H.; Yin, Z.Y. Hydromechanical analysis of slurry infiltration with coupled CFD-DEM method. Int. J. Numer. Anal. Methods Geomech. 2024, 48, 3032–3053. [Google Scholar] [CrossRef]
- Rahimi-Larki, M.; Vollmann, S.; Jin, S.L. Flow-induced erosion modelling of cohesive material with coupled CFD-DEM approach. Miner. Eng. 2024, 217, 108947. [Google Scholar] [CrossRef]
- Jing, L.; Kwok, C.Y.; Leung, Y.F.; Sobral, Y.D. Extended CFD-DEM for free-surface flow with multi-size granules. Int. J. Numer. Anal. Methods Geomech. 2016, 40, 62–79. [Google Scholar] [CrossRef]
- Börner, M.; Bück, A.; Tsotsas, E. DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation. Chem. Eng. Sci. 2017, 161, 187–197. [Google Scholar] [CrossRef]
- Iqbal, N.; Rauh, C. Coupling of discrete element model (DEM) with computational fluid mechanics (CFD): A validation study. Appl. Math. Comput. 2016, 277, 154–163. [Google Scholar] [CrossRef]
- Zhao, J.D.; Shan, T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics. Powder Technol. 2013, 239, 248–258. [Google Scholar] [CrossRef]
- Mu, L.L.; Zhang, P.Y.; Shi, Z.H.; Huang, M.S. Coupled CFD-DEM Investigation of Erosion Accompanied by Clogging Mechanism under Different Hydraulic Gradients. Comput. Geotech. 2023, 153, 105058. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Mu, L.L.; Huang, M.S. A coupled CFD-DEM investigation into hydro-mechanical behaviour of gap-graded soil experiencing seepage erosion considering cyclic hydraulic loading. J. Hydrol. 2023, 624, 129908. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, X. Comparison of the implementation of three common types of coupled CFD-DEM model for simulating soil surface erosion. Int. J. Multiph. Flow 2017, 91, 89–100. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, J.Q.; Wang, C. A coarse graining CFD-DEM simulation on contact erosion of layered cohesionless soils. Can. Geotech. J. 2024, 61, 534–548. [Google Scholar] [CrossRef]
- Kuang, S.B.; Zhou, M.M.; Yu, A.B. CFD-DEM modelling and simulation of pneumatic conveying: A review. Powder Technol. 2020, 365, 186–207. [Google Scholar] [CrossRef]
- Zhang, D.M.; Gao, C.P.; Yin, Z.Y. CFD-DEM modeling of seepage erosion around shield tunnels. Tunn. Undergr. Space Tech. 2019, 83, 60–72. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, X. Analysis of surface erosion of cohesionless soils using a three-dimensional coupled computational fluid dynamics—Discrete element method (CFD-DEM) model. Can. Geotech. J. 2019, 56, 687–698. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, J. Algorithms in a Robust Hybrid CFD-DEM Solver for Particle-Laden Flows. Commun. Comput. Phys. 2011, 9, 297–323. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical-Model for Granular Assemblies—Reply. Geotechnique 1980, 30, 335–336. [Google Scholar] [CrossRef]
- Bisht, V.; Salgado, R.; Prezzi, M. Simulation of cone penetration in soil using the material point method. Comput. Geotech. 2024, 172, 106430. [Google Scholar] [CrossRef]
- Ceccato, F.; Yerro, A.; Di Carluccio, G. Simulating landslides with the material point method: Best practices, potentialities, and challenges. Eng. Geol. 2024, 338, 107614. [Google Scholar] [CrossRef]
- Fois, M.; de Falco, C.; Formaggia, L. A semi-conservative depth-averaged material point method for fast flow-like landslides and mudflows. Commun. Nonlinear Sci. Numer. Simul. 2024, 138, 108202. [Google Scholar] [CrossRef]
- Urmi, Z.A.; Yerro, A.; Saeidi, A.; Chavali, R.V.P. Prediction of retrogressive landslide in sensitive clays by incorporating a novel strain softening law into the Material Point Method. Eng. Geol. 2024, 340, 107669. [Google Scholar] [CrossRef]
