Simultaneous Adsorption and Photocatalysis Processes Based on Ternary TiO2–CuxS–Fly Ash Hetero-Structures
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Materials Characterisation
2.3. Experimental Setup of Adsorption and Photocatalysis
2.4. Adsorption Isotherm Models
3. Results and Discussion
3.1. Heterostructures Composition and Crystallinity
3.2. Heterostructures Morphology and Point of Zero Charge (pHPZC)
3.3. Adsorption and Photocatalytic Processes
3.4. Adsorption Isotherms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rathnayake, M.; Julnipitawong, P.; Tangtermsirikul, S.; Toochinda, P. Utilization of Coal Fly Ash and Bottom Ash as Solid Sorbents for Sulfur Dioxide Reduction from Coal Fired Power Plant: Life Cycle Assessment and Applications. J. Clean. Prod. 2018, 202, 934–945. [Google Scholar] [CrossRef]
- Kurda, R.; de Brito, J.; Silvestre, J.D. Water Absorption and Electrical Resistivity of Concrete with Recycled Concrete Aggregates and Fly Ash. Cem. Concr. Compos. 2019, 95, 169–182. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, Q.; Zhang, H.; Li, C.; Wang, Y.; Wang, W. Synergy of Adsorption and Photocatalysis on Removal of High-Concentration Dye by Ag/AgCl/Bi6O4(OH)4(NO3)6·H2O Nanocomposite Using Bi12O17Cl2 as Bismuth Source. J. Alloys Compd. 2019, 782, 1049–1057. [Google Scholar] [CrossRef]
- Liu, X.W.; Shen, L.Y.; Hu, Y.H. Preparation of TiO2-Graphene Composite by a Two-Step Solvothermal Method and Its Adsorption-Photocatalysis Property. Water Air Soil Pollut. 2016, 227, 141. [Google Scholar] [CrossRef]
- Sacco, O.; Matarangolo, M.; Vaiano, V.; Libralato, G.; Guida, M.; Lofrano, G.; Carotenuto, M. Crystal Violet and Toxicity Removal by Adsorption and Simultaneous Photocatalysis in a Continuous Flow Micro-Reactor. Sci. Total Environ. 2018, 644, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Huang, D.; Luo, L.; Li, L.; Wang, L.; Zhang, S.; Jiang, F. Enhanced Degradation of 17β-Estradiol by AgI/N-Bi2O3 Composite: Strong Synergy of Adsorption–Photocatalysis. Res. Chem. Intermed. 2018, 44, 7117–7133. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, C.; Wang, X.-X.; Li, R.; Wan, Z.; Wang, X.; Wan, Y.; Long, Y.-Z.; Cai, Z. Graphene Quantum Dots Doped PVDF(TBT)/PVP(TBT) Fiber Film with Enhanced Photocatalytic Performance. Appl. Sci. 2020, 10, 596. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Gao, C.; Low, J.; Xiong, Y. Crystal Phase Engineering on Photocatalytic Materials for Energy and Environmental Applications. Nano Res. 2019, 12, 2031–2054. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic Activity Improvement and Application of UV-TiO2 Photocatalysis in Textile Wastewater Treatment: A Review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Smazna, D.; Shree, S.; Polonskyi, O.; Lamaka, S.; Baum, M.; Zheludkevich, M.; Faupel, F.; Adelung, R.; Mishra, Y.K. Mutual Interplay of ZnO Micro-and Nanowires and Methylene Blue during Cyclic Photocatalysis Process. J. Environ. Chem. Eng. 2019, 7, 103016. [Google Scholar] [CrossRef]
- Karunakaran, C.; Vinayagamoorthy, P. Perforated ZnFe2O4/ZnO Hybrid Nanosheets: Enhanced Charge-Carrier Lifetime, Photocatalysis, and Bacteria Inactivation. Appl. Phys. A 2017, 123, 472. [Google Scholar] [CrossRef]
