Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling
2.3. Nucleic Acid Extraction
2.4. Ultracentrifugation and Gradient Fractionation
2.5. Desalting of the Fractions
2.6. Identification of Heavy Nucleic Acid Fractions
2.7. Reverse Transcription
2.8. Whole Genome Amplification
2.9. Amplicon Library Preparation
2.10. Sequencing and Sequence Analysis
2.11. Statistical analysis
2.12. Accession Numbers
3. Results
3.1. Identification of Heavy Fractions
3.2. Alphadiversity Measures
3.3. Principal Coordinates Analysis (PCoA)
3.4. Taxonomy
3.4.1. Archaea
3.4.2. Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magnabosco, C.; Lin, L.-H.; Dong, H.; Bomberg, M.; Ghiorse, W.; Stan-Lotter, H.; Pedersen, K.; Kieft, T.L.; Onstott, T.C. The Biomass and Biodiversity of the Continental Subsurface. Nat. Geosci. 2018. [Google Scholar] [CrossRef]
- Mcmahon, S.; Parnell, J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 2014, 87, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotelnikova, S.; Pedersen, K. Evidence for methanogenic Archaea and homoacetogenic Bacteria in deep granitic rock aquifers. FEMS Microbiol. Rev. 1997, 20, 339–349. [Google Scholar] [CrossRef]
- Pedersen, K. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 1997, 20, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.H.; Hall, J.; Lippmann-Pipke, J.; Ward, J.A.; Lollar, B.S.; DeFlaun, M.; Rothmel, R.; Moser, D.; Gihring, T.M.; Mislowack, B.; et al. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. 2005, 6. [Google Scholar] [CrossRef]
- Lin, L.H.; Slater, G.F.; Sherwood Lollar, B.; Lacrampe-Couloume, G.; Onstott, T.C. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 2005, 69, 893–903. [Google Scholar] [CrossRef]
- Kietäväinen, R.; Purkamo, L. The origin, source, and cycling of methane in deep crystalline rock biosphere. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotelnikova, S. Microbial production and oxidation of methane in deep subsurface. Earth-Sci. Rev. 2002, 58, 367–395. [Google Scholar] [CrossRef]
- Ward, J.A.; Slater, G.F.; Moser, D.P.; Lin, L.H.; Lacrampe-Couloume, G.; Bonin, A.S.; Davidson, M.; Hall, J.A.; Mislowack, B.; Bellamy, R.E.S.; et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere. Geochim. Cosmochim. Acta 2004, 68, 3239–3250. [Google Scholar] [CrossRef]
- Nyyssönen, M.; Hultman, J.; Ahonen, L.; Kukkonen, I.; Paulin, L.; Laine, P.; Itävaara, M.; Auvinen, P. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J. 2014, 8, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Hernsdorf, A.W.; Konno, U.; Kouduka, M.; Yanagawa, K.; Kato, S.; Sunamura, M.; Hirota, A.; Togo, Y.S.; Ito, K.; et al. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. ISME J. 2018, 12, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Lever, M.A. Acetogenesis in the energy-starved deep biosphere-a paradox? Front. Microbiol. 2012, 2, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Haveman, S.A.; Pedersen, K.; Ruotsalainen, P. Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland. Geomicrobiol. J. 1999, 16, 277–294. [Google Scholar] [CrossRef]
- Chivian, D.; Brodie, E.L.; Alm, E.J.; Culley, D.E.; Dehal, P.S.; DeSantis, T.Z.; Gihring, T.M.; Lapidus, A.; Lin, L.-H.; Lowry, S.R.; et al. Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth. Science 2008, 322, 275–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, M.M.; Silver, B.J.; Onstott, T.C.; Moser, D.P.; Gihring, T.M.; Pratt, L.M.; Boice, E.A.; Lollar, B.S.; Lippmann-Pipke, J.; Pfiffner, S.M.; et al. Capture of Planktonic Microbial Diversity in Fractures by Long-Term Monitoring of Flowing Boreholes, Evander Basin, South Africa. Geomicrobiol. J. 2011, 28, 275–300. [Google Scholar] [CrossRef]
