Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Extract Preparation for Polyphenols and Antioxidant Activity Determination
2.2. Total Phenolics Content (TPC)
2.3. Flavonoids Content
2.4. Antioxidant Activity
2.4.1. DPPH Assay
2.4.2. ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Assay
2.5. Fruit Extract Preparation for Vitamin C Content Determination
2.6. Statistical Analysis of the Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chmiel, T.; Abogado, D.; Wardencki, W. Optimization of capillary isotachophoretic method for determination of major macroelements in blue honeysuckle berries (Lonicera caerulea L.) and related products. Anal. Bioanal. Chem. 2014, 406, 4965–4986. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 59, 1–25. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cehula, M.; Juríková, T.; Žiarovská, J.; Mlček, J.; Kysel, M. Evaluation of genetic diversity of edible honeysuckle monitored by RAPD in relation to bioactive substances. Potravin. Slovak J. Food Sci. 2019, 13, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, X.; Ran, X.; Chou, S.; Jiao, X.; Li, E.; Zhang, Q.; Meng, X.; Li, B. Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties. Open Chem. J. 2018, 16, 637–646. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera cearulea L. subs. edulis) berry; A rich source of some nutrients and their differences among four different cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Compost. Anal. 2017, 66, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Khattab, R.; Su-Ling Brooks, M.; Ghanem, A. Phenolic Analyses of Haskap Berries (Lonicera caerulea L.): Spectrophotometry Versus High Performance Liquid Chromatography. Int. J. Food Prop. 2016, 19, 1708–1725. [Google Scholar] [CrossRef] [Green Version]
- Sochor, J.; Jurikova, T.; Pohanka, M.; Skutkova, H.; Baron, M.; Tomaskova, L.; Balla, S.; Klejdus, B.; Pokluda, R.; Mlcek, J.; et al. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules 2014, 19, 6504–6523. [Google Scholar] [CrossRef] [Green Version]
- Wojdyło, A.; Nallely, P.; Jáuregui, N.; Carbonell-Barrachina, A.; Oszmiański, J.; Golis, T. Variability of Phytochemical Properties and Content of Bioactive Compounds in Lonicera caerulea L. var. kamtschatica Berries. J. Agric. Food. Chem. 2013, 49, 12072–12084. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Yu, L.J.; Bhullar, K.S.; Bors, B. Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Piekarska, A.; Mrugalska, B.; Konieczka, P.; Namieśnik, J.; Bartoszek, A. Phenolic Composition and Antioxidant Properties of Polish Blue-Berried Honeysuckle Genotypes by HPLC-DAD-MS, HPLC Postcolumn Derivatization with ABTS or FC, and TLC with DPPH Visualization. J. Agric. Food Chem. 2012, 60, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rop, O.; Řezníček, V.; Mlček, J.; Juríková, T.; Balík, J.; Sochor, J.; Kramářová, D.T. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hortic. Sci. 2011, 38, 63–70. [Google Scholar] [CrossRef]
- Kithma, A.B.; Rupasinghe, H.P. Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. Food Compost. Anal. 2020, 88, 103402. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.; Boehm, M.M.A.; Sekhon-Loodu, S.; Parmar, I.; Bors, B.; Jamieson, A.R. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent. Biomolecules 2015, 5, 1079–1098. [Google Scholar] [CrossRef]
- Cassells, L.J. Experiences and conclusions from the last seven years of North American haskap cultivation: Varieties, fertilization and market trends. In Proceedings of the Haskap Conference 2017, Ozarow Mazowiecki, Poland, 9 November 2017. [Google Scholar]
- Czernienko, A. Trends in the development of industrial horticulture of haskap in Russia, and the assessment of varieties in terms of market needs. In Proceedings of the 3rd International Haskap Conference, Jachranka, Poland, 7 November 2019. [Google Scholar]
- Od Pięciu Lat Polska Jest Największym Producentem Jagody Kamczackiej na Świecie. Available online: http://www.sadyogrody.pl/owoce/101/ (accessed on 7 July 2020).
- Official Journal of the European Union 17.12.2018. Available online: www.efsa.europa.eu (accessed on 7 July 2020).
