Activated Carbon from Spent Coffee Grounds: A Good Competitor of Commercial Carbons for Water Decontamination
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Powdered Activated Carbons
2.2. Batch Adsorption Experiments
2.2.1. Organic Dyes
2.2.2. Phenolic Compounds
2.3. Equilibrium Isotherms
2.4. Analytical Procedures
3. Results and Discussion
3.1. Physico-Chemical Properties of PACs
3.2. Adsorption Tests
3.2.1. Organic Dyes Removal
3.2.2. Phenolic Compounds Removal
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotech. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ray, N.M.; Wan, J.; Khan, A.; Chakraborty, T.; Ray, M.B. Micropollutants in Wastewater: Fate and Removal Processes. In Physico-Chemical Wastewater Treatment and Resource Recovery; Farooq, R., Ahmad, Z., Eds.; IntechOpen: London, UK, 2017; pp. 75–107. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.H.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- US EPA. 2019. Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products. Available online: https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-productsa (accessed on 7 February 2020).
- Ebele, A.J.; Abdallah, M.A.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Jeirani, Z.; Hui Niu, C.; Soltan, J. Adsorpion of emerging pollutants on activated carbon. Rev. Chem. Eng. 2017, 33, 491–522. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Guten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Pal, A.; Yew-Hoong Gin, K.; Yu-Chen Lin, A.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef]
- Fu, Y.; Shen, Y.; Zhang, Z.; Ge, X.; Chen, M. Activated bio-chars derived from rice husk via one and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 2019, 646, 1567–1577. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, S.; Sun, H.J.; Ha, S.; Kim, J. Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing. Chemosphere 2016, 143, 142–147. [Google Scholar] [CrossRef]
- Cañizares, P.; Carmona, M.; Bazara, O.; Delgado, A.; Rodrigo, M.A. Adsorption equilibrium of phenol onto chemically modified activated carbon F400. J. Hazard. Mater. 2006, B131, 243–248. [Google Scholar] [CrossRef]
- Mohd Din, A.T.; Hameed, B.H.; Ahmad, A.L. Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 2009, 161, 1522–1529. [Google Scholar] [CrossRef]
- Busca, G.; Berardinelli, S.; Resini, C.; Arrighi, L. Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater. 2008, 160, 265–288. [Google Scholar] [CrossRef]
- Wang, S.L.; Tzou, Y.M.; Lu, Y.H.; Sheng, G. Removal of 3-chlorophenol from water using rice-straw-based carbon. J. Hazard. Mater. 2007, 147, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Mallek, M.; Chtourou, M.; Portillo, M.; Monclús, H.; Walha, K.; ben Salah, A.; Salvadó, V. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J. Environ. Manag. 2018, 223, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Lassouane, F.; Äit-Amar, H.; Amrani, S.; Rodriguez-Couto, S. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour. Technol. 2019, 271, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Barbato, F.; Mita, D.G.; Grumetto, L. Occurrence of Bisphenol A and its analogues in some foodstuff marketed in Europe. Food Chem. Toxicol. 2019, 131, 110575. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Zhao, F.; Mu, D.; Zhang, Z.; Hu, J. Ubiquitous Occurrence of Chlorinated Byproducts of Bisphenol A and Nonylphenol in Bleached Food Contacting Papers and Their Implications for Human Exposure. Environ. Sci. Technol. 2015, 49, 7218–7226. [Google Scholar] [CrossRef]
