Air-Polluting Emissions from Pyrolysis Plants: A Systematic Mapping
Abstract
:1. Introduction
- (1)
- What evidence is available on the type and concentration of air pollutants emitted by pyrolysis plants and how does the pyrolysis process configuration affect such emissions?
- (2)
- What air pollution control technologies are available to reduce emissions and therefore minimize environmental and health risks?
2. Materials and Methods
2.1. Environmental Evidence Search
2.2. Article Screening and Eligibility Criteria
2.3. Critical Appraisal and Data Coding Strategy
2.4. Data Mapping Method
3. Results and Discussion
3.1. Methods of Determining Air Pollutant Emissions
3.2. Literature-Based Evidence
3.2.1. Types and Levels of Air Pollutants
3.2.2. Factors Affecting Air Pollution Emissions
3.2.3. Mitigation Strategies and Technologies
3.2.4. Comparison of Air-Polluting Emissions
3.3. Review Process
3.4. Statistic Analysis
3.5. Potential Research Gap
- An improved understanding of the impact of the heating rate and residence time on air-polluting emissions from pyrolysis plants is required. This will show how pyrolysis operational parameters (collectively) affect air-polluting emissions;
- The effects of feedstock characteristics and pyrolysis gas composition on post-combustion emissions must be quantified. As different feedstock compositions alter the properties of pyrolysis gas, which affects air pollution as it burns, it is critical to optimize combustion operations in order to effectively reduce the environmental impact;
- Measurement of air pollutants from pyrolysis plants should be standardized across different scales (that is, from the laboratory scale to the small and industrial scale) because this would facilitate interpretation and cross-comparison of air-polluting emissions from a diverse range of pyrolysis scales;
- The efficacy of mitigation strategies is often neglected in lab-scale research but it needs to be considered as an essential component of emission control strategies;
- There is an urgent need to develop a regulatory framework for pyrolysis plants as, currently, no regulations are available. Pyrolysis studies frequently compare emission levels to existing waste incineration and combustion regulatory frameworks; therefore, comparisons may not be relevant.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APCDs | Air pollution control devices |
BrPhs | Brominated phenols |
CIPhs | Chlorophenols |
ClBzs | Chlorobenzenes |
ELV | Emission limit values |
FGD | Flue gas desulphurization |
IED | Industrial Emission Directive |
NMVOCs | Non-methane volatile organic compounds |
PAHs | Polycyclic aromatic hydrocarbons |
PBDD/Fs | Polybrominated dibenzo-p-dioxins and dibenzofurans |
PCBs | Polychlorinated biphenyls |
PCDD/Fs | Polychlorinated dibenzo-p-dioxins and furans |
PFAS | Perfluoroalkyl and Polyfluoroalkyl Substances |
PM | Particulate matter |
SVOCs | Semi-volatile organic compounds |
VOCs | Volatile organic compounds |
Appendix A. The Selected Primary Studies
- Aguirre, F.; Lobos, M.L.N.; Basto, M.A.L.; Teruel, M.A.; Moyano, E.L.; Blanco, M.B. Volatile organic compounds released during the fast pyrolysis of peanut shells and environmental implications. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 1139-1146.
- Ahmad, R.K.; Sulaiman, S.A. Carbonization of coconut shell biomass in a downdraft reactor: effect of temperature on the charcoal properties. Sains Malaysiana, 2021, 50, 3705-3717.
- Aracil, I.; Font, R.; Conesa, J.A. Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride. Journal of Analytical and Applied Pyrolysis, 2005, 74, 465-478.
- Aylón, E.; Murillo, R.; Fernández-Colino, A.; Aranda, A.; García, T.; Callén, M.S.; Mastral, A.M. Emissions from the combustion of gas-phase products at tire pyrolysis. Journal of Analytical and Applied Pyrolysis, 2007, 79, 210-214.
- Cai, C.; Yu, S.; Liu, Y.; Tao, S.; Liu, W. PBDE emission from e-wastes during the pyrolytic process: Emission factor, compositional profile, size distribution, and gas-particle partitioning. Environmental Pollution, 2018, 235, 419-428.
- Cai, W.; Liu, R. Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production. Fuel, 2016, 182, 677-686.
- Chen, G.; Li, J.; Li, K.; Lin, F.; Tian, W.; Che, L.; Yan, B.; Ma, W.; Song, Y. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge. Fuel, 2020, 273, 117772.
- Chen, G.; Sun, B.; Li, J.; Lin, F.; Xiang, L.; Yan, B. Products distribution and pollutants releasing characteristics during pyrolysis of waste tires under different thermal process. Journal of Hazardous Materials, 2022, 424, 127351.