- Lau, M.C.Y.; Kieft, T.L.; Kuloyo, O.; Linage-Alvarez, B.; Van Heerden, E. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl. Acad. Sci. USA 2016, 113, E7927–E7936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itävaara, M.; Nyyssönen, M.; Kapanen, A.; Nousiainen, A.; Ahonen, L.; Kukkonen, I. Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol. Ecol. 2011, 77, 295–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Tsang, C.F.; Kukkonen, I.T.; Niemi, A. Analysis of 6-year fluid electric conductivity logs to evaluate the hydraulic structure of the deep drill hole at Outokumpu, Finland. Int. J. Earth Sci. 2016, 105, 1549–1562. [Google Scholar] [CrossRef]
- Purkamo, L.; Bomberg, M.; Nyyssönen, M.; Kukkonen, I.; Ahonen, L.; Kietäväinen, R.; Itävaara, M. Dissecting the deep biosphere: Retrieving authentic microbial communities from packer-isolated deep crystalline bedrock fracture zones. FEMS Microbiol. Ecol. 2013, 85, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Purkamo, L.; Bomberg, M.; Nyyssönen, M. Heterotrophic Communities Supplied by Ancient Organic Carbon Predominate in Deep Fennoscandian Bedrock Fluids. Microb. Ecol. 2015, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M. Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids. Biogeosciences 2016, 13. [Google Scholar] [CrossRef]
- Ahonen, L.; Kietäväinen, R.; Kortelainen, N.; Kukkonen, I.T.; Pullinen, A.; Toppi, T.; Bomberg, M.; Itävaara, M.; Nousiainen, A.; Nyyssönen, M.; Öster, M. Hydrogeological characteristics of the Outokumpu Deep Drill Hole. Spec. Pap. Geol. Surv. Finl. 2011, 2011, 151–168. [Google Scholar]
- Kukkonen, I.T.; Rath, V.; Kivekäs, L.; Šafanda, J.; Čermak, V. Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications. Phys. Earth Planet. Inter. 2011, 188, 9–25. [Google Scholar] [CrossRef]
- Kietäväinen, R.; Ahonen, L.; Kukkonen, I.T.; Hendriksson, N.; Nyyssönen, M.; Itävaara, M. Characterisation and isotopic evolution of saline waters of the Outokumpu Deep Drill Hole, Finland—Implications for water origin and deep terrestrial biosphere. Appl. Geochem. 2013, 32, 37–51. [Google Scholar] [CrossRef]
- Kietäväinen, R.; Ahonen, L.; Niinikoski, P.; Nykänen, H.; Kukkonen, I.T. Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield. Geochim. Cosmochim. Acta 2017, 202, 124–145. [Google Scholar] [CrossRef]
- Kietäväinen, R.; Ahonen, L.; Kukkonen, I.T.; Niedermann, S.; Wiersberg, T. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland. Geochim. Cosmochim. Acta 2014, 145, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Magnabosco, C.; Ryan, K.; Lau, M.C.Y.; Kuloyo, O.; Sherwood Lollar, B.; Kieft, T.L.; Van HeerDen, E.; Onstott, T.C. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J. 2016, 10, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Borrel, G.; Adam, P.S.; Gribaldo, S. Methanogenesis and the Wood-Ljungdahl pathway: An ancient, versatile, and fragile association. Genome Biol. Evol. 2016, evw114. [Google Scholar] [CrossRef] [PubMed]
- Purkamo, L.; Bomberg, M.; Nyyssönen, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M. Response of deep subsurface microbial community to different carbon sources and electron acceptors during ~2 months incubation in microcosms. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Arlinger, J.; Eriksson, S.; Hallbeck, A.; Hallbeck, L.; Johansson, J. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland. ISME J. 2008, 2, 760–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotelnikova, S.; Pedersen, K. Distribution and activity of methanogens and homoacetogens in deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol. Ecol. 1998, 26, 121–134. [Google Scholar] [CrossRef]
- Shock, E.L.; Schulte, M.D. Organic synthesis during fluid mixing in hydrothermal systems. J. Geophys. Res. Planets 1998, 103, 28513–28527. [Google Scholar] [CrossRef] [Green Version]
