Evaluation of the Terrestrial 222Rn Flux from 210Pb Deposition Measurements
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanner, A.B. Radon migration in the ground: A review. In The Natural Radiation Environment; Adams, J.A.S., Lowder, W.M., Eds.; University of Chicago Press: Chicago, IL, USA, 1964; pp. 161–190. [Google Scholar]
- Tanner, A.B. Radon migration in the ground: A supplementary review. In The Natural Radiation Environment III; Gesell, T.F., Lowder, W.M., Eds.; CONF-780422; University of Chicago Press: Chicago, IL, USA, 1980; Volume 1, pp. 5–56. [Google Scholar]
- Nazaroff, W.W.; Nero, A.V. Radon and Its Decay Products in Indoor Air; Wiley Interscience: New York, NY, USA, 1988. [Google Scholar]
- ICPR 65. Protection against 222Rn at Home and at Work; ICRP: Ottawa, ON, Canada, 1993; Volume 23. [Google Scholar]
- Venuti, G.C.; Janssen, A.; Olast, M.; Europaische Kommission; USA Department of Energy. Indoor Radon Remedial Action: The Scientific Basis and the Practical Implications: Proceedings of the First International Workshop, Rimini, Italy, 27 June–2 July 1993; Nuclear Technology Publishing: Ashford, UK, 1994; Volume 56. [Google Scholar]
- Council Directive 2013/59/EURATOM of 5 December 2013 Laying down basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation. 2013. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf (accessed on 31 March 2022).
- Ulomov, V.I.; Mavashev, B.Z. A precursor of a strong tectonic earthquake. Dokl. Akad. Sci. SSSR 1967, 176, 9–11. [Google Scholar]
- Wakita, H.; Nakamura, Y.; Notsu, K.; Noguchi, M.; Asada, T. Radon anomaly: A possible precursor of the 1978 Izo-Oshima-Kinkai earthquake. Science 1980, 207, 882–883. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.H.; Rice, A.; Mendenhall, M.H.; Melvin, J.D.; Tombrello, T.A. Recognition of environmentally cause variation in radon time series. Pure Appl. Geophys. 1985, 122, 309–326. [Google Scholar] [CrossRef]
- Trique, B.; Richon, P.; Perrier, F.; Avouac, J.P.; Sabroux, J. Radon emanation and electric potential variations associated with transient deformation near reservoir lake. Nature 1999, 399, 137–141. [Google Scholar] [CrossRef]
- Kawada, Y.; Nagahama, H.; Omori, Y.; Yasuoka, Y.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Time scale invariant changes in atmospheric radon concentration and crustal strain prior to a large earthquake. Nonlinear Processes Geophys. 2007, 14, 123–130. [Google Scholar] [CrossRef]
- Cigolini, C.; Laiolo, M.; Ulivieri, G.; Coppola, D.; Ripepe, M. Radon mapping, automatic measurements and extremely high 222Rn emissions during the 2002–2007 eruptive scenarios at Stromboli volcano. J. Volcanol. Geotherm. Res. 2013, 264, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Conen, F.; Robertson, L.B. Latitudinal distribution of 222Rn flux from continents. Tellus 2002, 54B, 127–133. [Google Scholar] [CrossRef]
- Gupta, M.L.; Douglass, A.R.; Kawa, R.; Pawson, S. Use of radon for evaluation of atmospheric transport models: Sensitivity to emissions. Tellus Ser. B Chem. Phys. Meteorol. 2004, 56, 404–412. [Google Scholar] [CrossRef]
- Robertson, L.B.; Stevenson, D.S.; Conen, F. Test of a northwards-decreasing 222Rn source term by comparison of modelled and observed atmospheric 222Rn concentrations. Tellus Ser. B Chem. Phys. Meteorol. 2005, 57, 116–123. [Google Scholar] [CrossRef]
- Vermeulen, A.; Verheggen, B.; Zahorowski, W. 222Rn Vertical Gradient Measurements and Its Use for Transport Model Calibration; Transcom: Utrecht, The Netherlands, 2008. [Google Scholar]
- Zahorowski, W.; Williams, A.G.; Vermeulen, A.; Chambers, S.; Crawford, J.; Sisoutham, O. Diurnal boundary layer mixing patterns characterised by 222Rn gradient observations at Cabauw. In Proceedings of the 18th AMS Conference on Boundary Layers and Turbulence, Stockholm, Sweden, 9–13 June 2008; Available online: http://ams.confex.com/ams/pdfpapers/139978.pdf (accessed on 31 March 2022).