- Bakowska-Barczak, A.M.; Marianchuk, M.; Kolodziejczyk, P. Survey of bioactive components in Western Canadianberries. Can. J. Physiol. Pharm. 2007, 85, 1139–1152. [Google Scholar] [CrossRef]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Wu, X.; Diao, Y.; Sun, C.; Yang, J.; Wang, Y.; Sun, S. Fluorimetricdetermination of ascorbicacid with o-phenylenediamine. Talanta 2003, 59, 95–99. [Google Scholar] [CrossRef]
- Statistica 13.1. 2017. StatSoftPolska. Available online: www.statsoft.pl (accessed on 15 May 2020).
- Burton, G.W.; Devane, E.M. Estimating heritability in tall fescue (Festucaarundinacea) from replicated clonal material. J. Agron. 1953, 45, 478–481. [Google Scholar] [CrossRef]
- Allard, R.W. Principles of Plant Breeding, 2nd ed.; Wiley and Sons: New York, NY, USA, 1999. [Google Scholar]
- Alvarado, G.; López, M.; Vargas, M.; Pacheco, Á.; Rodríguez, F.; Burgueño, J.; Crossa, J. META-R (Multi Environment Trail Analysis with R for Windows) Version 6.04, hdl:11529/10201, CIMMYT Research Data & Software Repository Network, V23. 2015. Available online: https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10201 (accessed on 1 May 2020).
- Molina, A.K.; Vega, E.N.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostić, M.; Soković, M.; et al. Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants 2019, 8, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprioli, G.; Iannarelli, R.; Innocenti, M.; Bellumori, M.; Fiorini, D.; Sagratini, G.; Vittori, S.; Buccioni, M.; Santinelli, C.; Bramucci, M.; et al. Blue honeysuckle fruit (Lonicera caerulea L.) from eastern Russia: Phenolic composition, nutritional value and biological activities of its polar extracts. Food Funct. 2016, 7, 1892–1903. [Google Scholar] [CrossRef]
- Bors, B.; Thomson, J.; Sawchuk, E.; Reimer, P.; Sawatzky, R.; Sander, T. Haskap Breeding and Production—Final Report; Saskatchewan Agriculture Reginan Canada: Moose Jaw, SK, Canada, 2012; pp. 1–142.
- Małodobry, M.; Bieniasz, M.; Dziedzic, E. Evaluation of the yield and some components in the fruit of blue honeysuckle (Lonicera caerulea var. edulis Turcz. Freyn.). Folia Hortic. Ann. 2010, 22, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Pokorna, T.; Matuskovic, J. Assesment of nutritional value of Lonicera kamtschatica and Lonicera edulis fruits using fuzzy clustering method I. Acta Hortic. Reg. 2007, 10, 1–4. [Google Scholar]
- Jurikova, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, S.; Szekeres, L.; Žitný, R.; Zitka, O.; Adam, W.; Kizek, R. Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic—A Comparative Study. Molecules 2012, 17, 8968–8981. [Google Scholar] [CrossRef]
- Jurikova, T.; Matuskovic, J.; Gazdik, Z. Effect of irrigation on intensirty of respiration and study of sugar and organic content in different development stages of Lonicera kamtschatica and Lonicera edulis berries. Hortic. Sci. 2009, 36, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Lim, S.M.; Yoo, J.A.; Woo, M.J.; Cho, K.H. Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA. Food Funct. 2015, 6, 3604–3612. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senica, M.; Bavec, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera caerulea subsp. Edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. J. Sci. Food Agric. 2018, 98, 3333–3342. [Google Scholar] [CrossRef] [PubMed]