- Michalowicz, J. Bisphenol A—Sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol. 2014, 37, 738–758. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Wang, C.; Yan, Z.; Jiang, H.; Xu, H. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere 2018, 211, 962–969. [Google Scholar] [CrossRef]
- Kumar, A.; Jena, H.M. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J. Clean. Prod. 2016, 137, 1246–1259. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Derome, C.; Buleté, A.; Vulliet, E.; Bressy, A.; Varrault, G.; Chebbo, G.; Rocher, V. Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. J. Environ. Chem. Eng. 2016, 4, 1102–1109. [Google Scholar] [CrossRef] [Green Version]
- Ahmadpour, A.; Do, D.D. The preparation of active carbons from coal by chemical and physical activation. Carbon 1996, 34, 471–479. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Illán-Gómez, M.J. Insight into hydroxides-activated coals: Chemical or physical activation? J. Colloid. Interface Sci. 2008, 318, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Hong, S.; Hong, S.; Choi, J.; Park, S. Production of Biochar from Food Waste and its Application for Phenol Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 70. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Rebello, S.; Binod, P.; Varjani, S.; Shekhar Thakur, I.; Nair, R.B.; Pandey, A. Conversion of food and kitchen waste to value-added products. J. Environ. Manag. 2019, 241, 619–630. [Google Scholar] [CrossRef]
- Hussain, S.; Anjali, K.P.; Towhida Hassan, S.; Dwivedi, P.B. Waste tea as novel adsorbent: A review. Appl. Water Sci. 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Rovani, S.; Censi, M.T.; Pedrotti, S.L., Jr.; Lima, E.C.; Cataluña, R.; Fernandes, A.N. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J. Hazard. Mater. 2014, 271, 311–320. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production–A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Castro, C.S.; Abreu, A.L.; Silva, C.L.T.; Guerreiro, M.C. Phenol adsorption by activated carbon produced from spent coffee grounds. Water Sci. Technol. 2011, 64, 2059–2065. [Google Scholar] [CrossRef]
- Kemp, K.C.; Baek, S.B.; Lee, W.; Meyyappan, M.; Kim, K.S. Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology 2015, 26, 385–602. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Choi, B.H.; Hwang, M.; Jeong, T.; Ahn, K. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresour. Technol. 2016, 219, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Karamesouti, M.; Mitropoulos, A.C.; Kyzas, G.Z. A review for coffee adsorbents. J. Mol. Liq. 2017, 229, 555–565. [Google Scholar] [CrossRef]
- Naga Babu, A.; Srinivasa Reddy, D.; Suresh Kumar, G.; Ravindhranath, K.; Krishna Mohan, G. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. J. Environ. Manag. 2018, 218, 602–612. [Google Scholar] [CrossRef]
- Laksaci, H.; Khelifi, A.; Belhamdi, B.; Trari, M. Valorization of coffee grounds into activated carbon using physic—chemical activation by KOH/CO2. J. Environ. Chem. Eng. 2017, 5, 5061–5066. [Google Scholar] [CrossRef]
- Laksaci, H.; Khelifi, A.; Trari, M.; Addoun, A. Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. J. Clean. Prod. 2017, 147, 254–262. [Google Scholar] [CrossRef]
- Popovici, D.; Dusescu, C.; Neagu, M. Removal of phenol from aqueous solutions on activated carbon obtained from coffee grounds. Rev. Chim. 2016, 67, 751–756. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Anastopoulos, I. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere 2017, 168, 885–902. [Google Scholar] [CrossRef]
- Ahsan, A.; Islam, T.; Imam, M.A.; Golam Hyder, A.H.M.; Jabbari, V.; Dominguez, N.; Noveron, J.C. Biosorption of bisphenol-A and sulfamethoxazole from water using sulfonated coffee waste: Isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 2018, 6, 6602–6631. [Google Scholar] [CrossRef]