- Enesca, A.; Andronic, L.; Duta, A. Optimization of Opto-Electrical and Photocatalytic Properties of SnO2 Thin Films Using Zn2+ and W6+ Dopant Ions. Catal. Lett. 2012, 142, 224–230. [Google Scholar] [CrossRef]
- Huy, T.H.; Bui, D.P.; Kang, F.; Wang, Y.-F.; Liu, S.-H.; Thi, C.M.; You, S.-J.; Chang, G.-M.; Pham, V.V. SnO2/TiO2 Nanotube Heterojunction: The First Investigation of NO Degradation by Visible Light-Driven Photocatalysis. Chemosphere 2019, 215, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Enesca, A.; Andronic, L.; Duta, A. The Influence of Surfactants on the Crystalline Structure, Electrical and Photocatalytic Properties of Hybrid Multi-Structured (SnO2, TiO2 and WO3) Thin Films. Appl. Surf. Sci. 2012, 258, 4339–4346. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nabi, G.; Rafique, M.; Khalid, N.R. Nanostructured-Based WO3 Photocatalysts: Recent Development, Activity Enhancement, Perspectives and Applications for Wastewater Treatment. Int. J. Environ. Sci. Technol. 2017, 14, 2519–2542. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Yang, Y.; Chen, C.; Zhang, Q. UV–Vis–IR Driven Thermocatalytic Activity of OMS2/SnO2 Nanocomposite Significantly Enhanced by Novel Photoactivation and Synergetic Photocatalysis-Thermocatalysis. Appl. Surf. Sci. 2018, 462, 590–597. [Google Scholar] [CrossRef]
- Praus, P.; Svoboda, L.; Dvorský, R.; Reli, M. Nanocomposites of SnO2 and G-C3N4: Preparation, Characterization and Photocatalysis under Visible LED Irradiation. Ceram. Int. 2018, 44, 3837–3846. [Google Scholar] [CrossRef]
- Gu, J.; Zang, H.; Yao, S.; Wang, X.; Zhu, M.; Song, H. Study on Degradation of Benzothiazolium-Based Ionic Liquids by UV-H2O2. Appl. Sci. 2020, 10, 894. [Google Scholar] [CrossRef] [Green Version]
- Kalikeri, S.; Shetty Kodialbail, V. Solar Light-Driven Photocatalysis Using Mixed-Phase Bismuth Ferrite (BiFeO3/Bi25FeO40) Nanoparticles for Remediation of Dye-Contaminated Water: Kinetics and Comparison with Artificial UV and Visible Light-Mediated Photocatalysis. Environ. Sci. Pollut. Res. 2018, 25, 13881–13893. [Google Scholar] [CrossRef]
- Robert, D.; Keller, N.; Selli, E. Environmental Photocatalysis and Photochemistry for a Sustainable World: A Big Challenge. Environ. Sci. Pollut. Res. 2017, 24, 12503–12505. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, M.; Al-Marzouki, F.; Alshehrie, A.; Hafez, M. Synthesis, Characterization and Band Alignment Characteristics of NiO/SnO2 Bulk Heterojunction Nanoarchitecture for Promising Photocatalysis Applications. J. Alloys Compd. 2018, 757, 161–168. [Google Scholar] [CrossRef]
- Sivaranjani, R.; Thayumanavan, A.; Sriram, S. Photocatalytic Activity of Zn-Doped Fe2O3 Nanoparticles: A Combined Experimental and Theoretical Study. Bull. Mater. Sci. 2019, 42, 185. [Google Scholar] [CrossRef] [Green Version]
- Enesca, A.; Yamaguchi, Y.; Terashima, C.; Fujishima, A.; Nakata, K.; Duta, A. Enhanced UV–Vis Photocatalytic Performance of the CuInS2/TiO2/SnO2 Hetero-Structure for Air Decontamination. J. Catal. 2017, 350, 174–181. [Google Scholar] [CrossRef]
