Estimation of the Discharge of Sunscreens in Aquatic Environments of the Mexican Caribbean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estimation of the Contamination of Sunscreen in Aquatic Ecosystems
2.2. Selection of Sunscreens
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCoshum, S.; Schlarb, M.A.; Baum, A.K. Direct and indirect effects of sunscreen exposure for reef biota. Hydrobiologia 2016, 776, 139–146. [Google Scholar] [CrossRef]
- Giokas, L.D.; Salvador, A.; Chisvert, A. UV filters: From sunscreens to human body and the environment. Rev. Trends Anal. Chem. 2007, 26, 360–374. [Google Scholar] [CrossRef]
- Brausch, J.M.; Rand, G.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2011, 82, 1518–1532. [Google Scholar] [CrossRef]
- Balmer, M.E.; Buser, H.R.; Muller, M.D.; Poiger, T. Occurrence of the organic UV-filter compounds BP-3, 4-MBC, EHMC, and OC in wastewater, surface waters, and in fish from Swiss lakes. Environ. Sci. Technol. 2004, 39, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Poiger, T.; Hans-Rudolf, B.; Balmer, E.M.; Per-Anders, B.; Müller, D.M. Occurrence of UV filter compounds from sunscreen in surface water: Regional mass balance in two Swiss lakess. Chemosphore 2004, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Moloney, F.J.; Collins, S.; Murphy, G.M. Sunscreens, safety, efficacy and appropriate use. Review article. Am. J. Clin. Dermatol. 2002, 3, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Quiles, D.; Tovar-Sánchez, A. Are sunscreens a new environmental risk associated with coastal tourism? Environ. Int. 2015, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Danovaro, R.; Bongiorni, L.; Corinaldesi, C.; Giovannelli, D.; Damiani, E.; Astolfi, P.; Greci, L.; Pusceddu, A. Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect. 2008, 116, 441–447. [Google Scholar] [CrossRef] [Green Version]
- SECTUR. Resultados de la Actividad Turística 2018. 2018. Available online: https://www.datatur.sectur.gob.mx/RAT/RAT-2018-12(ES).pdf (accessed on 10 December 2019).
- INEGI. Instituto Nacional de Estadística y Geografía. 2019. Available online: https://www.inegi.org.mx/temas/estructura/ (accessed on 10 December 2019).
- Rodríguez-Fuentes, G.; Luna-Ramírez, K.; Soto, M. Sunscreen Use behavior and most frequently used active ingredients among beachgoers on Cancun, Mexico. WebmedCentral Dermatol. 2010, 1, WMC001364. [Google Scholar] [CrossRef]
- Mancuso, J.B.; Maruthi, R.; Wang, S.Q.; Lim, H.W. Sunscreens: An update. Am. J. Clin. Dermatol. 2017, 18, 643–650. [Google Scholar] [CrossRef]
- Bozec, Y.M.; Acosta-González, G.; Núñez-Lara, E.; Arias-González, J.E. Impacts of coastal development on ecosystem structure and function of Yucatan coral reefs, Mexico. In Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, FL, USA, 7–11 July 2008; Volume 18, pp. 691–695. [Google Scholar]
- Ruszkiewicz, J.A.; Pinkas, A.; Ferrer, B.; Peres, T.V.; Tsatsakis, A.; Aschner, M. Neurotoxic effect of active ingredients in sunscreens products, a contemporary review. Toxicol. Rep. 2017, 4, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Clément, L.; Hurel, C.; Marmier, N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—Effects of size and crystalline structure. Chemosphere 2005, 90, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Hao, H.; Xu, N.; Liang, X.; Gao, D.; Xu, Y.; Gao, Y.; Tao, H.; Wong, M. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment. Sci. Total Environ. 2019, 659, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.C.; Nowack, B. Exposure modeling ofengineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447–4453. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216–9222. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C.; Bowes, M.J.; Crossley, A.; Jarvie, H.P.; Jurkschat, K.; Jürgens, M.D.; Lawlor, A.J.; Park, B.; Rowland, P.; Spurgeon, D.; et al. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci. Total Environ. 2011, 409, 2503–2510. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. Review of environmental effects of oxybenzone and other sunscreen active ingredients. J. Am. Acad. Dermatol. 2019, 80, 266–271. [Google Scholar] [CrossRef]
- Raffa, R.B.; Pergolizzi, J.V.; Taylor, R.; Kitzen, J.M. Sunscreen bans: Coral reefs and skin cancer. J. Clin. Pharm. Ther. 2019, 44, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Cesar, H.J.S.; Burke, L.; PetSoede, L. The Economics of Worldwide Coral Reef Degradation 2003. Available online: https://www.wwf.or.jp/activities/lib/pdf_marine/coral?reef/cesardegradationreport100203.pdf (accessed on 9 September 2018).