- Chen, H.; Chen, D.; Hong, L. Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char. Applied Energy, 2015, 156, 767-775.
- Chen, L.; Cai, C.; Yu, S.; Liu, Y.; Tao, S.; Liu, W. Emission factors of particulate matter, CO and CO2 in the pyrolytic processing of typical electronic wastes. Journal of Environmental Sciences, 2019, 81, 93-101.
- Chen, S.-J.; Su, H.-B.; Chang, J.-E.; Lee, W.-J.; Huang, K.-L.; Hsieh, L.-T.; Huang, Y.-C.; Lin, W.-Y.; Lin, C.-C. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmospheric Environment, 2007, 41, 1209-1220.
- Chiang, H.-L.; Lin, K.-H. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control. Journal of Hazardous Materials, 2014, 264, 545-551.
- Chiang, H.-L.; Lin, K.-H.; Chiu, H.-H. Exhaust characteristics during the pyrolysis of ZnCl2 immersed bio-sludge. Journal of Hazardous Materials, 2012, 229, 233-244.
- Chien, Y.-C.; Liang, C.-P.; Shih, P.-H. Emission of polycyclic aromatic hydrocarbons from the pyrolysis of liquid crystal wastes. Journal of Hazardous Materials, 2009, 170, 910-914.
- Cho, S.-J.; Kim, K.-H.; Jung, H.-Y.; Kwon, O.-J.; Seo, Y.-C. Characteristics of products and PCDD/DF emissions from a pyrolysis process of urethane/styrofoam waste from electrical home appliances. Journal of Material Cycles and Waste Management, 2010, 12, 98-102.
- Conesa, J.A.; Font, R.; Fullana, A.; Martin-Gullon, I.; Aracil, I.; Gálvez, A.; Moltó, J.; Gómez-Rico, M.F. Comparison between emissions from the pyrolysis and combustion of different wastes. Journal of Analytical and Applied Pyrolysis, 2009, 84, 95-102.
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and char quality of flame-curtain” Kon Tiki” Kilns for Farmer-Scale charcoal/biochar production. PloS One, 2016, 11, e0154617.
- Dunnigan, L.; Ashman, P.J.; Zhang, X.; Kwong, C.W. Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles. Journal of Cleaner Production, 2018, 172, 1639-1645.
- Dunnigan, L.; Morton, B.J.; Ashman, P.J.; Zhang, X.; Kwong, C.W. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Management, 2018, 77, 59-66.
- Feng, Y.; Wan, L.; Wang, S.; Yu, T.; Chen, D. The emission of gaseous nitrogen compounds during pyrolysis of meat and bone meal. Journal of Analytical and Applied Pyrolysis, 2018, 130, 314-319.
- Flatabø, G.Ø.; Cornelissen, G.; Carlsson, P.; Nilsen, P.J.; Tapasvi, D.; Bergland, W.H.; Sørmo, E. Industrially relevant pyrolysis of diverse contaminated organic wastes: Gas compositions and emissions to air. Journal of Cleaner Production, 2023, 423, 138777.
- Gao, X.; Wu, H. Combustion of volatiles produced in situ from the fast pyrolysis of woody biomass: direct evidence on its substantial contribution to submicrometer particle (PM1) emission. Energy & Fuels, 2011, 25, 4172-4181.
- Garrido, M.A.; Font, R.; Conesa, J.A. Pollutant emissions during the pyrolysis and combustion of flexible polyurethane foam. Waste Management, 2016, 52, 138-146.
- Garrido, M.A.; Font, R.; Conesa, J.A. Pollutant emissions from the pyrolysis and combustion of viscoelastic memory foam. Science of the Total Environment, 2017, 577, 183-194.
- Gerasimov, G.Y. Comparative analysis of PCDD/Fs formation during pyrolysis and incineration of medical waste. IOP Conference Series: Earth and Environmental Science, 2019; 272, Article number: 022116.
- Glalah, M.; Antwi-Boasiako, C. Hazardous emissions and concentrations of toxic metalloids and trace elements in charcoals from six commonly used tropical timbers for carbonization. Environmental Science and Pollution Research, 2022, 29, 9892-9903.
- Gomez-Moreno, F.J.; Sanz-Rivera, D.; Martı́n-Espigares, M.; Papameletiou, D.; De Santi, G.; Kasper, G. Characterization of particulate emissions during pyrolysis and incineration of refuse derived fuel. Journal of Aerosol Science, 2003, 34, 1267-1275.