- Wang, Z.; Song, G.; Xu, J.; Fu, Q.; Pan, C. Electrospun Titania Fibers by Incorporating Graphene/Ag Hybrids for the Improved Visible-Light Photocatalysis. Front. Mater. Sci. 2018, 12, 379–391. [Google Scholar] [CrossRef]
- 2Cui, L.; Meng, X.; Fan, Y.; Li, X.; Bi, C. Synthesis, Crystal Structures, Photocatalysis for Rhodamine B Degradation of a Organobismuth (V) Dithiocarbamate Polymer [PhBiS2CN(C2H5)2Cl]N. J. Inorg. Organomet. Polym. Mater. 2015, 25, 1490–1494. [Google Scholar]
- Enesca, A.; Andronic, L.; Duta, A. Wastewater Treatment Using Optimized TiO2 Photocatalytic Properties. Environ. Eng. Manag. J. 2009, 8, 753–758. [Google Scholar] [CrossRef]
- Baneto, M.; Enesca, A.; Mihoreanu, C.; Lare, Y.; Jondo, K.; Napo, K.; Duta, A. Effects of the Growth Temperature on the Properties of Spray Deposited CuInS2 Thin Films for Photovoltaic Applications. Ceram. Int. 2015, 41, 4742–4749. [Google Scholar] [CrossRef]
- Grilla, E.; Matthaiou, V.; Frontistis, Z.; Oller, I.; Polo, I.; Malato, S.; Mantzavinos, D. Degradation of Antibiotic Trimethoprim by the Combined Action of Sunlight, TiO2 and Persulfate: A Pilot Plant Study. Catal. Today 2019, 328, 216–222. [Google Scholar] [CrossRef]
- Davies, C.M.; Roser, D.J.; Feitz, A.J.; Ashbolt, N.J. Solar Radiation Disinfection of Drinking Water at Temperate Latitudes: Inactivation Rates for an Optimised Reactor Configuration. Water Res. 2009, 43, 643–652. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. Heterogeneous Photocatalysis: From Water Photolysis to Applications in Environmental Cleanup. Int. J. Hydrog. Energy 2007, 32, 2664–2672. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Georgieva, J.; Valova, E.; Armyanov, S.; Philippidis, N.; Poulios, I.; Sotiropoulos, S. Bi-Component Semiconductor Oxide Photoanodes for the Photoelectrocatalytic Oxidation of Organic Solutes and Vapours: A Short Review with Emphasis to TiO2–WO3 Photoanodes. J. Hazard. Mater. 2012, 211–212, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yi, G.; Jia, J.; Liang, Y. Preparation and Characterization of Patterned Copper Sulfide Thin Films on N-Type TiO2 Film Surfaces. Appl. Surf. Sci. 2010, 256, 7316–7322. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, W.; Liu, W.; Zhang, S. Preparation, Characterization and Activity Evaluation of p–n Junction Photocatalyst p-ZnO/n-TiO2. Appl. Surf. Sci. 2008, 255, 2478–2484. [Google Scholar] [CrossRef]
- Bayati, M.R.; Golestani-Fard, F.; Moshfegh, A.Z.; Molaei, R. A Photocatalytic Approach in Micro Arc Oxidation of WO3–TiO2 Nano Porous Semiconductors under Pulse Current. Mater. Chem. Phys. 2011, 128, 427–432. [Google Scholar] [CrossRef]
- Belessi, V.; Lambropoulou, D.; Konstantinou, I.; Zboril, R.; Tucek, J.; Jancik, D.; Albanis, T.; Petridis, D. Structure and Photocatalytic Performance of Magnetically Separable Titania Photocatalysts for the Degradation of Propachlor. Appl. Catal. B Environ. 2009, 87, 181–189. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, X.; Li, H.; Wang, K.; Gao, S.; Yin, Z.; Yu, H.; Zhu, X.; Xiong, Z.; Xie, Y. TiO2/SnO2 Double-Shelled Hollow Spheres-Highly Efficient Photocatalyst for the Degradation of Rhodamine B. Catal. Commun. 2015, 60, 129–133. [Google Scholar] [CrossRef]