- Galanakis, C.M. Handbook of Coffee Processing By-Products: Sustainable Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wang, C.; Wen, W.; Hsu, H.; Yao, B. High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Adv. Powder Technol. 2016, 27, 1387–1395. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Loh, M.M.; Aziz, J.A. Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption. Dyes Pigment 2007, 75, 263–272. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Szulejko, J.E.; Raza, N.; Kumar, V.; Vikrant, K.; Tsang, D.C.W.; Bolan, N.S.; Ok, Y.S.; Khan, A. Identifying the best materials for the removal of airborne toluene based on performance metrics—A critical review. J. Clean. Prod. 2019, 241, 118408. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.H. Nanomaterials for the adsorptive treatment of Hg(II) ions from water. Chem. Eng. J. 2019, 358, 264–282. [Google Scholar] [CrossRef]
- Younis, S.A.; Motawea, E.A.; Moustafa, Y.M.; Lee, J.; Kim, K.H. A strategy for the efficient removal of chlorophenols in petrochemical wastewater by organophilic and aminated solica@alginate microbeads: Taguchi optimization and isotherm modeling based on partition coefficient. J. Hazard. Mat. 2020, 397, 122792. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.H.; Szulejko, J.E. The retrograde adsorption phenomenon at the onset of breakthrough and its quantitation: An experimental case study for gaseous toluene on activated carbon surface. Environ. Res. 2019, 178, 108737. [Google Scholar] [CrossRef]
- ASTM. ASTM D3860–98(2014): Standard Practice for Determination of Adsorptive Capacity of Activated Carbon by Aqueous Phase Isotherm Technique; ASTM: West Conshohocken, PA, USA, 1998. [Google Scholar]
- Zbair, M.; Bottlinger, M.; Ainassaari, K.; Ojala, S.; Stein, O.; Keiski, R.L.; Bensitel, M.; Brahmi, R. Hydrothermal Carbonization of Argan Nut Shell: Functional Mesoporous Carbon with Excellent Performance in the Adsorption of Bisphenol A and Diuron. Waste Biomass Valorization 2020, 11, 1565–1584. [Google Scholar] [CrossRef] [Green Version]
- Achak, M.; Hafidi, A.; Ouazzani, N.; Sayadi, S.; Mandi, L. Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. J. Hazard. Mater. 2009, 166, 117–125. [Google Scholar] [CrossRef]
- Xiaoli, C.; Youcai, Z. Adsorption of phenolic compound by aged-refuse. J. Hazard. Mater. 2006, B137, 410–417. [Google Scholar] [CrossRef]
- Ӧzkaya, B. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater. 2006, B129, 158–163. [Google Scholar] [CrossRef]
- Fierro, V.; Tornè-Fernandez, V.; Montanè, D.; Celzard, A. Adsorption of phenols onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater. 2008, 111, 276–284. [Google Scholar] [CrossRef]
- Batool, S.; Idrees, M.; Ahmad, M.; Ahmad, M.; Hussain, Q.; Iqbal, A.; Kong, J. Design and characterization of a biomass template/SnO2 nanocomposite for enhanced adsorption of 2,4-dichlorophenol. Environ. Res. 2020, 151, 108955. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, B.; Mishra, I.M. Adsorptive removal of acrylonitrile by commercial grade activated carbon: Kinetics, equilibrium and thermodynamics. J. Hazard. Mater. 2008, 152, 589–600. [Google Scholar] [CrossRef] [PubMed]
- IRSA-CNR 29/2003. “Metodi Analitici per le Acque” (ISBN 88-448-0083-7) vol. 2, n. 5070–A2: Fenoli. Available online: http://www.irsa.cnr.it/Docs/Capitoli/5070.pdf (accessed on 5 September 2019).
- Burwell, R.L. Manual of Symbols and Terminology for Physicochemical Quantities and Units. IUPAC Standards Online. 1976. Available online: https://iupac.org/iupac-standards-online/ (accessed on 7 February 2020).
