Temporal Changes and Correlations between Quality Loss Parameters, Antioxidant Properties and Enzyme Activities in Apricot Fruit Treated with Methyl Jasmonate and Salicylic Acid during Cold Storage and Shelf-Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples and Treatments
2.2. Quality Loss Parameters
2.2.1. Chilling Injury
2.2.2. Fruit Decay
2.3. Antioxidant Capacity and Related Parameters
2.3.1. Fruit Extract
2.3.2. Total Antioxidant Capacity
2.3.3. Total Soluble Phenol Content
2.3.4. Total Carotenoids Content
2.3.5. Ascorbic Acid Content
2.4. Activity of Enzymes
2.4.1. PAL Activity
2.4.2. POD Activity
2.4.3. SOD Activity
2.4.4. CAT Activity
2.5. Statistical Analysis
2.5.1. ANOVA
2.5.2. Correlation and Regression Analysis among Parameters
2.5.3. Principal Component Analysis
3. Results
3.1. Quality Loss Parameters
3.1.1. Chilling Injury
3.1.2. Fruit Decay
3.2. Antioxidant Capacity and Related Parameters
3.2.1. Total Antioxidant Capacity
3.2.2. Total Soluble Phenol Content
3.2.3. Total Carotenoids Content
3.2.4. Ascorbic Acid Content
3.3. Enzyme Activity
3.3.1. PAL Activity
3.3.2. POD Activity
3.3.3. SOD Activity
3.3.4. CAT Activity
3.4. Relationship between Fruit Quality Parameters
4. Discussion
4.1. Quality Loss Parameters
4.2. Antioxidant Capacity and Related Parameters
4.3. Enzyme Activity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ercisli, S.; Akbulut, M.; Ozdemir, O.; Sengul, M.; Orhan, E. Phenolic and antioxidant diversity among persimmon (Diospyrus kaki L.) genotypes in Turkey. Int. J. Food Sci. Nutr. 2008, 59, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Tosun, M.; Karlidag, H.; Dzubur, A.; Hadziabulic, S.; Aliman, Y. Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods Hum. Nutr. 2012, 67, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, C.H.; Mitchell, F.G.; Johnson, R.S. Factors in fresh market stone fruit quality. Postharv. News Inform. 1995, 6, 17N–21N. [Google Scholar]
- Hacıseferoğulları, H.; Gezer, I.; Özcan, M.M.; Asma, B.M. Post-harvest chemical and physical–mechanical properties of some apricot varieties cultivated in Turkey. J. Food Eng. 2007, 79, 364–373. [Google Scholar] [CrossRef]
- Muzzaffar, S.; Bhat, M.M.; Wani, T.A.; Wani, I.A.; Masoodi, F.A. Postharvest Biology and Technology of Apricot. In Postharvest Biology and Technology of Temperate Fruits; Mir, S., Shah, M., Mir, M., Eds.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Infante, R.; Meneses, C.; Defilippi, B.G. Effect of harvest maturity stage on the sensory quality of ‘Palsteyn’ apricot (Prunus armeniaca L.) after cold storage. J. Hortic. Sci. Biotechnol. 2008, 83, 828–832. [Google Scholar] [CrossRef]
- Stanley, J.; Marshall, R.; Ogwaro, J.; Feng, R.; Wohlers, M.; Woolf, A. Postharvest storage temperatures impact significantly on apricot fruit quality. Acta Hortic. 2010, 880, 525–532. [Google Scholar] [CrossRef]
- Ezzat, A.; Ammar, A.; Szabó, Z.; Holb, I. Salicylic acid treatment saves quality and enhances antioxidant properties of apricot fruit. Hortic. Sci. 2017, 44, 73–81. [Google Scholar]
- Ezzat, A.; Ammar, A.; Szabó, Z.; Nyéki, J.; Holb, I.J. Postharvest treatments with methyl jasmonate and salicylic acid for maintaining physico-chemical characteristics and sensory quality properties of apricot fruit during cold storage and shelf-life. Pol. J. Food Nutr. Sci. 2017, 67, 159–166. [Google Scholar] [CrossRef]
- Egea, M.I.; Matrinez-Madrid, P.; Sanchez-Bel, M.A.; Romojaro, F. The influence of electron-beam ionization on ethylene metabolism and quality parameter in apricot (Prunus armeniaca L., cv ‘Builda’). Swiss Soc. Food Sci. Technol. 2007, 40, 1027–1035. [Google Scholar]