- Guo, X.; Wang, L.; Zhang, L.; Li, S.; Hao, J. Nitrogenous emissions from the catalytic pyrolysis of waste rigid polyurethane foam. Journal of Analytical and Applied Pyrolysis, 2014, 108, 143-150.
- Harsono, S.S.; Grundman, P.; Lau, L.H.; Hansen, A.; Salleh, M.A.M.; Meyer-Aurich, A.; Idris, A.; Ghazi, T.I.M. Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resources, Conservation and Recycling, 2013, 77, 108-115.
- Iñiguez, M.E.; Conesa, J.A.; Soler, A. Effect of marine ambient in the production of pollutants from the pyrolysis and combustion of a mixture of plastic materials. Marine Pollution Bulletin, 2018, 130, 249-257.
- Jauhiainen, J.; Martin-Gullon, I.; Conesa, J.A.; Font, R. Emissions from pyrolysis and combustion of olive oil solid waste. Journal of Analytical and Applied Pyrolysis, 2005, 74, 512-517.
- Kibet, J.; Rono, N.; Mutumba, M. Particulate emissions from high temperature pyrolysis of cashew nuts. Eurasian Journal of Analytical Chemistry, 2017, 12, 237-243.
- Kuramochi, H.; Nakajima, D.; Goto, S.; Sugita, K.; Wu, W.; Kawamoto, K. HCl emission during co-pyrolysis of demolition wood with a small amount of PVC film and the effect of wood constituents on HCl emission reduction. Fuel, 2008, 87, 3155-3157.
- Kwon, E.; Castaldi, M.J. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere. Environmental Science & Technology, 2009, 43, 5996-6002.
- Kwon, E.E.; Oh, J.-I.; Kim, K.-H. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO2 as a reaction medium. Journal of Environmental Management, 2015, 160, 306-311.
- Lai, Y.-C.; Lee, W.-J.; Li, H.-W.; Wang, L.-C.; Chang-Chien, G.-P. Inhibition of polybrominated dibenzo-p-dioxin and dibenzofuran formation from the pyrolysis of printed circuit boards. Environmental Science & Technology, 2007, 41, 957-962.
- Lapcik, V.; Nimracek, T. Emissions from pyrolysis of tires and municipal waste. Inżynieria Mineralna, 2015, 16, 177-182.
- Lee, J.; Choi, D.; Tsang, Y.F.; Oh, J.-I.; Kwon, E.E. Employing CO2 as reaction medium for in-situ suppression of the formation of benzene derivatives and polycyclic aromatic hydrocarbons during pyrolysis of simulated municipal solid waste. Environmental Pollution, 2017, 224, 476-483.
- Li, J.; Lin, F.; Xiang, L.; Zheng, F.; Che, L.; Tian, W.; Guo, X.; Yan, B.; Song, Y.; Chen, G. Hazardous elements flow during pyrolysis of oily sludge. Journal of Hazardous Materials, 2021, 409, 124986.
- Liaw, S.B.; Rahim, M.U.; Wu, H. Trace elements release and particulate matter emission during the combustion of char and volatiles from in situ biosolid fast pyrolysis. Energy & Fuels, 2016, 30, 5766-5771.
- Lin, B.; Huang, Q.; Chi, Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Processing Technology, 2018, 177, 275-282.
- Liu, W.-J.; Shao, Z.-G.; Xu, Y. Emission characteristics of nitrogen and sulfur containing pollutants during the pyrolysis of oily sludge with and without catalysis. Journal of Hazardous Materials, 2021, 401, 123820.
- Mei, J.; Wang, X.; Xiao, X.; Cai, Y.; Tang, Y.; Chen, P. Characterization and inventory of PBDD/F emissions from deca-BDE, polyethylene (PE) and metal blends during the pyrolysis process. Waste Management, 2017, 62, 84-90.
- Moltó, J.; Font, R.; Gálvez, A.; Conesa, J.A. Pyrolysis and combustion of electronic wastes. Journal of Analytical and Applied Pyrolysis, 2009, 84, 68-78.
- Moltó, J.; López-Sánchez, B.; Domene-López, D.; Moreno, A.I.; Font, R.; Montalbán, M.G. Pollutant emissions during the pyrolysis and combustion of starch/poly (vinyl alcohol) biodegradable films. Chemosphere, 2020, 256, 127107.
- Namkung, H.; Park, S.-I.; Lee, Y.; Han, T.U.; Son, J.-I.; Kang, J.-G. Investigation of oil and facility characteristics of plastic waste pyrolysis for the advanced waste recycling policy. Energies, 2022, 15, 4317.
