A Comprehensive Evaluation Method of Bench Blast Performance in Open-Pit Mine
Abstract
:1. Introduction
2. The Method of Blasting Effect Evaluation
2.1. Evaluation Parameters
2.2. Fuzzy Mathematical Model
2.3. Membership and Weight Determination
3. Program Development
4. Application
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Mahdi, H.; Danial, J.A.; Masoud, M.; Samira, S. Risk assessment and prediction of rock fragmentation produced by blasting operation: A rock engineering system. Environ. Earth Sci. 2016, 75, 1–12. [Google Scholar]
- Mohsen, H.; Danial, J.A. Blast-induced air and ground vibration prediction: A particle swarm optimized-based artificial neural network approach. Environ. Earth Sci. 2015, 74, 2799–2817. [Google Scholar]
- Monjezi, M.; Hasanipanah, M.; Khandelwal, M. Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Comput. Appl. 2013, 22, 1637–1643. [Google Scholar] [CrossRef]
- Tonnizam, M.E.; Hajihassani, M.; Jahed, A.D.; Marto, A. Simulation of blasting-induced air overpressure by means of artificial neural networks. Int. Rev. Model. Simul. 2012, 5, 2501–2506. [Google Scholar]
- Hajihassani, M.; Armaghani, D.J.; Sohaei, H.; Mohamad, E.T.; Marto, A. Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Appl. Acoust. 2014, 80, 57–67. [Google Scholar] [CrossRef]
- Monjezi, M.; Bahrami, A.; Varjani, A.Y. Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. Int. J. Rock Mech. Min. Sci. 2010, 47, 476–480. [Google Scholar] [CrossRef]
- Yang, J.H.; Lu, W.; Li, P.; Yan, P. Evaluation of Rock Vibration Generated in Blasting Excavation of Deep-buried Tunnels. KSCE J. Civ. Eng. 2018, 22, 2593–2608. [Google Scholar] [CrossRef]
- Ratnesh, T.; Singh, T.N.; Neel, G. Prediction of Blast-Induced Flyrock in Opencast Mines Using ANN and ANFIS. Geotech. Geol. Eng. 2015, 33, 875–891. [Google Scholar]
- Stojadinovic, S.; Pantovic, R.; Zikic, M.; Stojanovic, G. FEM Comparison of Crack Response to Blasting Ground Vibration and Environmental Changes. Acta Montan. Slovaca 2014, 19, 175–181. [Google Scholar]
- Jayasinghe, L.B.; Zhou, H.Y.; Goh, A.T.; Zhao, Z.Y.; Gui, Y.L. Pile Response Subjected to Rock Blasting Induced Ground Vibration near Soil-rock Interface. Comput. Geotech. 2017, 82, 1–15. [Google Scholar] [CrossRef]
- Preece, D.S.; Chung, S.H. Development and Application of 3-D rock blast computer modeling capability using discrete elements-DMCBLAST-3D. In Proceedings of the 27th Annual Conference on Explosive and Blasting Technique, Orlando, FL, USA, 28–31 January 2001; pp. 11–18. [Google Scholar]
- Fakhimi, A.; Lanari, M. DEM-SPH simulation of rock blasting. Comput. Geotech. 2014, 55, 158–164. [Google Scholar] [CrossRef]
- Yan, P.; Zhou, W.X.; Lu, W.B.; Chen, M.; Zhou, C.B. Simulation of Bench Blasting Considering Fragmentation Size Distribution. Int. J. Impact Eng. 2016, 90, 132–145. [Google Scholar] [CrossRef]
- Motazavi, A.; Katsabanis, P.D. Application of Discontinuous Deformation Analysis to the Modelling of Rock Blasting in Mining. In Proceedings of the 37th US Rock Mechanics Symposium (Vail Rock 99), Vail, CO, USA, 6–9 June 1999; pp. 543–550. [Google Scholar]