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Spagnoli, A.A.; Giannakoudakis, D.A.; Bashkova, S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. J. Mol. Liq. 2017, 229, 465–471. [Google Scholar] [CrossRef]
- Lei, S.; Miyamoto, J.; Kanoh, H.; Nakahigashi, Y.; Kaneko, K. Enhancement of the methylene blue adsorption rate for ultramicroporous carbon fiber by addition of mesopores. Carbon 2006, 44, 1884–1890. [Google Scholar] [CrossRef]
- Çeçen, F.; Aktaş, Ö. Activated Carbon for Water and Wastewater Treatment, Integration of Adsorption and Biological Treatment; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Fonseca Alves, A.C.; Pacheco Antero, R.V.; Botelho de Oliveira, S.; Ojala, S.A.; Scalize, P.S. Activated carbon produced from waste coffee grounds for an effective removal of bisphenol-A in aqueous medium. Environ. Sci. Pollut. Res. 2019, 26, 24850–24862. [Google Scholar] [CrossRef]
- Pendleton, P.; Hua Wu, S.; Badalyan, A. Activated Carbon Oxygen Content Influence on water and Surfactant Adsorption. J. Colloid Interface Sci. 2002, 246, 235–240. [Google Scholar] [CrossRef]
- Javed, H.; Luong, D.X.; Lee, C.; Zhang, D.; Tour, J.M.; Alvarez, P.J.J. Efficient removal of bisphenol-A by ultra-high surface area porous activated carbon derived from asphalt. Carbon 2018, 140, 441–448. [Google Scholar] [CrossRef]
- Umar, M.; Roddick, F.; Fan, L.; Aziz, H.A. Application of ozone for the removal of bisphenol A from water and wastewater—A review. Chemosphere 2013, 90, 2197–2207. [Google Scholar] [CrossRef]
- Fudala-Ksiazek, S.; Pierpaoli, M.; Luczkiewicz, A. Efficiency of landfill leachate treatment in a MBR/UF system combined with NF, with a special focus on phthalates and bisphenol a removal. Waste Manag. 2018, 78, 94–103. [Google Scholar] [CrossRef] [PubMed]
- MubarakAli, D.; Park, J.; Han, T.; Srinivasan, H.; Lee, S.; Kim, J. Solution plasma process: An option to degrade bisphenol A in liquid-phase to non-toxic products. J. Mol. Liq. 2019, 276, 605–610. [Google Scholar] [CrossRef]
- Tan, Y.H.; Goh, P.S.; Ismail, A.F. Development of photocatalytic coupled zinceiron oxide nanoparticles via solution combustion for bisphenol—A removal. Int. Biodeterior. Biodegrad. 2015, 102, 346–352. [Google Scholar] [CrossRef]
- Supong, A.; Bhomick, P.C.; Baruah, M.; Pongener, C.; Sinha, U.B.; Sinha, D. Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustain. Chem. Pharm. 2019, 13, 100–159. [Google Scholar] [CrossRef]
- Bautista-Toledo, I.; Ferro-Garcia, M.A.; Rivero Utrilla, J.; Moreno Castilla, C.; Vegas Fernandez, F.J. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol. 2005, 39, 6246–6250. [Google Scholar] [CrossRef] [PubMed]
Parameters | MB | EB | BB | Ph | CP | BPA |
---|---|---|---|---|---|---|
Initial solutions concentration (g/L) | 0.02 | 0.025 | 0.1 | 0.2 | 0.2 | 0.025 |
PACs dosage (g/L) | 0.5 | 1 | 5 | 1 | 1 | 0.0125 |
Sample | SSA (m2/g) | TVP (cm3/g) | APD (nm) | Density (g/cm3) | pH-PZC | EDX (w/w %) 2 |