- Acosta, J.L.G.; Mánica, M.A.; Vardon, P.J.; Hicks, M.A.; Gens, A. A nonlocal material point method for the simulation of large deformation problems in brittle soils. Comput. Geotech. 2024, 172, 106424. [Google Scholar] [CrossRef]
- Chandra, B.; Hashimoto, R.; Kamrin, K.; Soga, K. Mixed material point method formulation, stabilization, and validation for a unified analysis of free-surface and seepage flow. J. Comput. Phys. 2024, 519, 113457. [Google Scholar] [CrossRef]
- Kontoe, M.; Lopez-Querol, S.; Rossetto, T. Application of the material point method (MPM) to characterise the impact forces of granular landslides on rigid obstacles. Soil Dyn. Earthq. Eng. 2024, 184, 108726. [Google Scholar] [CrossRef]
- Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pirker, S. Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. 2012, 12, 140–152. [Google Scholar] [CrossRef]
- Zhu, G.P.; Zhao, Y.X.; Wang, Z.K.; Khalid, M.S.U.; Liu, M.B. Semi-resolved CFD-DEM simulation of fine particle migration with heat transfer in heterogeneous porous media. Int. J. Heat Mass Tran. 2022, 197, 123349. [Google Scholar] [CrossRef]
- Wen, X.J.; Zheng, L.N.; Zhao, X.; Liu, Y.K.; Kang, J.H.; Ye, G.Q.; Wang, F.C.; Yuan, M.; Jiang, M.J. An improved semi-resolved computational fluid dynamics-discrete element method for simulating liquid-solid systems with wide particle size distributions. Phys. Fluids 2024, 36, 033343. [Google Scholar] [CrossRef]
- Wang, Z.K.; Liu, M.B. Semi-resolved CFD-DEM for thermal particulate flows with applications to fluidized beds. Int. J. Heat Mass Tran. 2020, 159, 12015. [Google Scholar] [CrossRef]
- Wang, Z.K.; Teng, Y.J.; Liu, M.B. A semi-resolved CFD-DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy. J. Comput. Phys. 2019, 384, 151–169. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Yang, Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput. Geotech. 2018, 100, 30–51. [Google Scholar] [CrossRef]
- Li, Z.C.; Hua, J.; Yin, P.F.; Zhang, H. Shear failure analysis of slip zone soil with different coarse particle shapes: Visualized shear test and PIV technology. Eng. Fail. Anal. 2024, 162, 108345. [Google Scholar] [CrossRef]
- Li, W.; Brunetti, G.; Zafiu, C.; Kunaschk, M.; Debreczeby, M.; Stumpp, C. Experimental and simulated microplastics transport in saturated natural sediments: Impact of grain size and particle size. J. Hazard. Mater. 2024, 468, 133772. [Google Scholar] [CrossRef] [PubMed]
- Sommerfeld, M.; Sgrott, O.L.; Taborda, M.A.; Koullapis, P.; Bauer, K.; Kassinos, S. Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition. Eur. J. Pharm. Sci. 2021, 166, 105959. [Google Scholar] [CrossRef] [PubMed]
- Cimbala, J.M. Fluid Mechanics, 4th ed.; McGrawHill: New York, NY, USA, 2024. [Google Scholar]
- Hubbe, M.A. Detachment of Colloidal Hydrous Oxide Spheres from Flat Solids Exposed to Flow 4. Effect of Polyelectrolytes. Colloids Surf. 1987, 25, 325–339. [Google Scholar] [CrossRef]
- Blais, B.; Lassaigne, M.; Goniva, C.; Fradette, L.; Bertrand, F. Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing. J. Comput. Phys. 2016, 318, 201–221. [Google Scholar] [CrossRef]
- Kravets, B.; Schulz, D.; Jasevicius, R.; Reinecke, S.R.; Rosemann, T.; Kruggel-Emden, H. Comparison of particle-resolved DNS (PR-DNS) and non-resolved DEM/CFD simulations of flow through homogenous ensembles of fixed spherical and non-spherical particles. Adv. Powder Technol. 2021, 32, 1170–1195. [Google Scholar] [CrossRef]
