Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Tools of Geovisualization
2.2.1. KML and Google API
2.2.2. QGIS and Its Geovisualization Plugin
2.3. Data Mining and Geoprocessing
3. Results of Visualization
3.1. Static and Interactive Geovisualization of Environmental Data Using QGIS Modules and KML
3.2. Static and Interactive 3D Geovisualization of Environmental Data
3.3. Advantages and Disadvantages of Tools
3.4. Evaluation of Nitrate and Phosphate Distribution in 2013 and 2019
4. Relationship to CogInfoCom
- The most important advantage of using geovisualization tools is the visualized spatial environmental data, which makes valuable information understandable both for the public and for decision-makers.
- Revealing relationships between the investigated wells and the location became easier after the geovisualization.
- Geovisualization facilitates capturing the spatial pattern of nitrate and phosphate distribution at different times.
- The general cognitive perception of digital data is supported. The more data sources are used, the greater need can be identified for supporting the appropriate interpretation of the data.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kiss, E.; Zichar, M.; Fazekas, I.; Karancsi, G.; Balla, D. Categorization and geovisualization of climate change strategies using an open-access WebGIS tool. Infocommun. J. 2020, 12, 32–37. [Google Scholar] [CrossRef]
- Ajvazi, B.; Loshi, F.; Markus, B. From Surveying to Geomatics. Landsc. Environ. 2016, 10, 153–160. [Google Scholar] [CrossRef]
- Neumann, A. Web Mapping and Web Cartography. In Encyclopedia of GIS; Shekhar, S., Xiong, H., Eds.; Springer: New York, NY, USA, 2008; pp. 1261–1270. [Google Scholar] [CrossRef]
- Graham, M. Neogeography and the palimpsests of place: Web 2.0 and the construction of a virtual earth. Tijdschr. Voor Econ. Soc. Geogr. 2010, 101, 422–436. [Google Scholar] [CrossRef]
- Farkas, G. Applicability of open-source web mapping libraries for building massive Web GIS clients. J. Geogr. Syst. 2017, 19, 273–295. [Google Scholar] [CrossRef]
- Haklay, M.; Singleto, A.; Parker, C. Web Mapping 2.0: The Neogeography of the GeoWeb. Geogr. Compass 2008, 2, 2011–2039. [Google Scholar] [CrossRef]
- MacEachren, A.M.; Gahegan, M.; Pike, W.; Brewer, I.; Cai, G.; Lengerich, E.; Hardisty, F. Geovisualization for knowledge construction and decision-support. IEEE Comput. Graph. Appl. 2004, 24, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Dykes, J.; MacEachren, A.M.; Kraak, M.J. (Eds.) Exploring Geovisualization; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Pődör, A.; Kiszely, M. Experimental investigation of visualization methods of earthquake catalogue maps. Geod. Cartogr. 2014, 40, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Brown, M. Hacking Google Maps and Google Earth; Wiley Publishing Inc.: Indianapolis, Indiana, 2006; pp. 1–401. [Google Scholar]
- MacEachren, A.M.; Kraak, M.J. Exploratory cartographic visualization: Advancing the agenda. Comput. Geosci. 1997, 23, 335–343. [Google Scholar] [CrossRef]
- Baranyi, P.; Csapó, Á. Definition and synergies of cognitive infocommunications. Acta Polytech. Hung. 2012, 9, 67–83. [Google Scholar]
- Katona, J.; Kővári, A. Examining the Learning Efficiency by a Brain-Computer Interface System. Acta Polytech. Hung. 2018, 15, 251–280. [Google Scholar] [CrossRef]
- Katona, J.; Kővári, A. The Evaluation of BCI and PEBL-based Attention Tests. Acta Polytech. Hung. 2018, 15, 225–249. [Google Scholar] [CrossRef]
- Bőczén-Rumbach, P. Industry-Oriented Enhancement of Information Management Systems at AUDI Hungaria using MaxWhere’s 3D Digital Environments. In Proceedings of the 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; pp. 417–422. [Google Scholar] [CrossRef]
- Bochicchio, V.; Scandurra, C.; Vitelli, R.; Valerio, P.; dell’Orco, S.; Maldonato, N.M. Epistemology of Olfaction: Emotion, Cognition, and Decision Making. In Proceedings of the 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; pp. 267–270. [Google Scholar] [CrossRef]
- Sik, D.; Csorba, K.; Ekler, P. Toward Cognitive Data Analysis with Big Data Environment. In Proceedings of the 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; pp. 23–28. [Google Scholar] [CrossRef]