- Wang, M.; Ju, P.; Li, J.; Zhao, Y.; Han, X.; Hao, Z. Facile Synthesis of MoS2/g-C3N4/GO Ternary Heterojunction with Enhanced Photocatalytic Activity for Water Splitting. ACS Sustain. Chem. Eng. 2017, 5, 7878–7886. [Google Scholar] [CrossRef]
- Raghavan, N.; Thangavel, S.; Venugopal, G. Enhanced Photocatalytic Degradation of Methylene Blue by Reduced Graphene-Oxide/Titanium Dioxide/Zinc Oxide Ternary Nanocomposites. Mater. Sci. Semicond. Process. 2015, 30, 321–329. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, M.; Liu, J.; Deng, Z.; Li, Y.; Su, B.-L. Synergistic Promotion of Solar-Driven H2 Generation by Three-Dimensionally Ordered Macroporous Structured TiO2-Au-CdS Ternary Photocatalyst. Appl. Catal. B Environ. 2016, 184, 182–190. [Google Scholar] [CrossRef]
- Ma, P.; Jiang, W.; Wang, F.; Li, F.; Shen, P.; Chen, M.; Wang, Y.; Liu, J.; Li, P. Synthesis and Photocatalytic Property of Fe3O4@TiO2 Core/Shell Nanoparticles Supported by Reduced Graphene Oxide Sheets. J. Alloys Compd. 2013, 578, 501–506. [Google Scholar] [CrossRef]
- Hou, H.; Gao, F.; Wang, L.; Shang, M.; Yang, Z.; Zheng, J.; Yang, W. Superior Thoroughly Mesoporous Ternary Hybrid Photocatalysts of TiO2/WO3/g-C3N4 Nanofibers for Visible-Light-Driven Hydrogen Evolution. J. Mater. Chem. A 2016, 4, 6276–6281. [Google Scholar] [CrossRef]
- Li, Z.D.; Wang, H.L.; Wei, X.N.; Liu, X.Y.; Yang, Y.F.; Jiang, W.F. Preparation and Photocatalytic Performance of Magnetic Fe3O4@TiO2 Core-Shell Microspheres Supported by Silica Aerogels from Industrial Fly Ash. J. Alloys Compd. 2016, 659, 240–247. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, J.; Guo, X.; Ge, J.; Wu, H. Preparation of α-Fe2O3-TiO2/Fly Ash Cenospheres Photocatalyst and Its Mechanism of Photocatalytic Degradation. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 484, 434–440. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, J.; Yang, Q.; Xu, P.; Ge, J.; Guo, X. Preparation of SnO2-TiO2/Fly Ash Cenospheres and Its Application in Phenol Degradation. Photochem. Photobiol. 2015, 91, 1302–1308. [Google Scholar] [CrossRef]
- Zhao, Z.; Lei, Y.; Liu, W.; Fan, J.; Xue, D.; Xue, Y.; Yin, S. Fly Ash Cenospheres as Multifunctional Supports of G-C3N4/N-TiO2 with Enhanced Visible-Light Photocatalytic Activity and Adsorption. Adv. Powder Technol. 2017, 28, 3233–3240. [Google Scholar] [CrossRef]
- Kanakaraju, D.; bin Ya, M.H.; Lim, Y.-C.; Pace, A. Combined Adsorption/Photocatalytic Dye Removal by Copper-Titania-Fly Ash Composite. Surf. Interfaces 2020, 19, 100534. [Google Scholar] [CrossRef]
- Visa, M.; Chelaru, A.-M. Hydrothermally Modified Fly Ash for Heavy Metals and Dyes Removal in Advanced Wastewater Treatment. Appl. Surf. Sci. 2014, 303, 14–22. [Google Scholar] [CrossRef]
- Andronic, L.; Isac, L.; Miralles-Cuevas, S.; Visa, M.; Oller, I.; Duta, A.; Malato, S. Pilot-Plant Evaluation of TiO2 and TiO2-Based Hybrid Photocatalysts for Solar Treatment of Polluted Water. J. Hazard. Mater. 2016, 320, 469–478. [Google Scholar] [CrossRef]