- Magnoni, M. Vertical dispersion of radon and conventional pollutants: Some tests on existing and new models, Sources and measurements of radon and radon progeny applied to climate and air quality studies. In Proceedings of the Technical Meeting, Vienna, Austria, 19–22 March 2012. [Google Scholar]
- Allegrini, I.; Febo, A.; Pasini, A.; Schirini, S. Monitoring of the nocturnal mixed layer ny means of particulate radon progeny measurements. J. Geophys. Res. 1994, 94, 765–777. [Google Scholar]
- Febo, A.; Perrino, C.; Giliberti, C.; Allegrini, I. Use of proper variables to describe some aspects of urban pollution. In NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1996; pp. 295–315. [Google Scholar]
- Sesana, L.; Barbieri, L.; Facchini, U.; Marcazzan, G. 222Rn as a tracer of atmospheric motions: A study in Milan. Radiat. Prot. Dosim. 1998, 78, 65–71. [Google Scholar] [CrossRef]
- Kataoka, T.; Yunoki, E.; Shimizu, M.; Mori, T.; Tsukamoto, O.; Ohashi, Y.; Sahashi, K.; Maitani, T.; Miyashita, K.I.; Iwata, T.; et al. A study of the atmospheric boundary layer using radon and air pollutants as tracers. Bound.-Layer Meteorol. 2001, 101, 131–155. [Google Scholar] [CrossRef]
- Garbero, V.; Dellacasa, G.; Bianchi, D.; Magnoni, M.; Erbetta, L. Outdoor radon concentration measurements: Some correlation with major urban pollutants. Radiat. Prot. Dosim. 2009, 137, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Steinkopff, T.; Frank, G.; Salvamoser, J. Low Level Measurements of 222Rn in the Atmosphere in the Frame of the GAW-Measuring Programme at the Environmental Research Platform Schneefernerhaus/Zugspitze. In Proceedings of the Technical Meeting on Sources and Measurements of Radon and Radon Progeny Applied to Climate and Air Quality Studies, Vienna, Austria, 22–24 June 2009. [Google Scholar]
- Hirsch, A.L. On using 222Rn and CO2 to calculate regional-scale CO2 fluxes. Atmos. Chem. Phys. 2007, 7, 3737–3747. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.I.; Fischer, M.L.; Biraud, S.C.; Torn, M.S.; Berry, J.A.; Andrews, A.E.; Peters, W.; Zahorowski, W.; Chambers, S.Z.; Tans, P.P. Combining Eddy Covariance Fluxes, High-Precision Trace Gas Measurements, Chemical Transport Modeling, and Inverse Modeling to Estimate Regional CO2 Fluxes in the Southern Great Plains, USA, Eos Trans. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2008; Volume 2008, p. B54A-04. [Google Scholar]
- Biraud, S.; Ciais, P.; Ramonet, M.; Simmonds, P.; Kazan, V.; Monfray, P.; O’Doherty, S.; Spain, T.G.; Jennings, S.G. European greenhouse gas emissions estimated from continuous atmospheric measurements and 222Rn at Mace Head, Ireland. J. Geophys. Res. 2000, 105, 1351–1366. [Google Scholar] [CrossRef]
- Schmidt, M. Atmospheric Radon Measurements in the French Greenhouse Gas Monitoring Network (RAMCES). 2009. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/P1541_web.pdf (accessed on 31 March 2022).
- TraceRadon, Radon Metrology for Use in Climate Change Observation and Radiation Protection at Environmental Level. 2020. Available online: http://traceradon-empir.eu/ (accessed on 30 March 2022).
- Abril, J.M.; Brunskill, G.J. Evidence that excess 210Pb varies with sediment accumulation rate and implication for dating recent sediments. J. Paleolimnol. 2014, 52, 121–137. [Google Scholar] [CrossRef]
- Tables of Radionuclides, Monographie BIPM-5, Bureau International des Poids e des Mesures; BIPM: Sèvres, Paris, 2008.
- Magnoni, M.; Bellina, L.; Bertino, S.; Bellotto, B.; Ghione, M.; Losana, M.C. Measurements of 22Na in the Atmosphere: Ground Level Activity Concentration Values from Wet and Dry Deposition Samples. Environments 2020, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Facchini, U.; Martini, M.; Morniroli, E.; Procopio, G.; Tamborini, G.; Canuti, A.; Capelli, G. Concentration of radon progeny in the open air and interiors of Milan and other Italian sites. Health Phys. 1981, 41, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Chiaberto, E.; Magnoni, M.; Righino, F. Il radon nel suolo: Misure di concentrazione e di flusso. In Proceedings of the Atti del XXXI Congresso AIRP, Ancona, Italy, 20–22 September 2000. [Google Scholar]
- Conen, F. Variation of 222Rn flux and its implications for atmospheric tracer studies. In Proceedings of the 1st International Expert Meeting on Source and Measurements of Natural Radionuclides Applied to Climate and Air Quality Studies, Gif sur Yvette, France, 3–5 June 2003. [Google Scholar]
Parameters | Estimated Values |
---|---|
Model coefficient α | 7.80 Bq/m2 |
Model coefficient β | 56.60 Bq/m2 |
Model coefficient γ | 0.0021 mm−1 |
Pearson coefficient | 0.80 |
Pearson coefficient CI (95%) | 0.71–0.86 |
210Pb estimated asymptotic value | 64.41 Bq/m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnoni, M.; Bellina, L.; Bertino, S.; Bellotto, B.; Chiaberto, E. Evaluation of the Terrestrial 222Rn Flux from 210Pb Deposition Measurements. Environments 2022, 9, 68. https://doi.org/10.3390/environments9060068
Magnoni M, Bellina L, Bertino S, Bellotto B, Chiaberto E. Evaluation of the Terrestrial 222Rn Flux from 210Pb Deposition Measurements. Environments. 2022; 9(6):68. https://doi.org/10.3390/environments9060068
Chicago/Turabian StyleMagnoni, Mauro, Luca Bellina, Stefano Bertino, Brunella Bellotto, and Enrico Chiaberto. 2022. "Evaluation of the Terrestrial 222Rn Flux from 210Pb Deposition Measurements" Environments 9, no. 6: 68. https://doi.org/10.3390/environments9060068
APA StyleMagnoni, M., Bellina, L., Bertino, S., Bellotto, B., & Chiaberto, E. (2022). Evaluation of the Terrestrial 222Rn Flux from 210Pb Deposition Measurements. Environments, 9(6), 68. https://doi.org/10.3390/environments9060068