- Qi, J.; Fei, W.B.; Narsilio, G.A. An LBM study on the local fluid flow in irregular monodisperse granular assemblies from DEM: Effects of particle shape. Comput. Geotech. 2025, 177, 106817. [Google Scholar] [CrossRef]
- Wang, R.; Wu, F.; Fei, H.Q.; Wang, X.J.; Xu, H. Spectral proper orthogonal decomposition analysis of a spatially developing underexpanded round jet at Re = 45 000. Phys. Fluids 2024, 36, 105195. [Google Scholar] [CrossRef]
- Barea, G.; Jofre, L. Proper orthogonal decomposition of wall-bounded high-pressure transcritical fluids. Phys. Fluids 2024, 36, 105175. [Google Scholar] [CrossRef]
- Mizuno, Y.; Komatsuzaki, T. Quantum algorithm for dynamic mode decomposition integrated with a quantum differential equation solver. Phys. Rev. Res. 2024, 6, 043031. [Google Scholar] [CrossRef]
- Li, D.D.; Zhao, B.D.; Lu, S.; Wang, J.W. A data-driven method for fast predicting the long-term hydrodynamics of gas-solid flows: Optimized dynamic mode decomposition with control. Phys. Fluids 2024, 36, 103332. [Google Scholar] [CrossRef]
- Xie, B.T.; Zhang, Q.; Lin, F.L.; Jin, W.F.; Cui, Z.J. Modal Decomposition of Internal Tides in the Luzon Strait through Two-Dimensional Fourier Bandpass Filtering. J. Mar. Sci. Eng. 2024, 12, 1477. [Google Scholar] [CrossRef]
- Seifi, Z.; Raisee, M.; Cervantes, M.J. Global linear stability analysis of flow inside an axial swirl generator with a rotating vortex rope. J. Hydraul. Res. 2023, 61, 34–50. [Google Scholar] [CrossRef]
- Mandal, D.; Lesur, M.; Gravier, E.; Sama, J.N.; Guillevic, A.; Sarazin, Y.; Garbet, X. Global linear stability analysis of kinetic trapped ion mode (TIM) in tokamak plasma using the spectral method. Plasma Phys. Control. Fusion 2023, 65, 055001. [Google Scholar] [CrossRef]
- Mendis, R.L.A.; Sekimoto, A.; Okano, Y.; Minakuchi, H.; Dost, S. Global Linear Stability Analysis of Thermo-solutal Marangoni Convection in a Liquid Bridge Under Zero Gravity. Microgravity Sci. Technol. 2020, 32, 729–735. [Google Scholar] [CrossRef]
- Heidt, L.; Colonius, T. Spectral proper orthogonal decomposition of harmonically forced turbulent flows. J. Fluid Mech. 2024, 985, A42. [Google Scholar] [CrossRef]
- Hamzehloo, A.; Lusher, D.J.; Sandham, N.D. Direct numerical simulations and spectral proper orthogonal decomposition analysis of shocklet-containing turbulent channel counter-flows. Int. J. Heat Fluid Flow 2023, 104, 109229. [Google Scholar] [CrossRef]
- Blanco, D.C.P.; Martini, E.; Sasaki, K.; Cavalieri, A.V.G. Improved convergence of the spectral proper orthogonal decomposition through time shifting. J. Fluid Mech. 2022, 950, A9. [Google Scholar] [CrossRef]
- Rezaie, M.; Momen, M. Characterizing turbulence structures in convective and neutral atmospheric boundary layers via Koopman mode decomposition and unsupervised clustering. Phys. Fluids 2024, 36, 066605. [Google Scholar] [CrossRef]
- Taga, K.; Kato, Y.; Yamazaki, Y.; Kawahara, Y.; Nakao, H. Dynamic mode decomposition for Koopman spectral analysis of elementary cellular automata. Chaos 2024, 34, 013125. [Google Scholar] [CrossRef] [PubMed]
- Ilak, M.; Rowley, C.W. Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 2008, 20, 034103. [Google Scholar] [CrossRef]
- Yu, D.; Chakravorty, S. A randomized balanced proper orthogonal decomposition technique. J. Comput. Appl. Math. 2020, 368, 112540. [Google Scholar] [CrossRef]
- Chevalier, Q.; Douglas, C.M.; Lesshafft, L. Resolvent analysis of swirling turbulent jets. Theor. Comput. Fluid Dyn. 2024, 38, 641–663. [Google Scholar] [CrossRef]