- Visa, M.; Andronic, L.; Duta, A. Fly Ash-TiO2 Nanocomposite Material for Multi-Pollutants Wastewater Treatment. J. Environ. Manage. 2015, 150, 336–343. [Google Scholar] [CrossRef]
- Andronic, L.; Isac, L.; Duta, A. Photochemical Synthesis of Copper Sulphide/Titanium Oxide Photocatalyst. J. Photochem. Photobiol. A Chem. 2011, 221, 30–37. [Google Scholar] [CrossRef]
- German Standard No. 52980. Photocatalytic Activity Of Surfaces-Determination Of Photocatalytic Activity By Degradation Of Methylene Blue. Ger. Inst. Stand. (Deutsches Inst. für Normung) 2008, 10, 1–14. [Google Scholar]
- Ahmaruzzaman, M. A Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Agarwal, N.K. Removal of Orange-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash-Kinetic Study and Equilibrium Isotherm Analyses. Dye. Pigment. 2006, 63, 210–223. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, X.; Wu, Y.; Liu, X. Adsorption of Anionic Dyes from Aqueous Solution on Fly Ash. J. Hazard. Mater. 2010, 181, 335–342. [Google Scholar] [CrossRef]
- Dizge, N.; Aydiner, C.; Demirbas, E.; Kobya, M.; Kara, S. Adsorption of Reactive Dyes from Aqueous Solutions by Fly Ash: Kinetic and Equilibrium Studies. J. Hazard. Mater. 2008, 150, 737–746. [Google Scholar] [CrossRef]
- Eren, Z.; Acar, F.N. Adsorption of Reactive Black 5 from an Aqueous Solution: Equilibrium and Kinetic Studies. Desalination 2006, 194, 1–10. [Google Scholar] [CrossRef]
- Hameed, B.H.; Rahman, A.A. Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Biomass Material. J. Hazard. Mater. 2008, 160, 576–581. [Google Scholar] [CrossRef]
- Sen, T.K.; Afroze, S.; Ang, H.M. Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus Radiata. Water. Air. Soil Pollut. 2011, 218, 499–515. [Google Scholar] [CrossRef]
- Elmoubarki, R.; Mahjoubi, F.Z.; Tounsadi, H.; Moustadraf, J.; Abdennouri, M.; Zouhri, A.; El Albani, A.; Barka, N. Adsorption of Textile Dyes on Raw and Decanted Moroccan Clays: Kinetics, Equilibrium and Thermodynamics. Water Resour. Ind. 2015, 9, 16–29. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Miino, M.C.; Damiani, S. Treatments for Color Removal from Wastewater: State of the Art. J. Environ. Manage. 2019, 236, 727–745. [Google Scholar] [CrossRef] [PubMed]
- Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of Pharmaceuticals and Personal Care Products in Water Treatment Using Carbonaceous-TiO2 Composites: A Critical Review of Recent Literature. Water Res. 2018, 142, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Heterostructures Construction on TiO2 Nanobelts: A Powerful Tool for Building High-Performance Photocatalysts. Appl. Catal. B Environ. 2017, 202, 620–641. [Google Scholar] [CrossRef]
- Lan, Y.; Lu, Y.; Ren, Z. Mini Review on Photocatalysis of Titanium Dioxide Nanoparticles and Their Solar Applications. Nano Energy 2013, 2, 1031–1045. [Google Scholar] [CrossRef]
- Ameh, A.E.; Fatoba, O.O.; Musyoka, N.M.; Petrik, L.F. Influence of Aluminium Source on the Crystal Structure and Framework Coordination of Al and Si in Fly Ash-Based Zeolite NaA. Powder Technol. 2017, 306, 17–25. [Google Scholar] [CrossRef]