- Radajewski, S.; Ineson, P.; Parekh, N.R.; Murrell, J.C. Stable isotope probing as a tool in microbial ecology. Nature 2000, 403, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Lueders, T.; Dumont, M.G.; Bradford, L.; Manefield, M. RNA-stable isotope probing: From carbon flow within key microbiota to targeted transcriptomes. Curr. Opin. Biotechnol. 2016, 41, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Bombach, P.; Chatzinotas, A.; Neu, T.R.; Kästner, M.; Lueders, T.; Vogt, C. Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques. FEMS Microbiol. Ecol. 2010, 71, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Pilloni, G.; von Netzer, F.; Engel, M.; Lueders, T. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol. Ecol. 2011, 78, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, S.; Lueders, T.; Krüger, M.; von Netzer, F.; Engelen, B.; Cypionka, H. Acetogens and acetoclastic Methanosarcinales govern methane formation in abandoned coal mines. Appl. Environ. Microbiol. 2011, 77, 3749–3756. [Google Scholar] [CrossRef] [PubMed]
- Na, H.; Lever, M.A.; Kjeldsen, K.U.; Schulz, F.; Jørgensen, B.B. Uncultured Desulfobacteraceae and Crenarchaeotal group C3 incorporate 13C-acetate in coastal marine sediment. Environ. Microbiol. Rep. 2015, 7, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Kietäväinen, R. Deep Groundwater Evolution at Outokumpu, Eastern Finland: From Meteoric Water to Saline Gas-Rich Fluid; Special Publication 97; Geological Survey of Finland: Espoo, Finland, 2017; p. 37. ISBN 978-952-217-375-1. [Google Scholar]
- Västi, K. Petrology of the drill hole R2500 at Outokumpu, Eastern Finland—The deepest drill hole ever drilled in Finland. In Outokumpu Deep Drilling Project 2003–2010; Kukkonen, I.T., Ed.; Special Paper 33; Geological Survey of Finland: Espoo, Finland, 2011; pp. 197–210. ISBN 9789522171528. [Google Scholar]
- Neufeld, J.D.; Vohra, J.; Dumont, M.G.; Lueders, T.; Manefield, M.; Friedrich, M.W.; Murrell, J.C. DNA stable-isotope probing. Nat. Protoc. 2007, 2, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; de Waal, E.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [PubMed]
- Edwards, U.; Rogall, T.; Blöcker, H.; Emde, M.; Böttger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17, 7843–7853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Großkopf, R.; Janssen, P.H.; Liesack, W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol. 1998, 64, 960–969. [Google Scholar] [PubMed]
- Stahl, A.D.; Amann, R. Development and Application of Nucleic Acid Probes. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 1991; pp. 205–248. ISBN 0471929069. [Google Scholar]
- Bano, N.; Ruffin, S.; Ransom, B.; Hollibaugh, J.T. Phylogenetic Composition of Arctic Ocean Archaeal Assemblages and Comparison with Antarctic Assemblages. Appl. Environ. Microbiol. 2004, 70, 781–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barns, S.M.; Fundyga, R.E.; Jeffries, M.W.; Pace, N.R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment (archaebacteria/phylogeny/thermophfly/molecular ecology). Proc. Natl. Acad. Sci. USA 1994, 91, 1609–1613. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, M.; Nyyssönen, M.; Pitkänen, P.; Lehtinen, A.; Itävaara, M. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland. Biomed. Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. 2015. Available online: http://www.rstudio.com/ (accessed on 13 November 2018).
- Paulson, J.N.; Talukder, H.; Pop, M.; Bravo, H.C. MetagenomeSeq: Statistical Analysis for Sparse High-Throughput Sequencing. Bioconductor 2013. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package “vegan” Title Community Ecology Package. 2018. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf; https://cran.r-project.org/; https://github.com/vegandevs/vegan (accessed on 13 November 2018).
