Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Laboratory Analysis
- A = Weight of filter paper after filtration
- B = Weight of filter paper before filtration
- V = Volume of filtered water sample.
2.2. Phytoremediation Treatment
2.3. Statistical Analysis
3. Results and Discussion
3.1. Initial Parameters for Water Quality Prior Treatment
3.2. Removal of TSS, NH3-N and COD
3.2.1. Reduction Rate of TSS
3.2.2. Reduction Rate of NH3-N
3.2.3. Reduction Rate of COD
3.2.4. Phytoremediation Efficiency by Lemna minor, Salvinia minima, Ipomoea aquatica and Centella asiatica
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harun, S.N.; Hanafiah, M.M. Estimating the country-level water consumption footprint of selected crop production. Appl. Ecol. Environ. Res. 2018, 16, 5381–5403. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Ghazali, N.F.; Harun, S.N.; Abdulaali, H.; AbdulHasan, M.J.; Kamarudin, M.K.A. Assessing water scarcity in Malaysia: A case study of rice production. Desalin. Water Treat. 2019, 149, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Banch, T.J.; Hanafiah, M.M.; Alkarkhi, A.F.M.; Amr, S.S.A.; Nizam, N.U.M. Evaluation of different treatment processes for landfill leachate using low-cost agro-industrial materials. Processes 2020, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Safauldeen, S.H.; Hasan, H.A.; Abdullah, S.R.S. Phytoremediation efficiency of water hyacinth for batik textile effluent treatment. J. Ecol. Eng. 2019, 20, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Bong, P.; Malek, M.; Mardi, N.; Hanafiah, M.M. Cradle-to-Gate Water-Related Impacts on Production of Traditional Food Products in Malaysia. Sustainability 2020, 12, 5274. [Google Scholar] [CrossRef]
- Al-Raad, A.A.; Hanafiah, M.M.; Naje, A.S.; Ajeel, M.A. Optimized parameters of the electrocoagulation process using a novel reactor with rotating anode for saline water treatment. Environ. Pollut. 2020, 265, 115049. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. Environ. Pollut. 2020, 259, 113694. [Google Scholar] [CrossRef]
- Idris, M.; Abdullah, S.R.S.; Titah, H.S.; Latif, M.T.; Abasa, A.R.; Husin, A.K.; Hanima, R.F.; Ayub, R. Screening and identification of plants at a petroleum contaminated site in Malaysia for phytoremediation. J. Environ. Sci. Manag. 2016, 19, 27–36. [Google Scholar]
- Lai, W.; Lee, F.; Chen, C.S.; Hseu, Z.; Kuo, Y. The removal efficacy of heavy metals and total petroleum hydrocarbons from contaminated soils by integrated bio-phytoremediation. J. Soil Groundw. Environ. 2014, 19, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. Int. 2009, 16, 765–794. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Evaluation of natural phytoremediation process occuring at ex-tin mining catchment. Chiang Mai J. Sci. 2013, 40, 198–213. [Google Scholar]
- Mojiri, A. Phytoremediation of heavy metals from municipal wastewater by Typha domingensis. Afr. J. Microbiol. Res. 2012, 6, 643–647. [Google Scholar]
- Gerhardt, K.E.; Gerwing, P.D.; Greenberg, B.M. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci. 2017, 256, 170–185. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- Selamat, S.N.; Abdullah, S.R.S.; Idris, M. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathriculum L. from contaminated soil in separated exposure. Int. J. Phytoremediat. 2014, 16, 694–703. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Mohamad, N.H.S.M.; Aziz, N.I.H.A. Salvinia molesta dan Pistia stratiotes sebagai agen fitoremediasi dalam rawatan air sisa kumbahan. Sains Malays. 2018, 47, 1625–1634. [Google Scholar] [CrossRef]
- Hazmi, N.I.A.; Hanafiah, M.M. Phytoremediation of livestock wastewater using Azolla filiculoides and Lemna minor. Environ. Ecosyst. Sci. 2018, 2, 13–16. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Noor, I.M.; Karim, H.I.A. Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Appl. Sci. 2020, 10, 2712. [Google Scholar] [CrossRef] [Green Version]
- Akinbile, C.O.; Yusoff, M.S.; Shian, L.M. Leachate characterization and phytoremediation using water hyacinth (Eichorrnia crassipes) in Pulau Burung, Malaysia. Bioremediat. J. 2012, 16, 9–18. [Google Scholar] [CrossRef]