- Orincak, J.; Matuskovic, J.; Jurcak, S. Possibilities of Species Lonicera caerulea in Utilization of the Secondary Metabolism in Food and Pharmaceutical Processing, 1st ed.; SPU: Nitra, Slovakia, 2003; pp. 210–219. [Google Scholar]
- Paulovicsová, B.; Turianica, I.; Juríková, T.; Baloghová, M.; Matuškovič, J. Antioxidant properties of selected less common fruit species. Sci. Pap. Anim. Sci. Biotechnol. 2009, 42, 608–614. [Google Scholar]
- Ochmian, I.; Skupień, K.; Grajkowski, J.; Smolik, M.; Ostrowska, K. Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not. Bot. Horti Agrobot. 2012, 40, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, I.; Smolik, M.; Dobrowolska, A.; Rozwarski, R.; Kozos, K.; Chełpiński, P.; Ostrowska, K. The Influence of Harvest Date on Fruit Quality of Several Cultivars of Blue Honeysuckle Berries. EJPAU 2013, 16, 1. [Google Scholar]
- Jurgoński, A.; Juśkiewicz, J.; Zduńczyk, Z. An anthocyanin-rich extract from Kamchatka honeysuckle increases enzymatic activity within the gut and ameliorates abnormal lipid and glucose metabolism in rats. Nutrition 2013, 29, 898–902. [Google Scholar] [CrossRef]
- Jurikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.; Adam, V.; Kizek, R. Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological effects. Molecules 2012, 17, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Gazdik, Z.; Krska, B.; Adam, V.; Saloun, J.; Pokorna, T.; Reznicek, V.; Horna, A.; Kizek, R. Electrochemical Determination of the Antioxidant Potential of Some Less Common Fruit Species. Sensors 2008, 8, 7564–7570. [Google Scholar] [CrossRef]
- Mishra, P.; Ram, R.; Kumar, N. Genetic variability, heritability, and genetic advance in strawberry (Fragaria × ananassa Duch.). Turk. J. Agric. For. 2015, 39, 451–458. [Google Scholar] [CrossRef]
- Masny, A.; Pruski, K.; Żurawicz, E.; Mądry, W. Breeding value of selected dessert strawberry (Fragaria × ananassa Duch.) cultivars for ripening time, fruit yield and quality. Euphytica 2016, 207, 225–243. [Google Scholar] [CrossRef]
- Vieira, S.D.; Araujo, A.L.R.; Souza, D.C.; Resende, L.V.; Leite, M.E.; Resende, J.T.V. Heritability and Combining Ability Studies in Strawberry Population. J. Agric. Sci. 2019, 11, 457–469. [Google Scholar] [CrossRef]
- Connor, A.M.; Luby, J.J.; Tong, C.B.S.; Finn, C.E.; Hancock, J.F. Variation and heritability estimates for antioxidant activity, total phenolic content and anthocyanin content in blueberry progenies. J. Am. Soc. Hortic. Sci. 2002, 1, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C. Biometric Models Applied to Genetic Improvement; UFV: Viçosa, Brazil, 2012; p. 514. [Google Scholar]
- Baye, B.; Ravishankar, R.; Singh, H. Variability and association of tuber yield and related traits in potato (Solanumtubersum L.). J. Agric. Sci. 2005, 18, 103–121. [Google Scholar]
- Falconer, D.S. Introduction to Quantitative Genetics; Pearson Education Limited: London, UK, 1996. [Google Scholar]