- Ortuño, N.; Conesa, J.A.; Moltó, J.; Font, R. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal. Science of the Total Environment, 2014, 499, 27-35.
- Ortuño, N.; Moltó, J.; Conesa, J.A.; Font, R. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures. Environmental Pollution, 2014, 191, 31-37.
- Rey, L.; Conesa, J.A.; Aracil, I.; Garrido, M.A.; Ortuño, N. Pollutant formation in the pyrolysis and combustion of automotive shredder residue. Waste Management, 2016, 56, 376-383.
- Sanito, R.C.; Chen, C.-H.; You, S.-J.; Yang, H.-H.; Wang, Y.-F. Volatile organic compounds (VOCs) analysis from plasma pyrolysis of printed circuit boards (PCB) with the addition of CaCO3 from natural flux agents. Environmental Technology & Innovation, 2023, 29, 103011.
- Schwartz, N.R.; Paulsen, A.D.; Blaise, M.J.; Wagner, A.L.; Yelvington, P.E. Analysis of emissions from combusting pyrolysis products. Fuel, 2020, 274, 117863.
- Soler, A.; Conesa, J.A.; Iñiguez, M.E.; Ortuño, N. Pollutant formation in the pyrolysis and combustion of materials combining biomass and e-waste. Science of the Total Environment, 2018, 622, 1258-1264.
- Sørmo, E.; Castro, G.; Hubert, M.; Licul-Kucera, V.; Quintanilla, M.; Asimakopoulos, A.G.; Cornelissen, G.; Arp, H.P.H. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. Journal of Hazardous Materials, 2023, 454, 131447.
- Sørmo, E.; Krahn, K.M.; Flatabø, G.Ø.; Hartnik, T.; Arp, H.P.H.; Cornelissen, G. Distribution of PAHs, PCBs, and PCDD/Fs in products from full-scale relevant pyrolysis of diverse contaminated organic waste. Journal of Hazardous Materials, 2024, 461, 132546.
- Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H.P.; Smebye, A.B.; Cornelissen, G. Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality. Science of the Total Environment, 2020, 718, 137335.
- Van de Beld, L.; Muggen, G. EMPYRO: Implementation of a commercial scale fast pyrolysis plant in the Netherlands. Proceedings of the 23rd European Biomass Conference and Exhibition, Vienna, Austria, 2015, pp. 1670-1673. ISBN: 978-88-89407-516.
- Wang, N.; Chen, D.; Arena, U.; He, P. Hot char-catalytic reforming of volatiles from MSW pyrolysis. Applied Energy, 2017, 191, 111-124.
- Yao, Z.; You, S.; Dai, Y.; Wang, C.-H. Particulate emission from the gasification and pyrolysis of biomass: Concentration, size distributions, respiratory deposition-based control measure evaluation. Environmental Pollution, 2018, 242, 1108-1118.
- Zhao, L.; Shao, J.; Xiang, L.; Feng, Y.; Wang, Z.; Lin, F. Co-pyrolysis of oil sludge with hydrogen-rich plastics in a vertical stirring reactor: Kinetic analysis, emissions, and products. Frontiers of Environmental Science & Engineering, 2022, 16, 135.