- Tardy-Jacquenod, C.; Magot, M.; Patel, B.K.C.; Matheron, R.; Caumette, P. Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int. J. Syst. Bacteriol. 1998, 48, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Sheik, C.S.; Reese, B.K.; Twing, K.I.; Sylvan, J.B.; Grim, S.L.; Schrenk, M.O.; Sogin, M.L.; Colwell, F.S.; Emerson, D. Identification and Removal of Contaminant Sequences From Ribosomal Gene Databases: Lessons From the Census of Deep Life. Front. Microbiol. 2018, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Holmfeldt, K.; Hubalek, V.; Lundin, D.; Åström, M.; Bertilsson, S.; Dopson, M. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J. 2016, 10, 1192–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallbeck, L.; Pedersen, K. Culture-dependent comparison of microbial diversity in deep granitic groundwater from two sites considered for a Swedish final repository of spent nuclear fuel. FEMS Microbiol. Ecol. 2012, 81, 66–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haveman, S.A.; Nilsson, E.; Pedersen, K. Regional distribution of microbes in groundwater from Hástholmen, Kievetty, Olkiluoto and Romuvaara, Finland; POSIVA Ltd.: Helsinki, Finland, 2000; ISBN 9516520928. [Google Scholar]
- Lang, K.; Schuldes, J.; Klingl, A.; Poehlein, A.; Daniel, R.; Brune, A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 2015, 81, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Bapteste, É.; Brochier, C.; Boucher, Y. Higher-level classification of the Archaea: Evolution of methanogenesis and methanogens. Archaea 2005, 1, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Rajala, P.; Bomberg, M. Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment. Front. Microbiol. 2017, 8, 431. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.J.; Paynter, M.J.B.; Gupta, R. Microbiology 9. Arch. Microbiol. 1983, 135, 91–97. [Google Scholar] [CrossRef]
- Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: Teamwork or coexistence? Front. Microbiol. 2015, 6, 492. [Google Scholar] [CrossRef] [PubMed]
- Shieh, J.; Whitman, W.B. Pathway of Acetate Assimilation in Autotrophic and Heterotrophic Methanococci. J. Bacteriol. 1987, 169, 5327–5329. [Google Scholar] [CrossRef] [PubMed]
- Whitman, W.B.; Ankwanda, E.; Wolfe, R.S. Nutrition and carbon metabolism of Methanococcus-Voltae. J. Bacteriol. 1982, 149, 852–863. [Google Scholar] [PubMed]
- Goyal, N.; Widiastuti, H.; Karimi, I.A.; Zhou, Z. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Mol. BioSyst. 2014, 10, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Ladapo, J.; Whitman, W.B. Method for isolation of auxotrophs in the methanogenic archaebacteria: Role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA 1990, 87, 5598–5602. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lai, M. Methanogenic Archaea Isolated from Taiwan’s Chelungpu Fault. Appl. Environ. Microbiol. 2011, 77, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Doerfert, S.N.; Reichlen, M.; Iyer, P.; Wang, M.; Ferry, J.G. Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int. J. Syst. Evol. Microbiol. 2009, 59, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Oremland, R.S.; Boone, D.R. NOTES: Methanolobus taylorii sp. nov., a New Methylotrophic, Estuarine Methanogen. Int. J. Syst. Bacteriol. 1994, 44, 573–575. [Google Scholar] [CrossRef]
- Mochimaru, H.; Tamaki, H.; Hanada, S.; Imachi, H.; Nakamura, K.; Sakata, S.; Kamagata, Y. Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int. J. Syst. Evol. Microbiol. 2009, 59, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Jiang, N.; Liu, X.; Dong, X. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl. Environ. Microbiol. 2008, 74, 6114–6120. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.J.; House, C.H.; Thomas, B.; Freeman, K.H. Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina. J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef]