- Crisosto, C.H.; Mitchell, F.G.; Zhiguo, J. Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 1999, 34, 1116–1118. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.G.; Ellis, C.; Devoto, A. The jasmonate signal pathway. Plant Cell Suppl. 2002, 14, 153–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C. Jasmonate biosynthesis in Arabidopsis thaliana—Enzymes, products, regulation. Plant Biol. 2006, 8, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieterse, C.M.J.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C.M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Buta, J.G. Methyl jasmonate reduces chilling injury in Cucurbita pepo through its regulation of abscisic acid and polyamine levels. Environ. Exp. Bot. 1994, 34, 427–432. [Google Scholar] [CrossRef]
- Meir, S.; Philosoph-Hadas, S.; Lurie, S.; Droby, S.; Akerman, M.; Zauberman, G.; Shapiro, B.; Cohen, E.; Fuchs, Y. Reduction of chilling injury in stored avocado, grapefruit, and bell pepper by methyl jasmonate. Can. J. Bot. 1996, 74, 870–874. [Google Scholar] [CrossRef]
- Jong-Joo, C.; Do, C.Y. Methyl jasmonate as a vital substance in plants. Trends Gen. 2003, 19, 409–413. [Google Scholar]
- Droby, S.; Porat, R.; Cohen, L.; Weiss, B.; Shapira, B.; Philosoph-Hadas, S.; Meir, S. Suppressing green mold decay in grape fruit with postharvest jasmonates application. J. Am. Soc. Hortic. Sci. 1999, 124, 184–188. [Google Scholar] [CrossRef] [Green Version]
- González-Aguilar, G.A.; Buta, J.G.; Wang, C.Y. Methyl jasmonate reduces chilling injury symptoms and enhances colour development of ‘Kent’ mangoes. J. Sci. Food Agric. 2001, 81, 1244–1249. [Google Scholar] [CrossRef]
- González Aguilar, G.A.; Buta, J.G.; Wang, C.Y. Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain post harvest quality of papaya ‘Sunrise’. Postharv. Biol. Technol. 2003, 28, 361–370. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Tizuado-Hernándoz, M.E.; Zavaleeta-Gatica, R.; Martínez-Téllez, M.A. Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochem. Biophysiol. Res. Commun. 2004, 313, 694–701. [Google Scholar] [CrossRef]
- Sayyari, M.; Babalar, M.; Kalantari, S.; Martínez-Romero, D.; Guillén, F.; Serrano, M.; Valero, M. Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem. 2011, 124, 964–970. [Google Scholar] [CrossRef]
- Cao, S.; Zheng, Y.; Yang, Z.; Wang, K.; Rui, H. Effect of methyl jasmonate on quality and antioxidant activity of postharvest loquat fruit. J. Sci. Food Agric. 2009, 89, 2064–2070. [Google Scholar] [CrossRef]
- Jin, P.; Duan, Y.; Wang, L.; Wang, J.; Zheng, Y. Reducing chilling injury of loquat fruit by combined treatment with hot air and methyl jasmonate. Food Bioprocess Technol. 2014, 7, 2259–2266. [Google Scholar] [CrossRef]
- Fan, X.; Mattheis, J.P.; Fellman, J.K. Responses of apples to postharvest jasmonate treatments. J. Am. Soc. Hortic. Sci. 1998, 123, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.J.; Tian, S.P. Effects of pre- and postharvest application of SA or MeJA on inducing disease resistance of sweet cherry fruit in storage. Postharv. Biol. Technol. 2005, 35, 253–262. [Google Scholar] [CrossRef]
- Meng, X.; Han, J.; Wang, Q.; Tian, S.P. Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chem. 2009, 114, 1028–1035. [Google Scholar] [CrossRef]
- Jin, P.; Wang, K.; Shang, H.; Tong, J.; Zheng, Y. Low temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. J. Sci. Food Agric. 2009, 89, 1690–1696. [Google Scholar] [CrossRef]
- Li, L.P.; Han, T. The effects of salicylic acid in the storage of peach. Food Sci. 1999, 7, 61–63. [Google Scholar]