References
- Jindo, K.; Sánchez-Monedero, M.A.; Mastrolonardo, G.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chem. Biol. Technol. Agric. 2020, 7, 16. [Google Scholar] [CrossRef]
- Flatabø, G.Ø.; Cornelissen, G.; Carlsson, P.; Nilsen, P.J.; Tapasvi, D.; Bergland, W.H.; Sørmo, E. Industrially relevant pyrolysis of diverse contaminated organic wastes: Gas compositions and emissions to air. J. Clean. Prod. 2023, 423, 138777. [Google Scholar] [CrossRef]
- Waheed, Q.M.K.; Nahil, M.A.; Williams, P.T. Pyrolysis of waste biomass: Investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. J. Energy Inst. 2013, 86, 233–241. [Google Scholar] [CrossRef]
- Sri Shalini, S.; Palanivelu, K.; Ramachandran, A.; Raghavan, V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—A review. Biomass Convers. Biorefinery 2021, 11, 2247–2267. [Google Scholar] [CrossRef]
- Devereux, R.C.; Mooney, S.J.; Sturrock, C.J. The effects of biochar on soil physical properties and winter wheat growth. Earth Environ. Sci. Trans. R. Soc. Edinb. 2012, 103, 13–18. [Google Scholar] [CrossRef]
- Amenaghawon, A.N.; Anyalewechi, C.L.; Okieimen, C.O.; Kusuma, H.S. Biomass pyrolysis technologies for value-added products: A state-of-the-art review. Environ. Dev. Sustain. 2021, 23, 14324–14378. [Google Scholar] [CrossRef]
- Maqsood, T.; Dai, J.; Zhang, Y.; Guang, M.; Li, B. Pyrolysis of plastic species: A review of resources and products. J. Anal. Appl. Pyrolysis 2021, 159, 105295. [Google Scholar] [CrossRef]
- Paladino, O.; Moranda, A. Human Health Risk Assessment of a pilot-plant for catalytic pyrolysis of mixed waste plastics for fuel production. J. Hazard. Mater. 2021, 405, 124222. [Google Scholar] [CrossRef] [PubMed]
- Rollinson, A.N.; Oladejo, J.M. ‘Patented blunderings’, efficiency awareness, and self-sustainability claims in the pyrolysis energy from waste sector. Resour. Conserv. Recycl. 2019, 141, 233–242. [Google Scholar] [CrossRef]
- Schwartz, N.R.; Paulsen, A.D.; Blaise, M.J.; Wagner, A.L.; Yelvington, P.E. Analysis of emissions from combusting pyrolysis products. Fuel 2020, 274, 117863. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, P. Air pollution control policies and regulations. In Plant Responses Air Pollution; Springer: Singapore, 2016; pp. 133–149. [Google Scholar]
- Li, S. Reviewing Air Pollutants Generated during the Pyrolysis of Solid Waste for Biofuel and Biochar Production: Toward cleaner production practices. Sustainability 2024, 16, 1169. [Google Scholar] [CrossRef]
- Honus, S.; Kumagai, S.; Molnár, V.; Fedorko, G.; Yoshioka, T. Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET—Part II: Fuel characteristics. Fuel 2018, 221, 361–373. [Google Scholar] [CrossRef]
- Kung, C.-C.; Zhang, N. Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation. Energy 2015, 90, 1532–1544. [Google Scholar] [CrossRef]
- Dastjerdi, B.; Strezov, V.; Rajaeifar, M.A.; Kumar, R.; Behnia, M. A systematic review on life cycle assessment of different waste to energy valorization technologies. J. Clean. Prod. 2021, 290, 125747. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Evangelisti, S.; Lettieri, P. Life cycle assessment of alternative technologies for municipal solid waste and plastic solid waste management in the Greater London area. Chem. Eng. J. 2014, 244, 391–402. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Shahbazi, A. Life cycle assessment of fast pyrolysis of municipal solid waste in North Carolina of USA. J. Clean. Prod. 2015, 87, 511–519. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 2016, 174, 164–171. [Google Scholar] [CrossRef]
- Ma, W.; Wenga, T.; Frandsen, F.J.; Yan, B.; Chen, G. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Prog. Energy Combust. Sci. 2020, 76, 100789. [Google Scholar] [CrossRef]
- Verbinnen, B.; De Greef, J.; Van Caneghem, J. Theory and practice of corrosion related to ashes and deposits in a WtE boiler. Waste Manag. 2018, 73, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Sørmo, E.; Krahn, K.M.; Flatabø, G.Ø.; Hartnik, T.; Arp, H.P.H.; Cornelissen, G. Distribution of PAHs, PCBs, and PCDD/Fs in products from full-scale relevant pyrolysis of diverse contaminated organic waste. J. Hazard. Mater. 2024, 461, 132546. [Google Scholar] [CrossRef]
- Moško, J.; Pohořelý, M.; Cajthaml, T.; Jeremiáš, M.; Robles-Aguilar, A.A.; Skoblia, S.; Beňo, Z.; Innemanová, P.; Linhartová, L.; Michalíková, K. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. Chemosphere 2021, 265, 129082. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, Y.; Wang, T.; Xu, H.; Norris, P.; Pan, W.-P. Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates. Fuel 2018, 225, 554–562. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Yang, Q.; Li, J.; Wang, L.; Zhang, S.; Yang, H.; Chen, H. Environmental impact assessment of VOC emissions from biomass gasification power generation system based on life cycle analysis. Fuel 2023, 335, 126905. [Google Scholar] [CrossRef]
- Hodgkinson, I.; Maletz, R.; Simon, F.-G.; Dornack, C. Mini-review of waste-to-energy related air pollution and their limit value regulations in an international comparison. Waste Manag. Res. 2021, 40, 849–858. [Google Scholar] [CrossRef] [PubMed]
- GB 18485-2014; MEP—China (2014) Standard for Pollution Control on the Municipal Solid Waste Incineration (English Version). Ministry of Ecology and Environment: Beijing, China, 2014. Available online: https://www.codeofchina.com/standard/GB18485-2014.html (accessed on 11 June 2024).