- Kumar, R.; Kumar, S.; Singh, A.K. Genetic variability anddiversity studies in snapdragon (Antirrhinum majus) under tarai conditions of Uttarakhand. Indian. J. Agric. Sci. 2012, 82, 535–537. [Google Scholar]
- Connor, A.M.; Stephens, M.J.; Hall, H.K.; Alspach, P.A. Variation and Heritabilities of Antioxidant Activity and Total Phenolic Content Estimated from a Red Raspberry Factorial Experiment. J. Am. Soc. Hortic. Sci. 2005, 130, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Currie, A.; Langford, G.; Mcghie, T.; Apiolaza, L.A.; Snelling, C.; Braithewaite, B.; Vather, R. Inheritance of Antioxidants in a New Zealand Blackcurrant (Ribesnigrum L.) population. In Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, 18–21 April 2006; pp. 218–225. [Google Scholar]
No. | Genotype | Country of Origin | No. | Genotype | Country of Origin |
---|---|---|---|---|---|
1 | 1-17-59 | RUS | 16 | Jugana | RUS |
2 | Amphora | RUS | 17 | K100 | POL |
3 | Amur | SVK | 18 | Karina | POL |
4 | Aurora | CAN | 19 | LeningradskijVelikan | RUS |
5 | BakczarskijVelikan | RUS | 20 | Nimfa | RUS |
6 | BerryBlue | CZE | 21 | Polar Jevel | CAN |
7 | Blue Velvet | RUS | 22 | Siniczka | RUS |
8 | Borealis | CAN | 23 | Sinoglaska | RUS |
9 | Brązowa | POL | 24 | T3 | RUS |
10 | Czarna | POL | 25 | T5 | RUS |
11 | DoczVelikana | RUS | 26 | Uspiech | RUS |
12 | HoneyBee | CAN | 27 | Valhova | RUS |
13 | Indigo Gem | CAN | 28 | Vostorg | RUS |
14 | IndigoTreat | CAN | 29 | Warta | POL |
15 | Jolanta | POL | 30 | Zielona | POL |
Genotypes | Phenolics | Flavonoids | Vitamin C | Antioxidant Activity | |
---|---|---|---|---|---|
DPPH | ABTS | ||||
1-17-59 | 934.1 ± 21.8 | 1137.5 ± 19.9 | 9.8 ± 3.6 | 2.2 ± 0.01 | 5.5 ± 0.17 |
Amphora | 727.9 ± 43.4 | 1030.5 ± 9.2 | 9.6 ± 0.7 | 2.0 ± 0.03 | 4.5 ± 0.28 |
Amur | 509.8 ± 24.5 | 722.1 ± 18.0 | 24.1 ± 0.9 | 1.6 ± 0.02 | 2.6 ± 0.10 |
Aurora | 422.3 ± 27.8 | 609.8 ± 13.5 | 15.6 ± 1.7 | 1.2 ± 0.05 | 2.6 ± 0.70 |
Bakczarskij Velikan | 642.1 ± 24.6 | 1054.0 ± 17.2 | 16.5 ± 0.3 | 1.9 ± 0.04 | 4.1 ± 0.16 |
Berry Blue | 501.0 ± 18.7 | 684.1 ± 4.3 | 11.1 ± 0.7 | 1.4 ± 0.03 | 2.5 ± 0.02 |
Blue Velvet | 518.5 ± 28.4 | 679.0 ± 20.3 | 22.9 ± 0.6 | 1.4 ± 0.06 | 3.1 ± 0.05 |
Borealis | 480.6 ± 30.6 | 679.2 ± 32.1 | 17.3 ± 0.6 | 1.5 ± 0.08 | 3.4 ± 0.05 |
Brązowa | 470.2 ± 19.2 | 436.9 ± 6.6 | 8.8 ± 0.9 | 1.4 ± 0.01 | 2.9 ± 0.06 |
Czarna | 746.5 ± 10.5 | 1002.5 ± 17.1 | 21.1 ± 2.5 | 1.9 ± 0.06 | 3.3 ± 0.18 |
Docz Velikana | 642.2 ± 9.4 | 938.7 ± 8.0 | 17.6 ± 1.1 | 1.8 ± 0.04 | 3.3 ± 0.20 |
Honey Bee | 497.1 ± 18.9 | 740.9 ± 9.1 | 21.2 ± 1.2 | 1.6 ± 0.05 | 3.2 ± 0.11 |
Indigo Gem | 477.4 ± 18.7 | 680.7 ± 6.6 | 24.3 ± 0.2 | 1.4 ± 0.08 | 3.2 ± 0.06 |
Indigo Treat | 756.6 ± 32.0 | 969.8 ± 15.3 | 15.4 ± 3.7 | 1.9 ± 0.05 | 4.4 ± 0.43 |
Jolanta | 512.5 ± 6.9 | 626.1 ± 14.6 | 24.7 ± 2.6 | 1.6 ± 0.06 | 2.2 ± 0.84 |
Jugana | 659.4 ± 17.3 | 863.8 ± 12.2 | 12.6 ± 4.3 | 1.9 ± 0.03 | 3.4 ± 0.24 |
K100 | 491.0 ± 14.5 | 727.8 ± 6.0 | 19.0 ± 0.2 | 1.4 ± 0.04 | 3.0 ± 0.05 |
Karina | 606.7 ± 33.9 | 899.5 ± 12.8 | 27.7 ± 4.0 | 1.6 ± 0.05 | 3.6 ± 0.08 |
Leningradskij Velikan | 616.6 ± 9.9 | 966.5 ± 12.3 | 23.8 ± 1.3 | 1.6 ± 0.05 | 3.7 ± 0.02 |