---|---|---|---|---|---|---|
SCGs-AC | 1199 | 0.502 | 1.67 | 1.78 | 9.5 | C: 85.3 O: 13.7 |
C1-AC | 823 | 0.523 | 2.54 | 1.81 | 8.8 | C: 89.3 O: 8.6 |
C2-AC | 932 | 0.491 | 2.10 | 1.96 | 10.5 | C: 91.5 O: 7.2 |
Sample | Details | MB | EB | BB | Ph | CP | BPA |
---|---|---|---|---|---|---|---|
SCGs-AC | qe | 40 | 24.8 | 19.8 | 143 | 194 | 116 |
Kinetic constant | 3.13 | 0.223 | 0.005 | 0.815 | 0.266 | 0.007 | |
R2 | 0.9989 | 0.9955 | 0.9905 | 1 | 1 | 0.9969 | |
C1-AC | qe | 40 | 25 | 20 | 122 | 190 | 175 |
Kinetic constant | 1.04 | 0.727 | 8.33 | 0.338 | 0.278 | 0.014 | |
R2 | 0.9998 | 0.9983 | 1 | 1 | 1 | 0.9998 | |
C2-AC | qe | 40 | 25 | 20 | 151 | 196 | 200 |
Kinetic constant | 8.93 | 0.471 | 0.238 | 0.441 | 0.521 | 0.005 | |
R2 | 1 | 0.9992 | 0.9975 | 1 | 1 | 0.9997 |
Sample | Adsorption Time (min) | MB | EB | BB | Ph | CP | BPA |
---|---|---|---|---|---|---|---|
SCGs-AC | 5 | 100 | 46.3 | 27.2 | 60.6 | 85.4 | 14.9 |
20 | 100 | 59.7 | 31.1 | 71.2 | 91.9 | 21.5 | |
60 | 100 | 73.8 | 34.4 | 71.3 | 94.8 | 29.3 | |
180 | 100 | 92.0 | 39.9 | 71.5 | 97.0 | 34.4 | |
C1-AC | 5 | 80.8 | 62.7 | 96.0 | 52.4 | 78.3 | 23.1 |
20 | 98.5 | 96.8 | 100 | 58.4 | 89.7 | 41.8 | |
60 | 100 | 100 | 100 | 59.4 | 93.5 | 58.5 | |
180 | 100 | 100 | 100 | 60.8 | 94.8 | 74.7 | |
C2-AC | 5 | 97.8 | 51.4 | 43.4 | 56.3 | 87.5 | 10 |
20 | 100 | 86.0 | 62.2 | 72.2 | 95.6 | 28.9 | |
60 | 100 | 99.8 | 85.4 | 74.3 | 97.7 | 48.2 | |
180 | 100 | 100 | 99.8 | 75.3 | 98.0 | 72.7 |
Sample | MB | EB | BB | Ph | CP | BPA | |
---|---|---|---|---|---|---|---|
SCGs-AC | Model | Langmuir | Freundlich | Freundlich | Freundlich | Freundlich | Langmuir |
Equations | y = 0.0056 x + 0.0025 | y = 1.6429 x − 1.5483 | y = 10.04 x − 40.232 | y = 2.5548 x − 4.9972 | y = 2.1638 x − 3.1231 | y = 0.0045 x + 0.0005 | |
Parameters | Q0 = 179 | n = 0.609 | n = 0.100 | n = 0.391 | n = 0.462 | Q0 = 222 | |
kL = 2.24 | kF = 0.213 | kF = 3.11·10−18 | kF = 0.007 | kF = 0.044 | kL = 9.00 | ||
R2 | 0.9894 | 0.9731 | 0.9021 | 0.9129 | 0.9029 | 0.9658 | |
C1-AC | Model | Langmuir | Langmuir | Langmuir | Freundlich | Freundlich | Langmuir |
Equations | y = 0.0036 x + 0.0006 | y = 0.0062 x + 0.0132 | y = 0.0039 x + 0.0449 | y = 3.4639 x − 10.379 | y = 1.2778 x + 0.399 | y = 0.0079 x + 0.0026 | |
Parameters | Q0 = 278 | Q0 = 161 | Q0 = 256 | n = 0.289 | n = 0.783 | Q0 = 127 | |
kL = 6.00 | kL = 0.470 | kL = 0.087 | kF = 3.11·10−5 | kF = 1.49 | kL = 3.04 | ||
R2 | 0.9972 | 0.9609 | 0.9152 | 0.9118 | 0.9099 | 0.9956 | |
C2-AC | Model | Langmuir | Langmuir | Langmuir | Freundlich | Freundlich | Langmuir |
Equations | y = 0.0085 x + 0.0036 | y = 0.0119 x + 0.0177 | y = 0.0129 x + 0.096 | y = 1.6268 x − 1.2875 | y = 0.8865 x + 2.3257 | y = 0.0032 x + 9·10−5 | |
Parameters | Q0 = 118 | Q0 = 84.0 | Q0 = 77.5 | n = 0.615 | n = 1.13 | Q0 = 313 | |
kL = 2.36 | kL = 0.672 | kL = 0.134 | kF = 0.276 | kF = 10.2 | kL = 35.6 | ||