- Isac, L.; Andronic, L.; Enesca, A.; Duta, A. Copper Sulfide Films Obtained by Spray Pyrolysis for Dyes Photodegradation under Visible Light Irradiation. J. Photochem. Photobiol. A Chem. 2013, 252, 53–59. [Google Scholar] [CrossRef]
- Cheung, W.H.; Szeto, Y.S.; McKay, G. Intraparticle Diffusion Processes during Acid Dye Adsorption onto Chitosan. Bioresour. Technol. 2007, 98, 2897–2904. [Google Scholar] [CrossRef]
- Ozawa, M.; Matsui, H.; Suzuki, S. Formation of TiO2/Mica Composite for Photocatalysis. Powder Metall. Met. Ceram. 2016, 54, 746–749. [Google Scholar] [CrossRef]
- Shalan, A.E.; Rasly, M.; Rashad, M.M. Organic Acid Precursor Synthesis and Environmental Photocatalysis Applications of Mesoporous Anatase TiO2 Doped with Different Transition Metal Ions. J. Mater. Sci. Mater. Electron. 2014, 25, 3141–3146. [Google Scholar] [CrossRef]
- Qian, Z.; Pathak, B.; Nisar, J.; Ahuja, R. Oxygen- and Nitrogen-Chemisorbed Carbon Nanostructures for Z-Scheme Photocatalysis Applications. J. Nanopart. Res. 2012, 14, 895. [Google Scholar] [CrossRef]
- Lim, P.F.; Leong, K.H.; Sim, L.C.; Abd Aziz, A.; Saravanan, P. Amalgamation of N-Graphene Quantum Dots with Nanocubic like TiO2: An Insight Study of Sunlight Sensitive Photocatalysis. Environ. Sci. Pollut. Res. 2019, 26, 3455–3464. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Qu, F.; Chen, X.; Yu, Z.; Cui, L.; Zhang, X.; Jiang, J.; Lin, H. Synthesis of Porous ZnO Nanospheres for Gas Sensor and Photocatalysis. J. Sol-Gel Sci. Technol. 2014, 69, 370–377. [Google Scholar] [CrossRef]
- Lü, W.; Chen, J.; Wu, Y.; Duan, L.; Yang, Y.; Ge, X. Graphene-Enhanced Visible-Light Photocatalysis of Large-Sized CdS Particles for Wastewater Treatment. Nanoscale Res. Lett. 2014, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; He, X.; Du, J.; Gong, W. Synergistic Effect of Photocatalysis and Adsorption of Nano-TiO2 Self-Assembled onto Sulfanyl/Activated Carbon Composite. Environ. Sci. Pollut. Res. 2016, 23, 21733–21740. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Wei, Z.; Miao, H.; Yao, W.; Li, H.; Zhu, Y. Enhanced Organic Pollutant Photodegradation via Adsorption/Photocatalysis Synergy Using a 3D g-C3N4/TiO2 Free-Separation Photocatalyst. Chem. Eng. J. 2019, 370, 287–294. [Google Scholar] [CrossRef]
- Li, H.; Ho, W.; Cao, J.; Park, D.; Lee, S.; Huang, Y. Active Complexes on Engineered Crystal Facets of MnOx –CeO2 and Scale-Up Demonstration on an Air Cleaner for Indoor Formaldehyde Removal. Environ. Sci. Technol. 2019, 53, 10906–10916. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of Iron-Free Fenton-like Systems for Activating H2O2 in Advanced Oxidation Processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. A Review on Fenton Process for Organic Wastewater Treatment Based on Optimization Perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef]
- Fodor, S.; Baia, L.; Hernádi, K.; Pap, Z. Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity. Materials (Basel) 2020, 13, 3665. [Google Scholar] [CrossRef]
Isotherm Models | Math Expression | The Linearised Form | Plots | Parameters |
---|---|---|---|---|