- Zehnder, A.J.B.; Brock, T.D. Methane Formation and Methane Oxidation by Methanogenic Bacteria. J. Bacteriol. 1979, 137, 420–432. [Google Scholar] [PubMed]
- Boone, D.R.; Brenner, D.J.; Castenholz, R.W.; De Vos, P.; Garrity, G.M.; Krieg, N.R.; Goodfellow, M. Bergey’s Manual of Systematic Bacteriology; Springer: Berlin, Germany, 2001; ISBN 038721609X. [Google Scholar]
- Wasserfallen, A.; Nolling, J.; Pfister, P.; Reeve, J.; Conway de Macario, E. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Nowak, J.; Coenye, T.; Clément, C.; Ait Barka, E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 2008, 32, 607–626. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, M.; Raulio, M.; Jylhä, S.W.; Mueller, C.; Höschen, C.; Rajala, P.; Purkamo, L.; Kietäväinen, R.; Ahonen, L.; Itävaara, M. CO2 and carbonate as substrate for the activation of the microbial community in 180 m deep bedrock fracture fluid of Outokumpu Deep Drill Hole, Finland. AIMS Microbiol. 2017, 3, 846–871. [Google Scholar] [CrossRef]
- Hubalek, V.; Wu, X.; Eiler, A.; Buck, M.; Heim, C.; Dopson, M.; Bertilsson, S.; Ionescu, D. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. ISME J. 2016, 2447–2458. [Google Scholar] [CrossRef] [PubMed]
- Leandro, T.; Rodriguez, N.; Rojas, P.; Sanz, J.L.; da Costa, M.S.; Amils, R. Study of methanogenic enrichment cultures of rock cores from the deep subsurface of the Iberian Pyritic Belt. Heliyon 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Etchebehere, C.; Errazquin, M.I.; Dabert, P.; Moletta, R.; Muxi, L. Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int. J. Syst. Evol. Microbiol. 2001, 51, 977–983. [Google Scholar] [CrossRef] [PubMed]
- De Vos, P.; Kersters, K.; Falsen, E.; Pot, B.; Gillis, M.; Segers, P.; De Ley, J. Comamonas Davis and Park 1962 gen. nov., norn. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., norn. rev. Int. J. Syst. Bacteriol. 1985, 1956, 443–453. [Google Scholar] [CrossRef]
- Jangir, Y.; French, S.; Momper, L.M.; Moser, D.P.; Amend, J.P.; El-naggar, M.Y.; Dillon, J.G.; Morgan, H.; Moyer, C.L. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species. Front. Microbiol. 2016, 7, 756. [Google Scholar] [CrossRef] [PubMed]
- Comolli, L.R.; Baker, B.J.; Downing, K.H.; Siegerist, C.E.; Banfield, J.F. Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J. 2009, 3, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, J.D.; Dumont, M.G.; Vohra, J.; Murrell, J.C. Methodological considerations for the use of stable isotope probing in microbial ecology. Microb. Ecol. 2007, 53, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Rajala, P.; Bomberg, M.; Kietäväinen, R.; Kukkonen, I.; Ahonen, L.; Nyyssönen, M.; Itävaara, M. Rapid Reactivation of Deep Subsurface Microbes in the Presence of C-1 Compounds. Microorganisms 2015, 3, 17–33. [Google Scholar] [CrossRef] [PubMed]
Measurement | Value | Reference |
---|---|---|
Temperature, °C | 37.1 °C | [20] |
pH | 9.3 | [40] |
Alkalinity (mM) | 0.25 | [20] |
EC (mS cm−1 25 °C) | 47.5 | [20] |
SO4 (mg/L) | <10 | [25] |
Sulphide (mg/L) | 0.42 | [25] |
S (mg/L) | 4.81 | [20] |
TDS (g/L) | 31 | [40] |
TOC (mg/L) | 27.2 | [40] |
DOC (mg/L) | 22.5 | [40] |
DIC (mmol/L) | 0.21 | [26] |
Ar (vol%) | 0.23 | [26] |
CO2 (vol%) | b.d. | [26] |
CH4 (vol%) | 77 | [26] |
N2 (vol%) | 17 | [26] |
H2 (vol%) | 0.17 | [26] |
He (vol%) | 2.8 | [26] |
C2H6 (vol%) | 0.39 | [26] |
C3H8 (vol%) | 0.012 | [26] |
Prevalent rock type | Biotite gneiss | [22,41] |
Cell count (cells/mL) | 1.5 × 103 | [20] |
Bacterial 16S rRNA gene copy number/mL | 9.01 × 102 (SEM 3.72 × 10) | [20] |
Archaeal 16S rRNA gene copy number/mL | 2.32 × 10 (SEM 1.07) | [20] |
dsrB gene copy number (copies/mL) | 1.7 × 102 | [20] |