- Akinbile, C.O.; Yusoff, M.S. Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int. J. Phytoremediat. 2012, 14, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Akinbile, C.O.; Ogunrinde, T.A.; Che Man, H.; Aziz, H.A. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata. Int. J. Phytoremediat. 2016, 18, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Darajeh, N.; Idris, A.; Truong, P.; Abdul Aziz, A.; Abu Bakar, R.; Che Man, H. Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent. Adv. Mater. Sci. Eng. 2014, 2014, 683579. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.S.; Chan, D.J.C. Wastewater phytoremediation by Salvinia molesta. J. Water Process Eng. 2017, 15, 107–115. [Google Scholar] [CrossRef]
- Rezania, S.; Din, M.F.M.; Taib, S.M.; Dahalan, F.A.; Songip, A.R.; Singh, L.; Kamyab, H. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system. Int. J. Phytoremediat. 2016, 18, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hu, C.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 2007, 109, 207–220. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Yussof, M.K.M.; Hasan, M.; AbdulHasan, M.J.; Toriman, M.E. Water quality assessment of Tekala River, Selangor, Malaysia. Appl. Ecol. Environ. Res. 2018, 16, 5157–5174. [Google Scholar] [CrossRef]
- Sricoth, T.; Meeinkuirt, W.; Pichtel, J.; Taeprayoon, P.; Saengwilai, P. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ. Sci. Pollut. Res. 2018, 25, 5344–5358. [Google Scholar] [CrossRef]
- Ng, Y.S.; Chan, D.J.C. Phytoremediation capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in synthetic wastewater: A comparative study. Int. J. Phytoremediat. 2018, 20, 1179–1186. [Google Scholar] [CrossRef]
- Umar, K.J.; Muhammad, M.J.; Sani, N.A.; Muhammad, S.; Umar, M.T. Comparative study of antioxidant activities of the leaves and stem of Ipomea aquatica forsk (water spinach). Niger. J. Basic Appl. Sci. 2015, 23, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.S.; Samsudin, N.I.S.; Chan, D.J.C. Phytoremediation capabilities of Spirodela polyrhiza and Salvinia molesta in fish farm wastewater: A preliminary study. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 29th Symposium of Malaysian Chemical Engineers (SOMChE) 2016, Miri, Sarawak, Malaysia, 1–3 December 2016; IOP Publishing: Bristol, UK, 2017; Volume 206. [Google Scholar]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Wahab, N.A. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. J. Water Process. Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Le, P.T.T.; Boyd, C.E. Comparison of phenate and salicylate methods for determination of total ammonia nitrogen in freshwater and saline water. J. World Aquacult. Soc. 2012, 43, 885–889. [Google Scholar] [CrossRef]
- Singh, D.; Tiwari, A.; Gupta, R. Phytoremediation of lead from wastewater using aquatic plants. J. Agric. Sci. Technol. 2012, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alkimin, G.D.D.; Paisio, C.; Agostini, E.; Nunes, B. Phytoremediation processes of domestic and textile effluents: Evaluation of the efficacy and toxicological effects in Lemna minor and Daphnia magna. Environ. Sci. Pollut. Res. 2019, 4, 4423–4441. [Google Scholar] [CrossRef]
- El-Kheir, W.A.; Ismail, G.; El-Nour, A.; Tawfik, T.; Hammad, D. Assessment of the efficiency of duckweed (Lemna gibba) in wastewater treatment. Int. J. Agric. Biol. 2007, 9, 681–687. [Google Scholar]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef]
- Mohedano, R.A.; Costa, R.H.R.; Tavares, F.A.; Filho, P.B. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 2012, 112, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Leal-Alvarado, D.A.; Estrella-Maldonado, H.; Saenz-Carbonell, L.; Ramirez-Prado, J.H.; Zapata-Perez, O.; Santamaria, J.M. Genes coding for transporters showed a rapid and sharp increase in their expression in response to lead, in the aquatic fern (Salvinia minima Baker). Ecotoxicol. Environ. Saf. 2018, 147, 1056–1064. [Google Scholar] [CrossRef]
- Benyo, D.; Horvath, E.; Nemth, E.; Leviczky, T.; Takacs, K.; Lehotai, N.; Feigl, G.; Kolbert, Z.; Ordog, A.; Galle, R.; et al. Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. J. Plant Physiol. 2016, 201, 62–70. [Google Scholar] [CrossRef]
- Fuentes, I.I.; Espadas-Gil, F.; Talavera-May, C.; Fuentes, G.; Santamaria, J.M. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquat. Toxicol. 2014, 155, 142–150. [Google Scholar] [CrossRef]
- Leal-Alvarado, D.A.; Espadas-Gil, F.; Saenz-Carbonell, L.; Talavera-May, C.; Santamaria, J.M. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquat. Toxicol. 2016, 171, 37–47. [Google Scholar] [CrossRef]