Langmuir | qmax = maximum amount of dye per gram of catalyst (mg·g−1) KL = the Langmuir adsorption constant (L·mg−1) | |||
Freundlich | lnqe vs. ln Ce | KF = the Freundlich adsorption constant (mg·g−1) n = the Freundlich adsorption constant |
Sample | Line | O K | Na K | Al K | Si K | S K | Ti K | Fe K | Cu K | Total | Si:Al | Ti:Cu:Si |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A10 | Wt. % | 41.66 | 8.69 | 7.78 | 12.69 | 1.36 | 20.04 | 2.81 | 4.97 | 100 | ||
At. % | 60.39 | 8.77 | 6.69 | 10.48 | 0.99 | 9.70 | 1.17 | 1.81 | 100 | 1.57 | 5.35:1:5.79 | |
B10 | Wt. % | 40.80 | 6.09 | 4.52 | 7.81 | 0.71 | 34.71 | 2.77 | 2.60 | 100 | ||
At. % | 62.23 | 6.47 | 4.09 | 6.78 | 0.54 | 17.68 | 1.21 | 1.00 | 100 | 1.66 | 17.68:1:6.78 | |
C10 | Wt. % | 41.95 | 4.30 | 3.67 | 9.94 | 1.19 | 34.64 | 1.29 | 0.56 | 100 | ||
At. % | 63.48 | 4.53 | 3.30 | 8.57 | 0.90 | 17.51 | 3.02 | 1.15 | 100 | 2.60 | 15.22:1:7.5 |
Adsorbat | Adsorbent System | Langmuir Adsorption Isotherm | Freundlich Adsorption Isotherm | |||||
---|---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | Correlation Coefficient (R2) | Separation Factor (SF) | (1/n) | KF (mg/g)/(mg/L) | R2 | ||
TiO2:FA | Fly 1 | 0.34316 | 0.95091 | 0.81714 | 0.20859 | 1.008 | 1.752 | 0.84752 |
Fly1/H2O2 | 0.61348 | 1.64123 | 0.93782 | 0.13248 | 1.551 | 1.488 | 0.93372 | |
Fly 2 | 0.36597 | 8.31400 | 0.96815 | 0.02926 | 0.805 | 1.502 | 0.97459 | |
Fly2/H2O2 | 0.46289 | 5.31114 | 0.87451 | 0.04506 | 1.426 | 3.464 | 0.81278 | |
Fly 3 | 0.39512 | 1.10957 | 0.85531 | 0.18426 | 1.113 | 2.543 | 0.88178 | |
Fly3/H2O2 | 0.43805 | 0.90199 | 0.87311 | 0.21744 | 1.272 | 2.456 | 0.87442 | |
Sample A10 | Fly1-CuxS | 0.29346 | 0.76514 | 0.89664 | 0.24674 | 0.746 | 1.906 | 0.92464 |
Fly1-CuxS/H2O2 | 0.79888 | 2.75445 | 0.94830 | 0.08340 | 2.458 | 3.824 | 0.88054 | |
Sample B10 | Fly2-CuxS | 0.21061 | 2.19786 | 0.95273 | 0.10236 | 0.516 | 2.016 | 0.97168 |
Fly2-CuxS/H2O2 | 0.47047 | 0.44766 | 0.94939 | 0.35892 | 1.071 | 6.958 | 0.95102 | |
Sample C10 | Fly3-CuxS | 0.36371 | 1.20442 | 0.90034 | 0.17225 | 0.928 | 2.196 | 0.9175 |
Fly3-CuxS/H2O2 | 1.02334 | 0.35541 | 0.97737 | 0.41355 | 3.303 | 2.939 | 0.91938 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andronic, L.; Isac, L.; Cazan, C.; Enesca, A. Simultaneous Adsorption and Photocatalysis Processes Based on Ternary TiO2–CuxS–Fly Ash Hetero-Structures. Appl. Sci. 2020, 10, 8070. https://doi.org/10.3390/app10228070
Andronic L, Isac L, Cazan C, Enesca A. Simultaneous Adsorption and Photocatalysis Processes Based on Ternary TiO2–CuxS–Fly Ash Hetero-Structures. Applied Sciences. 2020; 10(22):8070. https://doi.org/10.3390/app10228070
Chicago/Turabian StyleAndronic, Luminita, Luminita Isac, Cristina Cazan, and Alexandru Enesca. 2020. "Simultaneous Adsorption and Photocatalysis Processes Based on Ternary TiO2–CuxS–Fly Ash Hetero-Structures" Applied Sciences 10, no. 22: 8070. https://doi.org/10.3390/app10228070
APA StyleAndronic, L., Isac, L., Cazan, C., & Enesca, A. (2020). Simultaneous Adsorption and Photocatalysis Processes Based on Ternary TiO2–CuxS–Fly Ash Hetero-Structures. Applied Sciences, 10(22), 8070. https://doi.org/10.3390/app10228070