- Srivastava, M.K.; Dwivedi, U.N. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 2000, 158, 87–96. [Google Scholar] [CrossRef]
- Wang, L.; Chena, S.; Kong, W.; Li, S.; Archbold, D. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharv. Biol. Technol. 2006, 41, 244–251. [Google Scholar] [CrossRef]
- Shafiee, M.; Taghavi, T.S.; Babalar, M. Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Sci. Hortic. 2010, 124, 40–45. [Google Scholar] [CrossRef]
- Valero, D.; Diaz-Mula, H.M.; Zapata, P.J.; Castillo, S.; Guillen, F.; Martinez-Romero, D.; Serrano, M. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. J. Agric. Food Chem. 2011, 59, 5483–5489. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Su, Y.; Liu, D.; Ye, X. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus. J. Food Sci. 2011, 76, S126–S132. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cao, S.; Zheng, Y.; Jiang, Y. Combined salicyclic acid and ultrasound treatments for reducing the chilling injury on peach fruit. J. Agric. Food Chem. 2012, 60, 1209–1212. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.X.; Li, L.P.; Chen, K.S. Acetyl salicylic acid alleviates chilling injury of postharvest loquat (Eriobotrya japonica Lindl.) fruit. Eur. Food Res. Technol. 2005, 223, 533–539. [Google Scholar] [CrossRef]
- Satraj, A.; Masud, T.; Abassi, K.S.; Mahmood, T.; Ali, A. Effect of different concentrations of salicylic acid on keeping quality of apricot cv. ‘Habi’ at ambient storage. J. Biol. Food Sci. Res. 2013, 2, 66–78. [Google Scholar]
- Maisuthisakul, P.; Pasuk, S.; Ritthiruangdejc, P. Relationship between antioxidant properties and chemical composition of some Thai plants. J. Food Compos. Anal. 2008, 21, 229–240. [Google Scholar] [CrossRef]
- Du, G.; Li, M.; Ma, F.; Lian, D. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Supriatno Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Compos. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- Ulewicz-Magulska, B.; Wesolowski, M. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods Hum. Nutr. 2019, 74, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of ’antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid ‘reagents’. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Akin, E.B.; Karabulut, I.; Topcu, A. Some compositional properties of main Malatya apricot (Prunus armeniaca, L.) varieties. Food Chem. 2008, 107, 939–948. [Google Scholar] [CrossRef]
- Gross, J. Carotenoids: Pigments in Fruits; Academic: London, UK, 1987. [Google Scholar]
- Terada, M.; Watanabe, Y.; Kunitoma, M.; Hayashi, E. Differential rapid analysis of ascorbic acid and ascorbic acid 2-sulfate by dinitrophenilhydrazine method. Ann. Clinic. Biochem. 1978, 84, 604–608. [Google Scholar] [CrossRef]
- Assis, J.S.; Maldonado, R.; Mnoz, T.; Escribano, M.I.; Merodio, C. Effect of high carbon dioxid concentration on PAL activity and phenol content in ripening cherimoya fruit. Postharv. Biol. Technol. 2001, 23, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Method Enzymol. 1995, 2, 764–817. [Google Scholar]
- Rao, M.V.; Paliyath, G.; Ormord, D.P. Ultraviolet B and ozon induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996, 110, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Abassi, N.A.; Kushad, M.M.; Endress, S. Active oxygen-scavenging enzymes activities in developing apple flowers and fruits. Sci. Hortic. 1998, 74, 183–194. [Google Scholar] [CrossRef]
- Basto, M.; Pereira, J.M. An SPSS R-menu for ordinal factor analysis. J. Stat. Softw. 2012, 46, 1–29. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 10 May 2020).