- Török, Z.G.; Török, Á. Remember the North. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 21–26. [Google Scholar] [CrossRef]
- Modar, D.; Attila, G. Application of Virtual Reality in Kinematics Education. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 107–111. [Google Scholar] [CrossRef]
- Gyöngyi, B.; Kata, B.; Cornelia, M.N.; Ovidiu, C.N. Developing cognitive processes as a major goal in designing e-health information provider VR environment in information science education. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 187–192. [Google Scholar] [CrossRef]
- Mohammad, M.; Gabor, F. Multiple Sclerosis Detection via Machine Learning Algorithm, Accurate Simulated Database 3D MRI to 2D Images, using value of Binary Pattern Classification—A Case Study. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 233–240. [Google Scholar] [CrossRef]
- Kővári, A.; Katona, J.; Demeter, R.; Rosan, A.; Hathazi, A.; Costescu, C.; Thill, S. Analysis of Gaze Fixations Using an Open-source Software. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 325–328. [Google Scholar] [CrossRef]
- Sudár, A.; Csapó, A.B. Interaction Patterns of Spatial Navigation in VR Workspaces. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 611–614. [Google Scholar] [CrossRef]
- Ito, A.; Nakada, K. UI Design based on Traditional Japanese Gesture. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 85–90. [Google Scholar] [CrossRef]
- Balla, D.; Mester, T.; Botos, Á.; Novák, T.J.; Zichar, M.; Rásó, J.; Karika, A. Possibilities of spatial data visualization with web technologies for cognitive interpretation. In Proceedings of the 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 17–20. [Google Scholar] [CrossRef]
- Sik, D.; Csorba, K.; Ekler, P. Implementation of a Geographic Information System with Big Data Environment on Common Data Model. In Proceedings of the 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 181–184. [Google Scholar] [CrossRef]
- Idzikowski, R.; Kluwak, K.; Nowobilski, T.; Zamojski, T. Analysis of possibility of visualization of danger factors in the building environment based on Virtual Reality model. In Proceedings of the 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 363–368. [Google Scholar] [CrossRef]
- Török, Á.; Török, Z.G.; Tölgyesi, B. Cluttered centres: Interaction between eccentricity and clutter in attracting visual attention of readers of a 16th century map. In Proceedings of the 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 433–438. [Google Scholar] [CrossRef]
- Katona, J.; Ujbanyi, T.; Sziladi, G.; Kővári, A. Examine the Effect of Different Web-based Media on Human BrainWaves. In Proceedings of the 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 407–412. [Google Scholar] [CrossRef]
- Niskanen, V.; Minzoni, A.; Mounoud, E. A Case Study on Time-Interval Fuzzy Cognitive Maps in a Complex Organization. In Proceedings of the 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 27–32. [Google Scholar] [CrossRef] [Green Version]
- Magnusdottir, E.H.; Johannsdottir, K.R.; Bean, C.; Olafsson, B.; Gudnason, J. Cognitive workload classification using cardiovascular measures and dynamic features. In Proceedings of the 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 351–356. [Google Scholar] [CrossRef]
- Eide, G.M.; Watanabe, R.; Heldal, I.; Helgesen, C.; Geitung, A.; Soleim, H. Detecting oculomotor problems using eye tracking: Comparing EyeX and TX300. In Proceedings of the 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 2380–7350. [Google Scholar] [CrossRef]
- Csapo, A.; Kristjansson, A.; Nagy, H.; Wersenyi, G. Evaluation of Human-Myo Gesture Control Capabilities in Continuous Search and Select Operations. In Proceedings of the 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Wroclaw, Poland, 16–18 October 2016; pp. 415–420. [Google Scholar] [CrossRef]
- Balla, D.; Zichar, M.; Barkóczi, N.; Varga, O.G. Cognitive interpretation of different spatial databases in web environment. In Proceedings of the 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Győr, Hungary, 19–21 October 2015; pp. 159–162. [Google Scholar] [CrossRef]