- G.S.R. 481(E); Proposed Emission Standards for Incinerators Used in MSW Plants for Power Generation (India). Ministry of Environment, Forest and Climate Change (MOEF): New Delhi, India, 2008. Available online: https://cpcb.nic.in/uploads/Industry-Specific-Standards/Effluent/100-common_hazardous_waste_%20(incinerator).pdf (accessed on 11 June 2024).
- Council, E. Directive 2010/75/EU industrial emissions. Off. J. Eur. Union 2010, 334, 17–119. [Google Scholar]
- Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H.P.; Smebye, A.B.; Cornelissen, G. Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality. Sci. Total Environ. 2020, 718, 137335. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.A.; Font, R.; Conesa, J.A. Pollutant emissions from the pyrolysis and combustion of viscoelastic memory foam. Sci. Total Environ. 2017, 577, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Legislative Decree 3 April 2006, N. 152. Available online: https://www.bosettiegatti.eu/info/norme/statali/2006_0152_allegati.htm#P_4 (accessed on 16 December 2023).
- Macura, B.; Piniewski, M.; Księżniak, M.; Osuch, P.; Haddaway, N.R.; Ek, F.; Andersson, K.; Tattari, S. Effectiveness of ecotechnologies in agriculture for the recovery and reuse of carbon and nutrients in the Baltic and boreo-temperate regions: A systematic map. Environ. Evid. 2019, 8, 39. [Google Scholar] [CrossRef]
- Vanhuyse, F.; Piseddu, T.; Moberg, Å. What evidence exists on the impact of climate change on real estate valuation? A systematic map protocol. Environ. Evid. 2023, 12, 24. [Google Scholar] [CrossRef]
- James, K.L.; Randall, N.P.; Haddaway, N.R. A methodology for systematic mapping in environmental sciences. Environ. Evid. 2016, 5, 1–13. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Macura, B.; Whaley, P.; Pullin, A.S. ROSES RepOrting standards for Systematic Evidence Syntheses: Pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. 2018, 7, 7. [Google Scholar] [CrossRef]
- Collaboration for Environmental Evidence. Guidelines and Standards for Evidence Synthesis in Environmental Management. 2022. Available online: https://www.environmentalevidence.org/information-for-authors (accessed on 31 November 2023).
- Harzing, A.W. Publish or Perish. 2007. Available online: https://harzing.com/resources/publish-or-perish (accessed on 4 January 2024).
- EPPI-Reviewer Web. Available online: https://eppi.ioe.ac.uk/cms/Default.aspx?tabid=2914 (accessed on 4 January 2023).
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Sahle-Demessie, E.; Mezgebe, B.; Dietrich, J.; Shan, Y.; Harmon, S.; Lee, C.C. Material recovery from electronic waste using pyrolysis: Emissions measurements and risk assessment. J. Environ. Chem. Eng. 2021, 9, 104943. [Google Scholar] [CrossRef] [PubMed]
- Garland, C.; Delapena, S.; Pennise, D. An alternative technique for determining gravimetric particle mass deposition on filter substrate: The particle extraction method. Open J. Air Pollut. 2018, 7, 309–321. [Google Scholar] [CrossRef]
- PYROCHAR. Erweiterung von Biomasse-Substraten für zusätzliche Energie- und Pflanzenkohleproduktion. Commercial-in-Confidence. 2022; 29–37. [Google Scholar]
- Gasefuels AB. Decentraliserad produktion av pyrolysolja för transport till storskaliga kraftvärmeverk och förgasningsanläggningar. Commercial-in-Confidence. 2013; 13–14. [Google Scholar]
- Aylón, E.; Murillo, R.; Fernández-Colino, A.; Aranda, A.; García, T.; Callén, M.S.; Mastral, A.M. Emissions from the combustion of gas-phase products at tyre pyrolysis. J. Anal. Appl. Pyrolysis 2007, 79, 210–214. [Google Scholar] [CrossRef]
- BioEnergy Producers Association. Evaluation of Emissions from Thermal Conversion Technologies Processing Municipal Solid Waste and Biomass. Commercial-in-Confidence. 2009; 16–31. [Google Scholar]
