Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Anode Electrode
2.2. Coating of the Hole Injection Layer (HIL)
2.3. Coating of the Hole Transport Layer (HTL)
2.4. Coating of the Light Emitting Layer
2.5. Coating of the Electron Transport Layer (ETL)
2.6. Deposition of the Cathode Electrode
2.7. Device Characterization and Instrumentation
3. Results and Discussion
3.1. Introduction of HMDS for QD Improvement
3.2. The Roles of HMDS Coating of the QD on the Improvement of QD-LED Characteristics
3.3. The Emission Profiling Study for Characterizing the Flow of Charge
3.4. The Charge Balance Through the Thickness Adjustment of Both ETL and HTL
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Item | W/O HMDS | W HMDS |
---|---|---|
Wavelength (nm) | 525 | 530 |
Bandgap energy (eV) | 2.36 | 2.34 |
Item | Sample No. | 1 | 2 | Average | ||
---|---|---|---|---|---|---|
Device No. | 1 | 2 | 1 | 2 | ||
Max. Luminance | Ref | 9972 | 9835 | 9937 | 10,135 | 9970 |
HMDS-1 | 11,538 | 11,362 | 11,649 | 11,736 | 11,571 | |
HMDS-2 | 11,783 | 11,572 | 11,623 | 11,814 | 11,698 | |
Max. Efficiency | Ref | 7.0 | 7.2 | 7.3 | 7.4 | 7.2 |
HMDS-1 | 12.1 | 12.3 | 12.4 | 12.5 | 12.3 | |
HMDS-2 | 12.8 | 12.6 | 12.5 | 12.6 | 12.9 |
Sample No. | Sample 1 | Sample 2 | Average | ||||
Device No. | 1 | 2 | 3 | 1 | 2 | 3 | |
---|---|---|---|---|---|---|---|
Ref | 12,488 | 12,432 | 11,453 | 12,711 | 11,650 | 12,660 | 12,232 |
HOD | 4074 | 4372 | 4095 | 4556 | 4308 | 4859 | 4377 |
EOD | 562 | 476 | 559 | 776 | 832 | 409 | 602 |
ND | 25 | 26 | 23 | 17 | 15 | 18 | 21 |
References
- Mitschke, U.; Bäuerle, P.J. The electroluminescence of organic materials. Mater. Chem. 2000, 10, 1471–1507. [Google Scholar] [CrossRef]
- D’Andrade, B.W.; Thompson, M.E.; Forrest, S.R. Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices. Adv. Mater. 2002, 14, 147–151. [Google Scholar] [CrossRef]
- Nayak, P.K.; Agarwal, N.; Ali, F.; Patankar, M.P.; Periasamy, N.J. Blue and white light electroluminescence in a multilayer OLED using a new aluminium complex. Chem. Sci. 2010, 122, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Liu, Y.; Lee, K.; Chae, H.; Cho, S.M. Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Org. Electron. 2010, 11, 427–433. [Google Scholar] [CrossRef]
- Caruge, J.-M.; Halpert, J.E.; Bulovic, V.; Bawendi, M.G. NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices. Nano Lett. 2006, 6, 2991–2994. [Google Scholar] [CrossRef]
- Park, S.; Yun, W.M.; Kim, L.H.; Park, S.; Kim, S.H.; Park, C.E. Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes. Org. Electron. 2013, 14, 3385–3391. [Google Scholar] [CrossRef]
- Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.D.C.; Santos, D.A.D.; Bredas, J.L.; Logdlund, M.; et al. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, D.; Li, C.; Xu, F.; Lei, W.; Sun, L.; Nathan, A.; Sun, X.W. All Solution-processed Stable White Quantum Dot Light-emitting Diodes with Hybrid ZnO@TiO2 as Blue Emitters. Sci. Rep. 2014, 4, 4085. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, S.; Liu, M.S.; Ma, H.; Jen, A.K.-Y. Organic light-emitting diodes using an in situ thermally polymerized hole transporting layer. Appl. Phys. Lett. 2000, 76, 2985–2987. [Google Scholar] [CrossRef]
- Zhao, J.; Bardecker, J.A.; Munro, A.M.; Liu, M.S.; Niu, Y.; Ding, I.-K.; Luo, J.; Chen, B.; Jen, A.K.-Y.; Ginger, D.S. Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Lett. 2006, 6, 463–467. [Google Scholar] [CrossRef]
- Caruge, J.M.; Halpert, J.E.; Wood, V.; Bulovic, V.; Bawendi, M.G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250. [Google Scholar] [CrossRef]
- Cho, K.-S.; Lee, E.K.; Joo, W.J.; Jang, E.; Kim, T.-H.; Lee, S.J.; Kwon, S.-J.; Han, J.Y.; Kim, B.-K.; Choi, B.L.; et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3, 341. [Google Scholar] [CrossRef]