- Katona, J.; Kővári, A. A Brain–Computer Interface Project Applied in Computer Engineering. IEEE Trans. Educ. 2016, 59, 319–326. [Google Scholar] [CrossRef]
- Katona, J.; Ujbanyi, T.; Sziladi, G.; Kővári, A. Speed control of Festo Robotino mobile robot using NeuroSky MindWave EEG headset based brain-computer interface. In Proceedings of the 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Wroclaw, Poland, 16–18 October 2016; pp. 251–256. [Google Scholar] [CrossRef]
- Balla, D.; Zichar, M.; Kozics, A.; Mester, T.; Mikita, T.; Incze, J.; Novák, T.J. A GIS Tool to Express Soil Naturalness Grades and Geovisualization of Results on Tokaj Nagy-Hill. Acta Polytech. Hung. 2019, 16, 191–205. [Google Scholar] [CrossRef]
- Mattyasovszky-Philipp, D.; Molnár, B. An Architectural Approach to Cognitive Information Systems. Acta Polytech. Hung. 2020, 17, 237–253. [Google Scholar] [CrossRef]
- Kővári, A.; Rajcsanyi-Molnar, M. Mathability and Creative Problem Solving in the MaTech Math Competition. Acta Polytech. Hung. 2020, 17, 147–161. [Google Scholar] [CrossRef]
- Kővári, A.; Katona, J.; Pop, C. Quantitative Analysis of Relationship between Visual Attention and Eye-Hand Coordination. Acta Polytech. Hung. 2020, 17, 77–95. [Google Scholar] [CrossRef]
- Guzsvinecz, T.; Orbán-Mihálykó, É.; Perge, E.; Sik-Lányi, C. Analyzing the Spatial Skills of University Students with a Virtual Reality Application using a Desktop Display and the Gear VR. Acta Polytech. Hung. 2020, 17, 35–56. [Google Scholar] [CrossRef]
- Rumiński, D.; Maik, M.; Walczak, K. Visualizing Financial Stock Data withinan Augmented Reality Trading Environment. Acta Polytech. Hung. 2019, 16, 223–239. [Google Scholar] [CrossRef]
- Hercegfi, K.; Köles, M. Temporal Resolution Capabilities of the Mid-Frequency Heart Rate Variability-based Human-Computer Interaction Evaluation Method. Acta Polytech. Hung. 2019, 16, 95–114. [Google Scholar] [CrossRef]
- Molnar, A.; Lovas, I.; Domozi, Z. Measurement of outdoor gamma dose distribution with a multicopter. In Proceedings of the IEEE 24th International Conference on Intelligent Engineering Systems (INES), Reykjavík, Iceland, 8–10 July 2020; pp. 103–108. [Google Scholar] [CrossRef]
- Baranyi, P.; Csapó, Á.; Sallai, G. Cognitive Infocommunications (CogInfoCom); Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–219. [Google Scholar] [CrossRef]
- Mester, T.; Szabó, G.; Bessenyei, É.; Karancsi, G.; Barkóczi, N.; Balla, D. The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement. J. Water Land Dev. 2017, 33, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Mester, T.; Balla, D.; Karancsi, G.; Bessenyei, É.; Szabó, G. Effects of nitrogen loading from domestic wastewater on groundwater quality. Water SA 2019, 45, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Mester, T.; Balla, D.; Szabó, G. Evaluation of the cleaning process of groundwater following the establishment of a sewage system. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 12009. [Google Scholar] [CrossRef]
- HS 1484-13. Hungarian Standard Water Quality. Part 12: Determination of Nitrate and Nitrite. Content by Spectrophotometric Method. 2009. Available online: http://www.mszt.hu (accessed on 20 August 2020).
- HS 448-18. Hungarian Standard Water Quality. Part 18: Drinking Water Analysis. Part 18: Determination of Orthophosphate and Total Phosphorus Using Spectrophotometric Method. 2009. Available online: http://www.mszt.hu (accessed on 20 August 2020).
- Tóth, R.; Balla, D.; Zichar, M. Analysis and optimization of KML files. In Proceedings of the 14th International Technology, Education and Development Conference, Valencia, Spain, 2–4 March 2020; pp. 4209–4216. [Google Scholar] [CrossRef]
- Udell, S. Beginning Google Maps Mashups with Mapplets, KML, and GeoRSS: From Novice to Professional (Expert’s Voice in Web Devel-opment); Apress: Berkeley, CA, USA, 2009. [Google Scholar]
- QGIS QGIS2Web Module. Available online: https://www.qgistutorials.com/en/docs/web_mapping_with_qgis2web.html (accessed on 20 August 2020).
- QGIS Cloud Module. Available online: https://qgiscloud.com/ (accessed on 20 August 2020).
- QGIS Qgis2threejs Module. Available online: https://qgis2threejs.readthedocs.io/en/docs-release/ (accessed on 20 August 2020).