- Dunnigan, L.; Morton, B.J.; Ashman, P.J.; Zhang, X.; Kwong, C.W. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Manag. 2018, 77, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kuramochi, H.; Nakajima, D.; Goto, S.; Sugita, K.; Wu, W.; Kawamoto, K. HCl emission during co-pyrolysis of demolition wood with a small amount of PVC film and the effect of wood constituents on HCl emission reduction. Fuel 2008, 87, 3155–3157. [Google Scholar] [CrossRef]
- Rey, L.; Conesa, J.A.; Aracil, I.; Garrido, M.A.; Ortuño, N. Pollutant formation in the pyrolysis and combustion of automotive shredder residue. Waste Manag. 2016, 56, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Sørmo, E.; Castro, G.; Hubert, M.; Licul-Kucera, V.; Quintanilla, M.; Asimakopoulos, A.G.; Cornelissen, G.; Arp, H.P.H. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. J. Hazard. Mater. 2023, 454, 131447. [Google Scholar] [CrossRef]
- Chen, M.; Chen, D.; Arena, U.; Feng, Y.; Yu, H. Treatment of Volatile Compounds from Municipal Solid Waste Pyrolysis to Obtain High Quality Syngas: Effect of Various Scrubbing Devices. Energy Fuels 2017, 31, 13682–13691. [Google Scholar] [CrossRef]
- Afacan, O.; Gogebakan, Y.; Selçuk, N. Modeling of NOx emissions from fluidized bed combustion of high volatile lignites. Combust. Sci. Technol. 2007, 179, 227–247. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; He, W.; Huang, J.; Xu, J.; Li, G. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor. Sci. Total Environ. 2021, 772, 145507. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.K.; Sulaiman, S.A. Carbonization of coconut shell biomass in a downdraft reactor: Effect of temperature on the charcoal properties. Sains Malays. 2021, 50, 3705–3717. [Google Scholar] [CrossRef]
- Schiavon, M.; Ravina, M.; Zanetti, M.; Panepinto, D. State-of-the-art and recent advances in the abatement of gaseous pollutants from waste-to-energy. Energies 2024, 17, 552. [Google Scholar] [CrossRef]
- Lin, B.; Huang, Q.; Chi, Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Process. Technol. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Lee, W.-J.; Li, H.-W.; Wang, L.-C.; Chang-Chien, G.-P. Inhibition of Polybrominated Dibenzo-p-dioxin and Dibenzofuran Formation from the Pyrolysis of Printed Circuit Boards. Environ. Sci. Technol. 2007, 41, 957–962. [Google Scholar] [CrossRef]
- Chen, H.; Chen, D.; Hong, L. Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char. Appl. Energy 2015, 156, 767–775. [Google Scholar] [CrossRef]
Polluting Substances | for Plants Using Biomass (O2 in the Effluent Gaseous by 11%) | |||
---|---|---|---|---|
>0.15 to <3 MW | >3 to <6 MW | >6 to <20 MW | >20 MW | |
NO2 | 500 | 500 | 300 | 200 |
SO2 | 200 | 200 | 200 | 200 |
CO | 350 | 300 | 150 | 100 |
Dust (PM) | 100 1 | 30 | 30 | 30 |
Source | Search Type | Search String |
---|---|---|
Scopus | TITLE-ABS-KEY | (“pyrolysis”) AND (“biomass” OR “sludge” OR “wood” OR “tyre” OR “MSW” OR “tire” OR “waste” OR “plastic”) AND (“air emissions” OR “air pollutants” OR “air pollution”) |
Google Scholar | General | 1—Emissions; Pyrolysis, 2—Air Pollutants; Pyrolysis, 3—Air Emissions; Pyrolysis |
Criteria | Inclusion Criteria |
---|---|
Population (P) | Studies relevant to pyrolysis plants. |
Intervention (I) | Studies focused on air pollutants emitted from pyrolysis plants, the aspects that influence the emissions of air pollutants, and control strategies implemented to reduce emission levels. |
Study type | Primary research, excluding systematic reviews |
Article ID (Database) | Feedstock | Air Pollutants Studied |
---|---|---|
1 | Coconut shell | CO, CO2, CH4 |