- Zhu, C.Y.; Dai, C.; Jiang, Q.H. Numerical Simulation of Bench Blasting by the Discontinuous Deformation Analysis Method. J. Rock Mech. Eng. 2002, 21, 2461–2464. (In Chinese) [Google Scholar]
- Sun, D.Y.; Peng, Y.J.; Wang, X.Z. Application of DDA Method in Stability Analysis of Topple Rock Slope. Chin. J. Rock Mech. Eng. 2002, 21, 39–42. (In Chinese) [Google Scholar] [CrossRef]
- Monjezi, M.; Razaei, M.; Yazdian, A. Prediction of Backbreak in Open-pit Blasting Using Fuzzy Set Theory. Expert Syst. Appl. 2010, 37, 2637–2643. [Google Scholar] [CrossRef]
- Faramarzi, F.; Mansouri, H.; Farsangi, M. Development of Rock Engineering System-Based Models for Flyrock Risk Analysis and Prediction of Flyrock Distance in Surface Blasting. Rock Mech. Rock Eng. 2014, 47, 1291–1306. [Google Scholar] [CrossRef]
- Sanchidrian, J.A.; Ouchterlony, F. A Distribution-free Description of Fragmentation by Blasting Based on Dimensional Analysis. Rock Mech. Rock Eng. 2017, 50, 781–806. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sun, P.Y.; Liu, F.X.; Zhao, M.S. Design and Optimization for Bench Blast Based on Voronoi Diagram. Int. J. Rock Mech. Min. Sci. 2014, 66, 30–40. [Google Scholar] [CrossRef]
- Henrych, J.; Abrahamson, G.R. The Dynamics of Explosion and Its Use; Elsevier Scientific Publications: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Hustrulid, W. Blasting Principles for Open Pit Mining; Mining Engineering: FL, USA, 1999. [Google Scholar]
Subclass | Parameter | Unit |
---|---|---|
Blasting safety | Fly-rock | m |
Vibration | cm/s | |
Blasting quality | Boulder yield | % |
Muck pile height | m | |
Forward distance | m | |
Back break | m | |
Lateral groove depth | m | |
Bench smoothness | cm | |
Blasting cost | Explosive unit consumption | kg/m3 |
Blasted volume per meter | m3/m | |
Auxiliary materials | thousand |
Blank | Very Poor | Poor | Fair | Good | Very Good | Excellent |
---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.5 | 0.6 | 0.8 | 1 |
0 | 0.1 | 0.2 | 0.5 | 0.6 | 0.8 | 1 |
0 | 0.1 | 0.2 | 0.5 | 0.6 | 0.8 | 1 |
Parameter | Blank | Very Poor | Poor | Fair | Good | Very Good | Excellent |
---|---|---|---|---|---|---|---|
Fly-rock (m) | >200 | 165–200 | 125–165 | 85–125 | 45–85 | 5–45 | <5 |
Vibration (cm/s) | >5.0 | 3.5–5.0 | 2.5–3.5 | 2.0–2.5 | 1.0–2.0 | 0.5–1.0 | <0.5 |
Boulder yield | >9% | 6%–9% | 4%–6% | 2%–4% | 1%–2% | 0.5%–1% | <0.5% |
Muck pile height (m) | >3.00 | 2.40–3.00 | 1.80–2.40 | 1.20–1.80 | 0.60–1.20 | 0.20–0.60 | <0.20 |
Forward distance (m) | >25.0 | 21.0–25.0 | 17.0–21.0 | 13.0–17.0 | 9.0–13.0 | 5.0–9.0 | <5.0 |
Back break (m) | >3.0 | 2.6–3.0 | 2.2–2.6 | 1.8–2.2 | 1.4–1.8 | 1.0–1.4 | <1.0 |
Lateral groove depth (m) | >3.0 | 2.6–3.0 | 2.2–2.6 | 1.8–2.2 | 1.4–1.8 | 1.0–1.4 | <1.0 |
Bench smoothness (cm) | >40 | 32.0–40.0 | 25.0–32.0 | 17.0–25.0 | 10.0–17.0 | 2.0–10.0 | <2.0 |
Unit explosive consumption (kg/m3) | >1.8 | 1.50–1.8 | 1.20–1.50 | 0.9–1.20 | 0.6–0.9 | 0.30–0.6 | <0.30 |
Blasted volume per meter (m) | <30 | 30.0–36.0 | 36.0–42.0 | 42.0–48.0 | 48.0–54.0 | 54.0–60.0 | >60.0 |