- Prado, C.; Rodriguez-Montelongo, L.; Gonzalez, J.A.; Pagano, E.A.; Hilal, M.; Prado, F.E. Uptake of chromium by Salvinia minima: Effect on plant growth, leaf respiration and carbohydrate metabolism. J. Hazard. Mater. 2010, 177, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Olguin, E.J.; Sanchez-Galvan, G.; Perez-Perez, T. Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air Soil Pollut. 2007, 181, 135–147. [Google Scholar] [CrossRef]
- Farraji, H.; Zaman, N.Q.; Sa’at, S.K.M.; Dashti, A.F. Phytoremediation of suspended solids and turbidity of palm oil mill effluent (POME). Eng. Herit. J. 2017, 1, 36–40. [Google Scholar] [CrossRef]
- Sundaralingam, T.; Gnanavelrajah, N. Phytoremediation potential of selected plants for nitrate and phosphorus from ground water. Int. J. Phytoremediat. 2014, 16, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Manan, F.A.; Chai, T.T.; Samad, A.A.; Mamat, D.D. Evaluation of the phytoremediation potential of two medicinal plants. Sains Malays. 2015, 44, 503–509. [Google Scholar] [CrossRef]
- Yap, C.K.; Fitri, M.R.M.; Mazyhar, Y.; Tan, S.G. Effects of metal contaminated soils on the accumulation of heavy metals in different parts of Centella asiatica: A laboratory study. Sains Malays. 2010, 39, 347–352. [Google Scholar]
- Manikam, M.K.; Halim, A.A.; Hanafiah, M.M.; Krishnamoorthy, R.R. Removal of ammonia nitrogen, nitrate, phosphorus and COD from sewage wastewater using palm oil boiler ash composite adsorbent. Desalin. Water Treat. 2019, 149, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Manikam, M.K.; Syafinaz, M.I.; Halim, A.A.; Hanafiah, M.M. Penyingkiran ammonia dan permintaan oksigen kimia daripada air sisa kumbahan menggunakan media penjerap komposit karbon teraktif. Sains Malays. 2019, 48, 2529–2539. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Zainuddin, M.F.; Nizam, N.U.M.; Halim, A.A.; Rasool, A. Phytoremediation of aluminum and iron from industrial wastewater using Ipomea aquatica and Centella asiatica. Appl. Sci. 2020, 10, 3064. [Google Scholar] [CrossRef]
- Banch, T.J.H.; Hanafiah, M.M.; Alkarkhi, A.F.M.; Amr, S.S.A. Statistical evaluation of landfill leachate system and its impact on groundwater and surface water in Malaysia. Sains Malays. 2019, 48, 2391–2403. [Google Scholar] [CrossRef]
- Banch, T.J.H.; Hanafiah, M.M.; Amr, S.S.A.; Alkarkhi, A.F.M.; Hasan, M. Treatment of landfill leachate using palm oil mill effluent. Processes 2020, 8, 601. [Google Scholar] [CrossRef]
Reference | Pollutant | Type of Plant | Removal Rate (%) | Duration |
---|---|---|---|---|
Safauldeen et al. [4] | COD, TSS | Eichhornia crassipes | 83, 92 | 28 days |
Hanafiah et al. [17] | NH3-N, TSS | Salvinia molesta | 96, 88 | 7 days |
Pistia stratiotes | 83, 95 | |||
Hazmi and Hanafiah [18] | COD, NH3-N | Lemna minor | 93.7, 66.4 | 6 days |
Azolla filiculoides | 94.2, 52.7 | |||
Nizam et al. [19] | NH3-N, TSS | Centella asiatica | 98, 90 | 14 days |
Ipomea aquatica | 73, 73 | |||
Salvinia molesta | 63.9, 89.3 | |||
Eichhornia crassipes | 74, 96 | |||
Pistia stratiotes | 78, 98 | |||
Akinbile et al. [20] | NH3-N | Eichhornia crassipes | 86 | 49 days |
Akinbile and Yusoff [21] | COD, NH3-N | Eichhornia crassipes | 59, 85 | 28 days |
Pistia stratiotes | 54, 82 | |||
Akinbile et al. [22] | COD, NH3-N, TSS | Azolla pinnata | 71, 62, 80 | 28 days |
Darejah et al. [23] | COD | Chrysopogon zizanioides L. | 94 | 14 days |
Ng and Chan [24] | COD | Salvinia molesta | 39 | 16 days |
Rezania et al. [25] | COD, NH3-N, TSS | Eichhornia crassipes | 41, 64, 34 | 21 days |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Aziz, N.I.H.; Mohd Hanafiah, M.; Halim, N.H.; Fidri, P.A.S. Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica. Appl. Sci. 2020, 10, 5397. https://doi.org/10.3390/app10165397
Abdul Aziz NIH, Mohd Hanafiah M, Halim NH, Fidri PAS. Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica. Applied Sciences. 2020; 10(16):5397. https://doi.org/10.3390/app10165397
Chicago/Turabian StyleAbdul Aziz, Nur Izzah Hamna, Marlia Mohd Hanafiah, Nasrun Hisyam Halim, and Putri Amylin Sofea Fidri. 2020. "Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica" Applied Sciences 10, no. 16: 5397. https://doi.org/10.3390/app10165397
APA StyleAbdul Aziz, N. I. H., Mohd Hanafiah, M., Halim, N. H., & Fidri, P. A. S. (2020). Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna minor L., Salvinia minima, Ipomea aquatica and Centella asiatica. Applied Sciences, 10(16), 5397. https://doi.org/10.3390/app10165397