4 | Shredded tire rubber | PM, NOx, SO2, CO, TOC, HCl, HF, PCDD/Fs |
25 | Viscoelastic memory foam | PAHs, dl-PCBs, PCDD/Fs, SVOCs |
26 | Medical waste | PCDD/Fs |
31 | Plastic waste | PCBs, PCDD/Fs |
49 | E-waste (PCB) | PCDD/Fs, dl-PCBs, SVOCs, PAHs, ClBzs, CIPhs, BrPhs |
59 | Waste timber | PAHs, CO, NO2, VOCs, CO2, PM |
60 | MSW | PM, HCl, NOx, SOx, PCDD/Fs |
61 | Waste tires | PM, NOx, CO, SO2, HCl, HF, TOC, PCDD/Fs |
63 | Bark | CO2, PM, NOx, CO, SO2, CH4, PCDD/Fs, PAHs |
Article ID | Feedstock | Scale | Temperature | Composition | Yield (%) |
---|---|---|---|---|---|
4 | Shredded tire rubber | Laboratory | 600 °C | H2 | 30.40 |
CO | 2.38 | ||||
CO2 | 2.90 | ||||
CH4 | 23.27 | ||||
20 | Grape pruning | Laboratory | 600 °C | H2 | 10.30 |
CO | 10.00 | ||||
CO2 | 21.50 | ||||
CH4 | 8.30 | ||||
21 | Rice husk | Laboratory | 600 °C | H2 | 5.40 |
CO | 24.30 | ||||
CO2 | 12.30 | ||||
CH4 | 3.80 | ||||
23 | Waste timber | Small 1 | 500–800 °C | H2 | 3–18 |
CO | 32–35 | ||||
CO2 | 20–35 | ||||
CH4 | 15–20 | ||||
23 | Food waste | Small 1 | 500 °C and 800 °C | H2 | 15–19 |
CO | 15–20 | ||||
CO2 | 12–18 | ||||
CH4 | 21–23 | ||||
56 | MSW | Small 1 | 500 °C | H2 | 19 |
CO | 30 | ||||
CO2 | 25 | ||||
CH4 | 10 |
Article ID | Feedstock | Study Scale | Mitigation Strategy | Removal Efficiency |
---|---|---|---|---|
4 | Shredded tire rubber | Laboratory | FGD to reduce the HCl and SO2 concentration | - |
8 | Scrap tires | Small 1 | WSB and a flare | PAHs by WSB = 76.2%, Flare = 66.8% |
23 | Various feedstocks | Small 1 | Flue gas recirculation, SNCR, or SCR to reduce the NOx emissions | - |
28 | RDF | Small 1 | Caustic Scrubber and electrostatic precipitator (ESP) to reduce PM emissions | - |
60 | MSW | Industrial 2 | SNCR unit for NOx control, a baghouse for PM control, and a scrubber unit for control of acid gases and volatile metals | - |
61 | Waste tires | Industrial 2 | Baghouse filter to reduce PM emissions (below 5 mg/Nm3) | - |
62 | MSW | Industrial 2 | Ion exchange scrubber followed by a baghouse with carbon dosing before discharge of the flue gases to the atmosphere | Filtration system = 90%, carbon based gas cleaning system = 95% |
63 | Bark | Industrial 2 | SNCR/SCR for NOx reduction, high-temperature ceramic process gas filter adsorbs >99% of the fine dust, for SOx, additional gas cleaning module (which is standard for sewage sludge applications) to reduce acidic components of the exhaust gas with caustic soda | For fine dust is >99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pivato, A.; Gohar, H.; Antille, D.L.; Schievano, A.; Beggio, G.; Reichardt, P.; Maria, F.D.; Peng, W.; Castegnaro, S.; Lavagnolo, M.C. Air-Polluting Emissions from Pyrolysis Plants: A Systematic Mapping. Environments 2024, 11, 149. https://doi.org/10.3390/environments11070149
Pivato A, Gohar H, Antille DL, Schievano A, Beggio G, Reichardt P, Maria FD, Peng W, Castegnaro S, Lavagnolo MC. Air-Polluting Emissions from Pyrolysis Plants: A Systematic Mapping. Environments. 2024; 11(7):149. https://doi.org/10.3390/environments11070149
Chicago/Turabian StylePivato, Alberto, Hamad Gohar, Diogenes L. Antille, Andrea Schievano, Giovanni Beggio, Philipp Reichardt, Francesco Di Maria, Wei Peng, Stefano Castegnaro, and Maria Cristina Lavagnolo. 2024. "Air-Polluting Emissions from Pyrolysis Plants: A Systematic Mapping" Environments 11, no. 7: 149. https://doi.org/10.3390/environments11070149
APA StylePivato, A., Gohar, H., Antille, D. L., Schievano, A., Beggio, G., Reichardt, P., Maria, F. D., Peng, W., Castegnaro, S., & Lavagnolo, M. C. (2024). Air-Polluting Emissions from Pyrolysis Plants: A Systematic Mapping. Environments, 11(7), 149. https://doi.org/10.3390/environments11070149