Nimfa | 591.6 ± 13.6 | 902.0 ± 13.4 | 24.6 ± 1.7 | 1.7 ± 0.04 | 3.5 ± 0.10 |
Polar Jevel | 461.3 ± 34.8 | 707.0 ± 7.9 | 8.5 ± 1.0 | 1.4 ± 0.06 | 2.5 ± 0.08 |
Siniczka | 610.1 ± 24.1 | 906.8 ± 12.7 | 17.5 ± 0.9 | 1.8 ± 0.06 | 3.3 ± 0.14 |
Sinoglaska | 732.9 ± 20.6 | 960.1 ± 6.1 | 13.9 ± 1.4 | 1.9 ± 0.03 | 3.3 ± 0.27 |
T3 | 658.8 ± 36.1 | 924.7 ± 7.5 | 21.9 ± 0.4 | 1.8 ± 0.06 | 3.5 ± 0.35 |
T5 | 506.6 ± 14.2 | 798.5 ± 12.4 | 26.8 ± 2.3 | 1.4 ± 0.05 | 2.9 ± 0.12 |
Uspiech | 616.1 ± 20.4 | 949.8 ± 25.4 | 18.2 ± 0.8 | 1.8 ± 0.07 | 2.9 ± 0.52 |
Valhova | 700.3 ± 21.7 | 1023.7 ± 18.6 | 14.1 ± 0.4 | 1.9 ± 0.05 | 3.6 ± 0.18 |
Vostorg | 537.5 ± 0.9 | 766.4 ± 4.3 | 22.2 ± 0.3 | 1.6 ± 0.02 | 2.5 ± 0.06 |
Warta | 462.7 ± 4.5 | 708.6 ± 15.5 | 17.6 ± 0.7 | 1.3 ± 0.04 | 2.8 ± 0.08 |
Zielona | 688.6 ± 24.5 | 929.9 ± 10.3 | 29.7 ± 0.1 | 1.8 ± 0.03 | 3.5 ± 0.21 |
LSD | 29.0 | 18.1 | 2.6 | 0.06 | 0.31 |
Mean | 592.6 | 834.2 | 18.6 | 1.7 | 3.3 |
Standard deviation | 118.0 | 160.9 | 6.1 | 0.3 | 0.7 |
Range | 422.3–934.1 | 436.9–1137.5 | 8.5–29.7 | 1.2–2.2 | 2.2–5.5 |
CV (%) | 19.8 | 19.2 | 32.8 | 15.1 | 21.7 |
Flavonoids | Phenolics | Vitamin C | DPPH | ABTS | |
---|---|---|---|---|---|
Flavonoids | 1.0000 | 0.8797 * | 0.0838 ns | 0.8302 * | 0.7085 * |
Phenolics | 0.8850 * | 1.0000 | −0.0343 ns | 0.9417 * | 0.7183 * |
Vitamin C | −0.0246 ns | −0.1843 ns | 1.0000 | −0.0751 ns | −0.0615 ns |
DPPH | 0.8551 * | 0.9520 * | −0.1911 ns | 1.0000 | 0.6584 * |
ABTS | 0.7495 * | 0.8222 * | −0.2235 ns | 0.7435 * | 1.0000 |
Traits | Phenotypic Variance (σ2P) | Phenotypic Coefficent of Variation (PCV %) | Genotypic Variance (σ2G) | Genotypic Coefficient of Variation (GCV %) | Heritability (H) | Genetic Advance (GA) | Genetic Advance as Percentage of Mean (GAM %) |
---|---|---|---|---|---|---|---|
Flavonoids | 26,615 | 19.56 | 26,406 | 19.48 | 0.99 | 226.61 | 27.16 |
Phenolics | 14,302 | 20.18 | 13,756 | 19.79 | 0.96 | 161.14 | 27.19 |
Vitamin C | 110.21 | 56.34 | 105.72 | 55.19 | 0.95 | 14.09 | 75.67 |
DPPH | 64,266 | 15.32 | 62,133 | 15.06 | 0.96 | 343.13 | 20.74 |
ABTS | 528,371 | 22.08 | 468,188 | 20.78 | 0.88 | 901.74 | 27.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawroński, J.; Żebrowska, J.; Pabich, M.; Jackowska, I.; Kowalczyk, K.; Dyduch-Siemińska, M. Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp. Appl. Sci. 2020, 10, 6545. https://doi.org/10.3390/app10186545
Gawroński J, Żebrowska J, Pabich M, Jackowska I, Kowalczyk K, Dyduch-Siemińska M. Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp. Applied Sciences. 2020; 10(18):6545. https://doi.org/10.3390/app10186545
Chicago/Turabian StyleGawroński, Jacek, Jadwiga Żebrowska, Marzena Pabich, Izabella Jackowska, Krzysztof Kowalczyk, and Magdalena Dyduch-Siemińska. 2020. "Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp." Applied Sciences 10, no. 18: 6545. https://doi.org/10.3390/app10186545
APA StyleGawroński, J., Żebrowska, J., Pabich, M., Jackowska, I., Kowalczyk, K., & Dyduch-Siemińska, M. (2020). Phytochemical Characterization of Blue Honeysuckle in Relation to the Genotypic Diversity of Lonicera sp. Applied Sciences, 10(18), 6545. https://doi.org/10.3390/app10186545