Primer | In This Research | Target | Reference |
---|---|---|---|
fD1 | qPCR | Bacterial 16S rRNA | [43] |
P2 | qPCR, amplicon library PCR | Bacterial 16S rRNA | [44] |
8F | Amplicon library PCR | Bacterial 16S rRNA | [45] |
A109F | Initial PCR for Archaea | Archaeal 16S rRNA | [46] |
Arch915R | Initial PCR for Archaea | Archaeal 16S rRNA | [47] |
A344 1 | Nested amplicon library PCR | Archaeal 16S rRNA | [48] |
A744 1 | Nested amplicon library PCR | Archaeal 16S rRNA | [49] |
Term | Sample Names | Sample Volume (L) | Incubation Time | Description |
---|---|---|---|---|
Original sample | DNA_0 | 10 | 0 | Original sample that represents the microbial communities in the drill hole fracture fluids at 2260 m depth at the time of the sampling |
RNA_0 | 1 | 0 | ||
Enriched microcosms | DNA_E1, DNA E2, DNA_E3 | 10 | 2.5 weeks | Samples from the microcosms incubated with acetate. Samples were not fractionated prior to analysis and thus describe changes in total microbial community in comparison to the original sample. |
RNA_E1, RNA_E2, RNA_E3 | 1 | 3 h | ||
Labelled fraction | DNA_F1, DNA_F2, DNA_F3 | 10 | 2.5 weeks | Samples that represents the 13C-labelled fraction of the microbial communities carrying heavy isotopes in their DNA |
Sample ID | No Seqs | No OTUs | Chao1 Rarefied | Chao1 Raw | Shannon Rarefied | Shannon Raw | Simpson Rarefied | Simpson Raw |
---|---|---|---|---|---|---|---|---|
DNA_0 | 299 | 2 | 2 | 3 | 0.1 | 0.2 | 0.1 | 0.2 |
DNA_E1 | 597 | 2 | 2 | 2 | 0.2 | 0.2 | 0.1 | 0.4 |
DNA_E2 | 426 | 2 | 2 | 2 | 0.4 | 0.4 | 0.2 | 1.1 |
DNA_E3 | 138 | 3 | 6 | 6 | 1.1 | 1.1 | 0.6 | 0.2 |
DNA_F1 | 1336 | 77 | 44 | 70 | 3.3 | 3.6 | 1.0 | 3.6 |
DNA_F2 | 1818 | 62 | 48 | 60 | 2.3 | 2.7 | 0.8 | 2.7 |
DNA_F3 | 2419 | 10 | 6 | 7 | 1.3 | 1.3 | 0.6 | 1.3 |
RNA_0 | 454 | 2 | 2 | 2 | 0.4 | 0.4 | 0.3 | 0.4 |
RNA_E1 | 12676 | 4 | 2 | 4 | 0.1 | 0.2 | 0.1 | 0.2 |
RNA_E2 | 4474 | 66 | 61 | 66 | 2.2 | 2.6 | 0.8 | 2.6 |
RNA_E3 | 2529 | 2 | 2 | 3 | 0.6 | 0.6 | 0.4 | 0.6 |
Sample ID | No Seqs | No OTUs | Chao1 Rarefied | Chao1 Raw | Shannon Rarefied | Shannon Raw | Simpson Rarefied | Simpson Raw |
---|---|---|---|---|---|---|---|---|
DNA_0 | 4534 | 80 | 80 | 151 | 2.5 | 2.8 | 0.9 | 0.9 |
DNA_E1 | 3502 | 68 | 23 | 137 | 2.8 | 3 | 0.9 | 0.9 |
DNA_E2 | 13 | 5 | - | 7 | - | 1.7 | - | 0.8 |
DNA_E3 | 60 | 5 | - | 11 | - | 0.8 | - | 0.4 |
DNA_F1 | 211 | 22 | 32 | 29 | 2.5 | 2.8 | 0.9 | 0.9 |
DNA_F2 | 187 | 16 | 7 | 23 | 2.4 | 2.3 | 0.9 | 0.9 |
DNA_F3 | 3262 | 9 | 40 | 14 | 1.5 | 1.5 | 0.7 | 0.7 |
RNA_0 | 2953 | 67 | 58 | 135 | 2.6 | 2.8 | 0.8 | 0.9 |
RNA_E1 | 166 | 25 | 41 | 57 | 2.7 | 2.8 | 0.9 | 0.9 |
RNA_E2 | 376 | 27 | 30 | 44 | 2.1 | 2.3 | 0.7 | 0.8 |
RNA_E3 | 564 | 33 | 52 | 41 | 2.2 | 2.4 | 0.8 | 0.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuppunen-Puputti, M.; Purkamo, L.; Kietäväinen, R.; Nyyssönen, M.; Itävaara, M.; Ahonen, L.; Kukkonen, I.; Bomberg, M. Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth. Geosciences 2018, 8, 418. https://doi.org/10.3390/geosciences8110418
Nuppunen-Puputti M, Purkamo L, Kietäväinen R, Nyyssönen M, Itävaara M, Ahonen L, Kukkonen I, Bomberg M. Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth. Geosciences. 2018; 8(11):418. https://doi.org/10.3390/geosciences8110418
Chicago/Turabian StyleNuppunen-Puputti, Maija, Lotta Purkamo, Riikka Kietäväinen, Mari Nyyssönen, Merja Itävaara, Lasse Ahonen, Ilmo Kukkonen, and Malin Bomberg. 2018. "Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth" Geosciences 8, no. 11: 418. https://doi.org/10.3390/geosciences8110418
APA StyleNuppunen-Puputti, M., Purkamo, L., Kietäväinen, R., Nyyssönen, M., Itävaara, M., Ahonen, L., Kukkonen, I., & Bomberg, M. (2018). Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth. Geosciences, 8(11), 418. https://doi.org/10.3390/geosciences8110418