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef]
- Belkhiri, L.; Tiri, A.; Mouni, L. Study of the spatial distribution of groundwater quality index using geostatistical models. Groundw. Sustain. Dev. 2020, 100473. [Google Scholar] [CrossRef]
- Biswas, S.; Mukhopadhyay, B.P.; Bera, A. Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: A case study from Uttar Dinajpur district, West Bengal. Environ. Earth Sci. 2020, 79, 1–25. [Google Scholar] [CrossRef]
- Johnson, C.D.; Nandi, A.; Joyner, T.A.; Luffman, I. Iron and manganese in groundwater: Using Kriging and GIS to locate high concentrations in Buncombe County, North Carolina. Groundwater 2018, 56, 87–95. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 2007, 4, 313–332. [Google Scholar] [CrossRef]
- Zhu, H.C.; Charlet, J.M.; Poffijn, A. Radon risk mapping in southern Belgium: An application of geostatistical and GIS techniques. Sci. Total Environ. 2001, 272, 203–210. [Google Scholar] [CrossRef]
- Szabad Hozzáférésű Térbeli Adatbázisok Geovizualizációja. Available online: http://siscs.exitdebrecen.hu/Coginfo/ (accessed on 20 August 2020).
- Lampert, B.; Pongracz, A.; Sipos, J.; Vehrer, A.; Horvath, I. MaxWhere VR-learning improves effectiveness over classical tools of e-learning. Acta Polytech. Hung. 2018, 15, 125–147. [Google Scholar] [CrossRef]
- Berki, B. Better memory performance for images in MaxWhere 3D VR space than in website. In Proceedings of the 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; pp. 281–284. [Google Scholar] [CrossRef]
- Horváth, I. Innovative engineering education in the cooperative VR environment. In Proceedings of the 7th IEEE Conference on Cognitive Infocommunications (CogInfoCom), Wrocław, Poland, 16–18 October 2016; pp. 359–364. [Google Scholar] [CrossRef]
Viewpoint | Tool | |||
---|---|---|---|---|
KML | QGIS Module | |||
qgis2web | Cloud | Qgis2threejs | ||
Appearance | 2D and 3D | 2D | 2D | 3D |
Supported raster format | Yes | Yes | No | Yes |
Browser needs plugin | No | No | No | Yes |
Event management | Supported | Supported | Supported | Supported |
Require coding | Yes | No | No | No |
Feature/Data Limit | Up to 10,000 lines, shapes, or places Up to 50,000 total points (in lines and shapes) Up to 20,000 data table cells | Depends on hardware | 50 MB upload data limit | Depends on hardware |
Parameters | Contamination Limit (mg/L) | Mean | Minimum | Maximum | |||
---|---|---|---|---|---|---|---|
2013 | 2019 | 2013 | 2019 | 2013 | 2019 | ||
NO3− (mg/L) | 50 mg/L | 187.8 | 163.5 | 8.36 | 7.61 | 564.8 | 645.5 |
PO43− (mg/L) | 0.5 mg/L | 1.22 | 0.49 | 0.07 | 0.04 | 4.07 | 2.14 |
Parameters | Contamination Limit (mg/L) | Lower Quartile | Upper Quartile | St. Deviation | |||
2013 | 2019 | 2013 | 2019 | 2013 | 2019 | ||
NO3− (mg/L) | 50 mg/L | 50.16 | 43.09 | 341.7 | 244.8 | 164.4 | 170.7 |
PO43− (mg/L) | 0.5 mg/L | 0.374 | 0.137 | 1.75 | 0.604 | 1.09 | 0.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balla, D.; Zichar, M.; Tóth, R.; Kiss, E.; Karancsi, G.; Mester, T. Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools. Appl. Sci. 2020, 10, 6701. https://doi.org/10.3390/app10196701
Balla D, Zichar M, Tóth R, Kiss E, Karancsi G, Mester T. Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools. Applied Sciences. 2020; 10(19):6701. https://doi.org/10.3390/app10196701
Chicago/Turabian StyleBalla, Dániel, Marianna Zichar, Róbert Tóth, Emőke Kiss, Gergő Karancsi, and Tamás Mester. 2020. "Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools" Applied Sciences 10, no. 19: 6701. https://doi.org/10.3390/app10196701
APA StyleBalla, D., Zichar, M., Tóth, R., Kiss, E., Karancsi, G., & Mester, T. (2020). Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools. Applied Sciences, 10(19), 6701. https://doi.org/10.3390/app10196701