- Revelle, W. Psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2015; Available online: http://CRAN.R-project.org/package=psych (accessed on 12 June 2015).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 30294. Available online: https://www.jstatsoft.org/article/view/v025i01 (accessed on 25 October 2008).
- Kassambara, A.; Mundt, A. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.6. 2019. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 1 June 2019).
- Zhang, X.; Sheng, J.; Li, F.; Meng, D.; Shen, L. Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit. Postharv. Biol. Technol. 2012, 64, 160–167. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Castillo, S.; Martínez-Romero, D.; Serrano, M.; Valero, D. Pre-storage application of polyamines by pressure or immersion improves shelf-life of pomegranate stored at chilling temperature by increasing endogenous polyamine levels. Postharv. Biol. Technol. 2007, 44, 26–33. [Google Scholar] [CrossRef]
- Sayyari, M.; Babalar, M.; Kalantari, S.; Serrano, M.; Valero, D. Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharv. Biol. Technol. 2009, 53, 152–154. [Google Scholar] [CrossRef]
- Ding, C.K.; Wang, C.Y.; Gross, K.C.; Smith, D.L. Jasmonate and salicylate induce the expression of pathogenesis related-proteingenes and increase resistance to chilling injury in tomato fruit. Planta 2002, 214, 895–900. [Google Scholar] [CrossRef]
- Chan, Z.; Tian, S. Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit. Postharv. Biol. Technol. 2006, 39, 314–320. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Wang, S.Y.; Wang, C.Y.; González-Aguilar, G.A. Methyl jasmonate in conjunction with ethanol treat- ment increases antioxidant capacity, volatile compounds and post-harvest life of strawberry fruit. Eur. Food Res. Technol. 2005, 221, 731–738. [Google Scholar] [CrossRef]
- Kondo, S.; Kittikorn, M.; Kanlayanarat, S. Preharvest antioxidant activities of tropical fruit and the effect of low temperature storage on antioxidants and jasmonates. Postharv. Biol. Technol. 2005, 36, 309–318. [Google Scholar] [CrossRef]
- Hegedűs, A.; Pfeiffer, N.; Abrankó, L.; Blázovics, A.; Pedryc, A.; Stefanovits-Bányai, E. Accumulation of antioxidants in apricot fruit through ripening: Characterization of a genotype with enhanced functional properties. Biol. Res. 2011, 44, 339–344. [Google Scholar] [CrossRef]
- Huang, R.-H.; Liu, J.-H.; Lu, Y.-M.; Xia, R.-X. Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’ navel orange (Citrus sinensis (L.) Osbeck) at different storage temperatures. Postharv. Biol. Technol. 2008, 47, 168–175. [Google Scholar] [CrossRef]
- Ezzat, A.; El-Sherif, A.R.; Doaa Elgear, D.; Szabó, S.Z.; Holb, I.J. A comparison of fruit and leaf parameters of apple in three orchard training systems. Zemdirb. Agric. 2020, 107, 373–382. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.G.; Yuan, Y.B.; Lieu, C.L.; Xin, S.H. Relationships among phenylalanine ammonia-lyase activity, simple phenol concentrations and anthocyanin accumulation in apple. Sci. Hortic. 1995, 61, 215–226. [Google Scholar] [CrossRef]