Auxiliary materials (thousand) | >180 | 140–180 | 100–140 | 70–100 | 50–70 | 40–50 | <40 |
Subclass | Weight Value | Parameter | Weight Value |
---|---|---|---|
Blasting safety | 0.3 | Fly-rock | 0.35 |
Vibration | 0.65 | ||
Blasting quality | 0.4 | Boulder yield | 0.5 |
Muck pile height | 0.07 | ||
Forward distance | 0.12 | ||
Back break | 0.11 | ||
Lateral groove depth | 0.06 | ||
Bench smoothness | 0.14 | ||
Blasting cost | 0.3 | Explosive unit consumption | 0.48 |
Blasted volume per meter | 0.31 | ||
Auxiliary materials | 0.21 |
Parameter | Blank | Very Poor | Poor | Fair | Good | Very Good | Excellent |
---|---|---|---|---|---|---|---|
Fly-rock (m) | >150 | 125–150 | 95–125 | 65–95 | 35–65 | 5–35 | <5 |
Vibration (cm/s) | >5.0 | 3.5–5.0 | 2.5–3.5 | 2.0–2.5 | 1.0–2.0 | 0.5–1.0 | <0.5 |
Boulder yield (%) | >0.65 | 0.53–0.65 | 0.40–0.53 | 0.27–0.40 | 0.14–0.27 | 0.01–0.14 | <0.01 |
Muck pile height (m) | >3.00 | 2.40–3.00 | 1.80–2.40 | 1.20–1.80 | 0.60–1.20 | 0.20–0.60 | <0.20 |
Forward distance (m) | >25.0 | 21.0–25.0 | 17.0–21.0 | 13.0–17.0 | 9.0–13.0 | 5.0–9.0 | <5.0 |
Back break (m) | >3.0 | 2.6–3.0 | 2.2–2.6 | 1.8–2.2 | 1.4–1.8 | 1.0–1.4 | <1.0 |
Lateral groove depth (m) | >3.0 | 2.6–3.0 | 2.2–2.6 | 1.8–2.2 | 1.4–1.8 | 1.0–1.4 | <1.0 |
Bench smoothness (cm) | >40 | 32.0–40.0 | 25.0–32.0 | 17.0–25.0 | 10.0–17.0 | 2.0–10.0 | <2.0 |
Unit explosive consumption (kg/m3) | >2.0 | 1.80–2.0 | 1.60–1.80 | 1.40–1.60 | 1.10–1.40 | 0.90–1.10 | <0.90 |
Blasted volume per meter (m) | <30 | 30.0–36.0 | 36.0–42.0 | 42.0–48.0 | 48.0–54.0 | 54.0–60.0 | >60.0 |
Auxiliary materials (thousand) | >200 | 150–200 | 130–150 | 100–130 | 70–100 | 50–70 | <50 |
Subclass | Parameter | Value |
---|---|---|
Blasting safety | Fly-rock | 113 |
Vibration | 3.2 | |
Blasting quality | Boulder yield | 0.17 |
Muck pile height | 0.34 | |
Forward distance | 10.2 | |
Back break | 1.7 | |
Lateral groove depth | 1.2 | |
Bench smoothness | 2.7 | |
Blasting cost | Explosive unit consumption | 1.48 |
Blasted volume per meter | 43.9 | |
Auxiliary materials | 105 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liu, J.; Zhen, M.; Zhao, F.; Xiao, Z.; Shan, P.; Wang, Y.; Ou, C.; Zheng, H.; Liu, Z. A Comprehensive Evaluation Method of Bench Blast Performance in Open-Pit Mine. Appl. Sci. 2020, 10, 5398. https://doi.org/10.3390/app10165398
Liu M, Liu J, Zhen M, Zhao F, Xiao Z, Shan P, Wang Y, Ou C, Zheng H, Liu Z. A Comprehensive Evaluation Method of Bench Blast Performance in Open-Pit Mine. Applied Sciences. 2020; 10(16):5398. https://doi.org/10.3390/app10165398
Chicago/Turabian StyleLiu, Mingqing, Jun Liu, Mengyang Zhen, Futian Zhao, Zhimin Xiao, Peng Shan, Yue Wang, Chen Ou, Haowen Zheng, and Zheng Liu. 2020. "A Comprehensive Evaluation Method of Bench Blast Performance in Open-Pit Mine" Applied Sciences 10, no. 16: 5398. https://doi.org/10.3390/app10165398
APA StyleLiu, M., Liu, J., Zhen, M., Zhao, F., Xiao, Z., Shan, P., Wang, Y., Ou, C., Zheng, H., & Liu, Z. (2020). A Comprehensive Evaluation Method of Bench Blast Performance in Open-Pit Mine. Applied Sciences, 10(16), 5398. https://doi.org/10.3390/app10165398