- Feng, D.C.; Gupta, V.; Li, L.K.B.; Wan, M.P. Resolvent analysis for predicting energetic structures in the far wake of a wind turbine. Phys. Fluids 2024, 36, 085101. [Google Scholar] [CrossRef]
- Martini, E.; Schmidt, O. Stability and resolvent analysis of compressible viscous flows in MATLAB. Theor. Comput. Fluid Dyn. 2024, 38, 665–685. [Google Scholar] [CrossRef]
- Rolandi, L.V.; Ribeiro, J.H.M.; Yeh, C.A.; Taira, K. An invitation to resolvent analysis. Theor. Comput. Fluid Dyn. 2024, 38, 603–639. [Google Scholar] [CrossRef]
- Wan, K.D.; Huang, Y.Z.; Liu, R.T.; He, Y.; Lu, M.Q.; Jiang, C.W. Large eddy simulation of a swirling kerosene spray flame: A proper orthogonal decomposition and wavelet transform analysis on the flow structure and hydroxyl species field. Phys. Fluids 2024, 36, 093354. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, G.Q.; Rinoshika, A.; Song, B.; Zhang, J. A study on the wake structure of an ascending submersible with silk flexible appendages using continuous wavelet transform and dynamic mode decomposition. Exp. Therm. Fluid Sci. 2025, 160, 111323. [Google Scholar] [CrossRef]
- Chang, C.W.; Lee, J.C.; Huang, W.C. Hydrological Data Projection Using Empirical Mode Decomposition: Applications in a Changing Climate. Water 2024, 16, 2669. [Google Scholar] [CrossRef]
- Li, G.H.; Han, Y.Y.; Yang, H. A novel approach for underwater acoustic signal denoising based on improved time-variant filtered empirical mode decomposition and weighted fusion filtering. Ocean Eng. 2024, 313, 119550. [Google Scholar] [CrossRef]
- Chen, H.S.; Liu, W.W.; Li, S.Q. A fully-resolved LBM-LES-DEM numerical scheme for adhesive and cohesive particle-laden turbulent flows in three dimensions. Powder Technol. 2024, 440, 119800. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Chen, L.P.; Gong, Y.F.; Wang, S.L. Pore-Scale Simulations of Particles Migration and Deposition in Porous Media Using LBM-DEM Coupling Method. Processes 2021, 9, 465. [Google Scholar] [CrossRef]
- Putignano, C.; Burris, D.; Moore, A.; Dini, D. Cartilage rehydration: The sliding-induced hydrodynamic triggering mechanism. Acta Biomater. 2021, 125, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Biglarfadafan, M. Chapter 19—Artificial Intelligence including Machine Learning and Deep Learning algorithms. In Advanced Tools for Studying Soil Erosion Processes; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
Turbulence Models | Overview | Pros | Cons |
---|---|---|---|
Direct Numerical Simulation (DNS) [22,23,24,25] | DNS solves the full Navier–Stokes equations without any turbulence modeling, capturing all scales of turbulence down to the smallest scales or Kolmogorov scales. | Highly accurate and detailed representation of turbulence. | Extremely computationally expensive, making it feasible only for low-Reynolds-number flows and simple geometries. |
Large Eddy Simulation (LES) [26,27,28,29] | LES directly resolves the larger turbulent eddies while modeling the smaller, more universal scales. This is achieved using a filter that separates large and small eddies, with only the small scales being modeled. | More computationally efficient than DNS and captures essential turbulent structures. Suitable for complex flows and geometries. | Still computationally demanding, especially near walls where turbulence scales are small, so LES is generally used for high-Reynolds-number flows with coarse grid near-wall models or in regions where finer detail is needed. |