- Hiratsuka, S.; Onodera, H.; Kawai, Y.; Kubo, T.; Itoh, H.; Wada, R. Enzyme activity changes during anthocyanin synthesis in ’Olympia’ grape berries. Sci. Hortic. 2001, 90, 255–264. [Google Scholar] [CrossRef]
- Qin, G.Z.; Tian, S.P.; Xu, Y.; Wan, Y.K. Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol. Mol. Plant. Pathol. 2003, 62, 147–154. [Google Scholar] [CrossRef]
- Haider, S.T.A.; Ahmad, S.; Khan, S.; Anjum, M.A.; Nasir, M.; Naz, S. Effects of salicylic acid on postharvest fruit quality of “Kinnow” mandarin under cold storage. Sci. Hortic. 2020, 259, 108843. [Google Scholar] [CrossRef]
- Wills, R.; McGlasson, B.; Graham, D.; Joyce, D. Postharvest, An Introduction to the Physiology and Handling of Fruit and Vegetables and Ornamentals, 4th ed.; University of New South Wales Press Ltd.: Sydney, Australia, 1998; pp. 125–156. [Google Scholar]
- Peng, L.; Jiang, Y. Exogenous salicylic acid inhibits browning of fresh-cut Chinese water chestnut. Food Chem. 2006, 94, 535–540. [Google Scholar] [CrossRef]
- Sala, J.M. Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits. Postharv. Biol. Technol. 1998, 13, 255–261. [Google Scholar] [CrossRef]
- Wang, S.Y.; Bowman, L.; Ding, M. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chem. 2008, 107, 1261–2619. [Google Scholar] [CrossRef]
- Wang, S.Y. Methyl jasmonate reduces water stress in strawberry. J. Plant Growth Regul. 1999, 18, 127–134. [Google Scholar] [CrossRef]
- Mo, Y.; Gong, D.; Liang, L.; Han, R.; Xie, J.; Li, W. Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during post-harvest storage. J. Sci. Food Agric. 2008, 88, 2693–2699. [Google Scholar] [CrossRef]
- Tian, S.; Qin, G.; Li, B.; Wang, Q.; Meng, X. Effects of salicylic acid on disease resistance and postharvest decay control of fruits. Stewart Postharv. Rev. 2007, 6, 1–7. [Google Scholar]
Treatments | CS at 1 °C | SL at 25 °C | |||
---|---|---|---|---|---|
Day 7 | Day 14 | Day 21 | Day 4 | Day 8 | |
CI index (%) a | |||||
Control | 3.12 a b | 16.68 a | 37.65 a | 18.67 a | 30.24 a |
0.2 mmol MeJA | 1.35 a | 4.52 b | 9.68 c | 8.65 b | 14.35 c |
2 mmol SA | 1.64 a | 5.58 b | 20.91 b | 7.68 b | 19.26 b |
LSD0.05 c | ns | 3.56 | 6.83 | 4.29 | 3.98 |
FD index (%) d | |||||
Control | 16.05 a | 56.24 a | 96.25 a | 66.36 a | 100 a |
0.2 mmol MeJA | 2.11 b | 6.57 b | 16.98 b | 16.35 b | 36.65 b |
2 mmol SA | 2.33 b | 7.58 b | 15.61 b | 20.36 b | 35.36 b |
LSD0.05 | 1.74 | 5.45 | 4.72 | 8.31 | 3.34 |
CI | FD | CAT | SOD | POD | PAL | AAC | TCC | TSPC | |
---|---|---|---|---|---|---|---|---|---|
FD a | 0.967 b,c | ||||||||
<0.001 | |||||||||
CAT | −0.315 | −0.423 | |||||||
>0.1 | >0.1 | ||||||||
SOD | 0.818 | 0.813 | −0.005 | ||||||
0.013 | 0.014 | >0.1 | |||||||
POD | 0.604 | 0.732 | −0.766 | 0.331 | |||||
0.079 | 0.035 | 0.027 | >0.1 | ||||||
PAL | 0.273 | 0.124 | 0.699 | 0.697 | −0.440 | ||||
>0.1 | >0.1 | 0.047 | 0.048 | >0.1 | |||||
AAC | −0.829 | −0.776 | −0.129 | −0.921 | −0.241 | −0.641 | |||