- NOAA. What Is Coral Bleaching? Available online: https://oceanservice.noaa.gov/ facts/coral_bleach.html (accessed on 9 September 2018).
- Brown, B.E.; Dunne, R.P.; Goodson, M.S.; Douglas, A.E. Bleaching Patterns in Reef Corals. Nature 2000, 404, 142–143. [Google Scholar] [CrossRef]
- Douglas, A.E. Coral bleaching-how and why? Mar. Pollut Bull. 2003, 46, 385–392. [Google Scholar] [CrossRef]
- Jones, R. More reflections on annual appraisal. Br. J. Gen. Pract. 2004, 54, 133. [Google Scholar] [PubMed]
- Bruno, J.F.; Selig, E.R.; Casey, K.S.; Page, C.A.; Willis, L.B.; Harvell, C.D.; Sweatman, H.; Melendy, A.M. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 2007, 5, e124. [Google Scholar] [CrossRef]
- Carrillo, L.; Johns, E.M.; Smith, R.H.; Lamkin, J.T.; Largier, J.L. Pathways and Hydrography in the Mesoamerican Barrier Reef System Part 1: Circulation. Cont. Shelf Res. 2015, 109, 164–176. [Google Scholar] [CrossRef]
- Melbourne-Thomas, J.; Johnson, C.R.; Perez, P.; Eustache, J.; Fulton, E.A.; Cleland, D. Coupling biophysical and socioeconomic models for coral reef systems in Quintana Roo, Mexican Caribbean. Ecol. Soc. 2011, 16, 23. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Duarte, Y.; Bautista, F.; Mendoza, M.E.; Delgado, C. Vulnerabilidad y riesgo de contaminación de acuíferos kársticos. Trop. Subtrop. Agroecosyst. 2013, 16, 243–263. [Google Scholar]
- González-Herrera, R.A.; Albornoz-Euán, B.S.I.; Sánchez-Pinto, I.A.; Osorio-Rodríguez, J.H. El acuífero yucateco, análisis del riesgo de contaminación con apoyo de un sistema de información geográfica. Rev. Int. Contam. Ambient. 2018, 34, 667–683. [Google Scholar] [CrossRef]
- Gallagher, R.P. Sunscreens in melanoma and skin cancer prevention. CMAJ 2005, 173, 244–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandika, M. Looking to nature for new sunscreens. Chem. Eng. News 2018, 96, 22–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbakidze, M.; Hahn, T.; Dawson, L.; Zimmermann, N.E.; Cudlín, P.; Friberg, N.; Genovesi, P.; Guarino, R.; Helm, A.; Jonsson, B.; et al. Direct and indirect drivers of change in biodiversity and nature’s contributions to people. In The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018; pp. 385–568. [Google Scholar]
- Gormsen, E. The impact of tourism on coastal areas. GeoJournal 1997, 42, 39–54. [Google Scholar] [CrossRef]
- Pacheco, J.; Marin, L.; Cabrera, A.; Steinich, B.; Escolero, O. Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environ. Geol. 2001, 40, 708–715. [Google Scholar] [CrossRef]
Sunscreen Ingredients | Chemical Characteristics | Expected Contamination (Tons) |
---|---|---|
3-Benzylidene Camphor | Aromatic hydroxyketones | 13.23 |
4-Methylbenzylidene Camphor | Aromatic hydroxyketones | 28.95 |
Benzophenone-1 | Aromatic hydroxyketones | 66.16 |
Benzophenone-2 | Aromatic hydroxyketones | 66.16 |
Benzophenone-3 | Aromatic hydroxyketones | 55.34 |
Benzophenone-4 | Aromatic hydroxyketones | 50.28 |
Benzophenone-5 | Aromatic hydroxyketones | 41.17 |
Benzophenone-6 | Aromatic hydroxyketones | 66.16 |
Benzophenone-8 | Aromatic hydroxyketones | 19.85 |
Benzophenone-9 | Aromatic hydroxyketones | 44.99 |
Benzylidene camphor sulfonic acid | Aromatic hydroxyketones | 54.82 |