Reynolds-Averaged Navier–Stokes (RANS) [30,31,32,33,34] | RANS methods solve for time-averaged flow properties and use turbulence models to account for the effects of turbulence. RANS simplifies the Navier–Stokes equations by decomposing flow quantities into mean and fluctuating components. Common RANS models include the following: k-ε model: widely used for general-purpose turbulence modeling, especially for free-shear flows (e.g., jet flows). k-ω model: performs better in adverse pressure gradients and boundary layers, making it more suitable for wall-bounded flows. Reynolds stress model (RSM): accounts for anisotropy in turbulence by directly modeling the Reynolds stresses, leading to greater accuracy but also higher computational costs. | Much more computationally efficient than DNS and LES, making it the most common approach for industrial applications. | Less accurate for complex turbulent flows, since the averaged models can oversimplify turbulence structures. |
Hybrid RANS-LES Models [35,36,37,38] | These models combine the RANS and LES approaches, often using RANS in near-wall regions and LES in the core flow regions where large eddies are dominant. Detached eddy simulation (DES): switches from RANS to LES based on grid size and turbulence scale. Scale-adaptive simulation (SAS): adjusts the turbulence model dynamically based on the local flow conditions, useful in flows with large separation zones. Delayed detached eddy simulation (DDES): a modification of DES that delays the transition to LES, minimizing grid-size dependency issues. | Balances computational cost and accuracy, providing a feasible way to capture large-scale turbulence in regions that require it while maintaining efficiency near walls. | Hybrid methods can be complex to implement, as they require a seamless transition between RANS and LES zones. |
Wall-Modeled LES (WMLES) [39,40,41] | This is a variant of LES that applies a wall model near solid boundaries, allowing for coarser grids near walls while still resolving large eddies away from the wall. | Reduces the computational cost of LES by simplifying the near-wall region. | Wall models can introduce inaccuracies, especially if the model is not well-tuned to the specific flow. |
Partially Averaged Navier–Stokes (PANS) [42,43,44,45] | PANS is a variable-resolution method that blends between DNS, LES, and RANS depending on the level of filtering applied. It allows users to set a level of detail based on available computational resources and desired accuracy. | Offers flexibility to adjust turbulence modeling fidelity, making it adaptable for various flow regimes. | Complexity in adjusting the filtering level for consistent and reliable results across different flow regions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, F.; Abegaz, R. State of the Art of CFD-DEM Coupled Modeling and Its Application in Turbulent Flow-Induced Soil Erosion. Geosciences 2025, 15, 21. https://doi.org/10.3390/geosciences15010021
Xu J, Wang F, Abegaz R. State of the Art of CFD-DEM Coupled Modeling and Its Application in Turbulent Flow-Induced Soil Erosion. Geosciences. 2025; 15(1):21. https://doi.org/10.3390/geosciences15010021
Chicago/Turabian StyleXu, Jun, Fei Wang, and Ruth Abegaz. 2025. "State of the Art of CFD-DEM Coupled Modeling and Its Application in Turbulent Flow-Induced Soil Erosion" Geosciences 15, no. 1: 21. https://doi.org/10.3390/geosciences15010021
APA StyleXu, J., Wang, F., & Abegaz, R. (2025). State of the Art of CFD-DEM Coupled Modeling and Its Application in Turbulent Flow-Induced Soil Erosion. Geosciences, 15(1), 21. https://doi.org/10.3390/geosciences15010021