0.011 | 0.024 | >0.1 | <0.001 | >0.1 | 0.068 | ||||
TCC | −0.668 | −0.601 | −0.194 | −0.825 | −0.108 | −0.689 | 0.772 | ||
0.059 | 0.080 | >0.1 | 0.012 | >0.1 | 0.051 | 0.025 | |||
TSPC | −0.904 | −0.799 | −0.012 | −0.850 | −0.294 | −0.592 | 0.900 | 0.747 | |
0.001 | 0.016 | >0.1 | 0.008 | >0.1 | 0.082 | 0.001 | 0.032 | ||
TAC | −0.963 | −0.959 | 0.323 | 0.874 | −0.600 | −0.290 | 0.843 | 0.724 | 0.863 |
<0.001 | <0.001 | >0.1 | 0.004 | 0.080 | >0.1 | 0.009 | 0.040 | 0.005 |
CI | FD | CAT | SOD | POD | PAL | AAC | TCC | TSPC | |
---|---|---|---|---|---|---|---|---|---|
FD a | 0.698 b,c | ||||||||
0.047 | |||||||||
CAT | 0.960 | 0.576 | |||||||
<0.001 | 0.085 | ||||||||
SOD | 0.167 | −0.549 | 0.257 | ||||||
>0.1 | 0.1 | >0.1 | |||||||
POD | −0.171 | 0.260 | −0.123 | −0.721 | |||||
>0.1 | >0.1 | >0.1 | 0.039 | ||||||
PAL | 0.630 | −0.100 | 0.696 | 0.711 | −0.381 | ||||
0.071 | >0.1 | 0.048 | 0.042 | >0.1 | |||||
AAC | −0.908 | −0.527 | −0.884 | −0.218 | 0.191 | −0.646 | |||
<0.001 | 0.120 | 0.003 | >0.1 | >0.1 | 0.066 | ||||
TCC | 0.305 | 0.036 | 0.307 | 0.253 | −0.219 | 0.390 | −0.298 | ||
>0.1 | >0.1 | >0.1 | >0.1 | >0.1 | >0.1 | >0.1 | |||
TSPC | −0.412 | −0.462 | −0.374 | 0.238 | −0.314 | −0.071 | 0.432 | −0.413 | |
>0.1 | >0.1 | >0.1 | >0.1 | >0.1 | >0.1 | >0.1 | >0.1 | ||
TAC | −0.386 | −0.884 | −0.294 | 0.738 | −0.525 | 0.393 | 0.246 | 0.008 | 0.577 |
>0.1 | 0.003 | >0.1 | 0.033 | >0.1 | >0.1 | >0.1 | >0.1 | 0.085 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzat, A.; Hegedűs, A.; Szabó, S.; Ammar, A.; Szabó, Z.; Nyéki, J.; Molnár, B.; Holb, I.J. Temporal Changes and Correlations between Quality Loss Parameters, Antioxidant Properties and Enzyme Activities in Apricot Fruit Treated with Methyl Jasmonate and Salicylic Acid during Cold Storage and Shelf-Life. Appl. Sci. 2020, 10, 8071. https://doi.org/10.3390/app10228071
Ezzat A, Hegedűs A, Szabó S, Ammar A, Szabó Z, Nyéki J, Molnár B, Holb IJ. Temporal Changes and Correlations between Quality Loss Parameters, Antioxidant Properties and Enzyme Activities in Apricot Fruit Treated with Methyl Jasmonate and Salicylic Acid during Cold Storage and Shelf-Life. Applied Sciences. 2020; 10(22):8071. https://doi.org/10.3390/app10228071
Chicago/Turabian StyleEzzat, Ahmed, Attila Hegedűs, Szilárd Szabó, Amin Ammar, Zoltán Szabó, József Nyéki, Bianka Molnár, and Imre J. Holb. 2020. "Temporal Changes and Correlations between Quality Loss Parameters, Antioxidant Properties and Enzyme Activities in Apricot Fruit Treated with Methyl Jasmonate and Salicylic Acid during Cold Storage and Shelf-Life" Applied Sciences 10, no. 22: 8071. https://doi.org/10.3390/app10228071
APA StyleEzzat, A., Hegedűs, A., Szabó, S., Ammar, A., Szabó, Z., Nyéki, J., Molnár, B., & Holb, I. J. (2020). Temporal Changes and Correlations between Quality Loss Parameters, Antioxidant Properties and Enzyme Activities in Apricot Fruit Treated with Methyl Jasmonate and Salicylic Acid during Cold Storage and Shelf-Life. Applied Sciences, 10(22), 8071. https://doi.org/10.3390/app10228071