Bis-ethylhexyloxyphenol Methoxyphenyl triazine | Oil-soluble organic compound | 49.62 |
Butyl methoxydibenzoyl methane | Oil-soluble organic compound | 39.7 |
Camphor benzalkonium methosulfate | Terpenoid (Isoprenoids) | 39.7 |
Cinoxate | Aromatic hydroxyketones | 25.52 |
Diethanolamine-4-methoxycinnamate | Oil-soluble organic compound | 61.75 |
Diethylamino hydroxybenzoyl hexyl benzoate | Aromatic hydroxyketones | 66.16 |
Diethylhexyl butamido triazone | Triazine-based organic compound | 66.16 |
Digalloyltrioleate | Oil-soluble organic compound | 33.08 |
Diisopropyl methyl cinnamate | Unsaturated carboxylic acid | 66.16 |
Dimethoxyphenyl-[1-(3,4)]-4,4-dimethyl 1,3 pentanedione | Aromatic hydroxyketones | 46.31 |
Disodium phenyl dibenzimidazole tetrasulfonate | Disodium salt | 66.16 |
Drometrizole | Lipophilic benzotriazole | 46.31 |
Drometrizole trisiloxane | Lipophilic benzotriazole | 99.24 |
Ethyl 4-[bis(2-hydroxypropyl)amino]benzoate | Para-amino benzoate | 33.08 |
2-Ethylhexyl acetate | Acetate ester | 19.85 |
Ferulic acid | Aromatic acid | 66.16 |
Glyceril octanoate dimethoxy Cinnamate | Cinnamate | 66.16 |
Glyceryl p-aminobenzoate | Cinnamate | 24.26 |
3,3,5-Trimethylcyclohexyl salicylate | Salicylates | 78.19 |
Isoamyl p-methoxycinnamate | Unsaturated carboxylic acid | 66.16 |
Isopropyl salicylate | Salicylates | 26.47 |
Methyl anthranilate | Aminobenzoic acid | 33.08 |
Methylene bis-benzotriazolyl tetramethylbutylphenol | Micro-fine organic particles | 66.16 |
Octocrylene | Oil-soluble organic compound | 67.49 |
Benzoic acid | Aminobenzoic acid | 54.13 |
Octyl salicylate | Salicylates | 36.69 |
Octyl triazone | Para-amino benzoate | 31.61 |
4-Aminobenzoic acid | Aromatic acid | 52.27 |
Polyoxyethylene ethyl-4-aminobenzoate | Polymers (Ethylene oxide) | 66.16 |
Pentyl p-(dimethylamino)benzoate | Para-amino benzoate | 49.62 |
Phenylbenzimidazole sulfonic acid | Aromatic acid | 41.68 |
Polyacrylamide methylbenzylidene camphor | Camphor derivates | 39.7 |
Polysilicone-15 | Polymers (Polysiloxane) | 66.16 |
Triethanolamine salicylate | Salicylates | 79.4 |
Terephthalylidene dicamphor Sulfonic acid | Aromatic acid | 66.16 |
Titanium dioxide | Mineral | 165.41 |
Zinc oxide | Mineral | 181.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Beltran, D.A.; Hernández-Pedraza, M.; Alvarado-Flores, J. Estimation of the Discharge of Sunscreens in Aquatic Environments of the Mexican Caribbean. Environments 2020, 7, 15. https://doi.org/10.3390/environments7020015
Casas-Beltran DA, Hernández-Pedraza M, Alvarado-Flores J. Estimation of the Discharge of Sunscreens in Aquatic Environments of the Mexican Caribbean. Environments. 2020; 7(2):15. https://doi.org/10.3390/environments7020015
Chicago/Turabian StyleCasas-Beltran, Diego Armando, Miguel Hernández-Pedraza, and Jesús Alvarado-Flores. 2020. "Estimation of the Discharge of Sunscreens in Aquatic Environments of the Mexican Caribbean" Environments 7, no. 2: 15. https://doi.org/10.3390/environments7020015
APA StyleCasas-Beltran, D. A., Hernández-Pedraza, M., & Alvarado-Flores, J. (2020). Estimation of the Discharge of Sunscreens in Aquatic Environments of the Mexican Caribbean. Environments, 7(2), 15. https://doi.org/10.3390/environments7020015