- Qian, L.; Zheng, Y.; Xue, J.; Holloway, P.H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543. [Google Scholar] [CrossRef]
- Kwak, J.; Bae, W.K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D.Y.; Char, K.; et al. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Lett. 2012, 12, 2362–2366. [Google Scholar] [CrossRef]
- Mashford, B.S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407. [Google Scholar] [CrossRef]
- Bae, W.K.; Park, Y.-S.; Lim, J.; Lee, D.; Padilha, L.A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J.M.; Klimov, V.I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Fu, Y.; Kim, S.; Lee, W.; Lee, K.-H.; Chung, H.K.; Lee, H.-J.; Yang, H.; Chae, H. Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device. ACS Nano 2017, 11, 1982–1990. [Google Scholar] [CrossRef]
- Cao, S.; Zheng, J.; Zhao, J.; Yang, Z.; Li, C.; Guan, X.; Yang, W.; Shang, M.; Wu, T. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer. ACS Appl. Mater. Interfaces 2017, 9, 15605–15614. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, W.; Zhang, H.; Su, Q.; Wei, J.; Liu, P.; Chen, S.; Zhang, S. High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer. ACS Appl. Mater. Interfaces 2018, 10, 18902–18909. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, Y.; Pu, C.; Deng, Y.; Dai, X.; Chen, X.; Chen, D.; Zheng, X.; Gao, Y.; Fang, W.; et al. High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots. Adv. Mater. 2018, 30, 1801387. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fan, W.H.; Li, Z.H.; Wu, D.; Sun, Y.H. Antireflective silica thin films with super water repellence via a solgel process. Appl. Opt. 2003, 42, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Lin, Y.; Huang, C. Over 40 cd/A Efficient Green Quantum Dot Electroluminescent Device Comprising Uniquely Large-Sized Quantum Dots. Semicond. Sci. Technol. 2011, 26, 045006. [Google Scholar] [CrossRef]
- Beamson, G. High resolution XPS of organic polymers: The Scienta ESCA 300 Database; Wiley: Chichester, UK, 1992; p. 295. [Google Scholar]
- Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Wang, S. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197. [Google Scholar] [CrossRef]
Turn-On Voltage (V) | Maximum Luminance (cd/m2) | Maximum Efficiency (cd/A) | |
---|---|---|---|
Ref (no HMDS treatment) | 4.3 | 9972 | 7.0 |
HMDS-1 (QD = 10 mL and HMDS = 1 mL) | 5.5 | 11,538 | 12.1 |
HMDS-2 (QD = 10 mL and HMDS = 4 mL) | 5.5 | 11,783 | 12.8 |
Unit (cd/m2) | Max. Luminance |
---|---|
Reference (Ref) | 12,488 |
Hole only device (HOD) | 4074 |
Electron only device (EOD) | 562 |
No-QD device (ND) | 25 |
Item | Spin-Coating Conditions (s) | Turn-On Voltage (V) | Luminance (cd/m2) | Efficiency (cd/A) |
---|---|---|---|---|
Ref | PVK(30) and ZnO(60) | 5.5 | 12,005 | 11.9 |
Sample 1 | PVK(30) and ZnO(30) | 5.0 | 35,270 | 29.8 |
Sample 2 | PVK(60) and ZnO(30) | 5.0 | 53,125 | 32.4 |
Sample 3 | PVK(60) and ZnO(30) | 5.0 | 41,179 | 21.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Shin, E.; Park, J.; Roh, Y. Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane). Appl. Sci. 2020, 10, 6081. https://doi.org/10.3390/app10176081
Park J, Shin E, Park J, Roh Y. Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane). Applied Sciences. 2020; 10(17):6081. https://doi.org/10.3390/app10176081
Chicago/Turabian StylePark, Junekyun, Eunkyu Shin, Jongwoo Park, and Yonghan Roh. 2020. "Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane)" Applied Sciences 10, no. 17: 6081. https://doi.org/10.3390/app10176081
APA StylePark, J., Shin, E., Park, J., & Roh, Y. (2020). Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane). Applied Sciences, 10(17), 6081. https://doi.org/10.3390/app10176081