R2 | 0.9952 | 0.9617 | 0.9701 | 0.9067 | 0.9640 | 0.9929 |
Sample | Parameter | U.M. | MB | EB | BB | Ph | CP | BPA |
---|---|---|---|---|---|---|---|---|
SCGs-AC 1 | Ci | mg/L | 20 | 25 | 100 | 200 | 200 | 25 |
Cf | mg/L | 0.005 | 0.224 | 0.885 | 57 | 5.94 | 10.5 | |
qe (BT 5%) | mg/g | 174.89 | 38.66 | 201.77 | 4711.0 | 3765.5 | 220.97 | |
qe (BT 10%) | mg/g | 174.67 | 35.38 | 117.50 | 4102.6 | 3349.6 | 220.91 | |
qe (BT 50%) | mg/g | 171.35 | 13.48 | 0.329 | 912.40 | 938.55 | 220.04 | |
Adsorption capacity | mg/g | 179 | 42.1 | 337 | 5371 | 3765 | 222 | |
Partition coefficient | mg/g/μM | 12455 | 165.55 | 237.72 | 8.87 | 81.53 | 4.82 | |
C1-AC 1 | Ci | mg/L | 20 | 25 | 100 | 200 | 200 | 25 |
Cf | mg/L | 0.020 | 0.058 | 0.005 | 78.3 | 10.4 | 3.10 | |
qe (BT 5%) | mg/g | 275.58 | 147.76 | 228.37 | 2386.3 | 1211.9 | 125.27 | |
qe (BT 10%) | mg/g | 275.45 | 147.09 | 227.01 | 1979.1 | 1131.1 | 125.17 | |
qe (BT 50%) | mg/g | 273.44 | 137.58 | 208.15 | 258.93 | 533.91 | 123.74 | |
Adsorption capacity | mg/g | 278 | 161 | 256 | 2850 | 1294 | 127 | |
Partition coefficient | mg/g/μM | 4365.6 | 2433.2 | 31968 | 3.42 | 16.00 | 9.37 | |
C2-AC 1 | Ci | mg/L | 20 | 25 | 100 | 200 | 200 | 25 |
Cf | mg/L | 0.036 | 0.046 | 0.175 | 49.5 | 4.09 | 1.36 | |
qe (BT 5%) | mg/g | 115.43 | 79.05 | 71.86 | 1400.2 | 1059.7 | 312.63 | |
qe (BT 10%) | mg/g | 115.29 | 78.79 | 71.57 | 1282.4 | 1010.2 | 312.61 | |
qe (BT 50%) | mg/g | 113.20 | 75.06 | 67.44 | 493.11 | 600.50 | 312.30 | |
Adsorption capacity | mg/g | 118 | 84 | 78 | 1522 | 1109 | 313 | |
Partition coefficient | mg/g/μM | 1056.8 | 1611.4 | 278.92 | 2.89 | 34.88 | 52.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosson, E.; Garbo, F.; Marangoni, G.; Bertani, R.; Lavagnolo, M.C.; Moretti, E.; Talon, A.; Mozzon, M.; Sgarbossa, P. Activated Carbon from Spent Coffee Grounds: A Good Competitor of Commercial Carbons for Water Decontamination. Appl. Sci. 2020, 10, 5598. https://doi.org/10.3390/app10165598
Rosson E, Garbo F, Marangoni G, Bertani R, Lavagnolo MC, Moretti E, Talon A, Mozzon M, Sgarbossa P. Activated Carbon from Spent Coffee Grounds: A Good Competitor of Commercial Carbons for Water Decontamination. Applied Sciences. 2020; 10(16):5598. https://doi.org/10.3390/app10165598
Chicago/Turabian StyleRosson, Egle, Francesco Garbo, Giovanni Marangoni, Roberta Bertani, Maria Cristina Lavagnolo, Elisa Moretti, Aldo Talon, Mirto Mozzon, and Paolo Sgarbossa. 2020. "Activated Carbon from Spent Coffee Grounds: A Good Competitor of Commercial Carbons for Water Decontamination" Applied Sciences 10, no. 16: 5598. https://doi.org/10.3390/app10165598
APA StyleRosson, E., Garbo, F., Marangoni, G., Bertani, R., Lavagnolo, M. C., Moretti, E., Talon, A., Mozzon, M., & Sgarbossa, P. (2020). Activated Carbon from Spent Coffee Grounds: A Good Competitor of Commercial Carbons for Water Decontamination. Applied Sciences, 10(16), 5598. https://doi.org/10.3390/app10165598