Safety Maintains Lean Sustainability and Increases Performance through Fault Control
Abstract
:1. Introduction
2. The LSPL Measurement and Analysis Stages
3. Research Methodology
- (1)
- Identify the safety instructions related to Fault Modes before they happen for every Value-Added (value-added) or Non-Value-Added (NVA) activities
- (2)
- Determines the effect and severity of these faults according to consuming time and its costs.
- (3)
- Identifies the causes and probability of occurrence of the Fault Modes (historical data).
- (4)
- Identifies the sustainable safety actions and their effectiveness.
- (5)
- Quantifies and prioritizes the risks associated with the Fault Modes.
- (6)
- Develops and documents action plans that will occur to reduce risk.
4. Failure Mode and Effect Forecasting (FMEF) Formulation
- = number of correction scenarios investigated to reduce losses and faults opportunities in certain activity.
- = number of potential causes of malfunction due to fault identified by the framework for scenario i.
- = cost of potential causes of malfunction due to fault identified by the framework for scenario i.
- = weight of potential causes of malfunction under scenario I consideration extracted from SFD result in Table 8 (Step 4).
- = number of correct potential causes of malfunctions due to fault obtained by the framework for scenario i.
5. Lean Safety Performance Level (LSPL) Case Study
- How many Fault occurrences for a single function? (19).
- How much is the enterprise cost on Faults identified? (3041.13).
- How much is the average cost of faults per function? (3041.13/102,592 = 0.0296).
- What is the FPMO? _1560.16_ = (1,000,000*3041.13)/(19*102,592) _≅ Cpk 1.5 and 99.8650% yield.
- What is the (approximate) LSPL for LSPL implementation? (4.5 marks over 6 (75%)).
6. Sustainable Lean Safety Performance Enhancement
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
function ComputeSMA(downtime_s, Cost_track) |
{ |
const input_layer_shape = Cost_track; |
const input_layer_neurons = 100; |
model.add (tf.layers.dense({units: input_layer_neurons, inputShape: [input_layer_shape]})); |
var r_avgs = [ ], avg_prev = 0; |
for (let i = 0; i <= downtime_s.length * Cost_track; i++) |
{ |
var curr_avg = 0.00, t = i + Cost_track; |
for (let k = i; k < t andand k <= downtime_s.length; k++) |
curr_avg += downtime_s[k][‘price’]/Cost_track; |
r_avgs.push({ set: downtime_s.slice(i, i + Cost_track), avg: curr_avg }); |
avg_prev = curr_avg; |
} |
return r_avgs; |
} |
var input_dataset = [], result = []; |
var data_raw = []; var sma_vec = []; |
function Init() { |
initTabs(‘Dataset’); initDataset(); |
document.getElementById(“n-items”).value = “50”; |
document.getElementById(“window-size”).value = “12”; |
document.getElementById(‘input-data’).addEventListener(‘change’, readInputFile, false); |
} |
function initTabs(tab) { |
var navbar = document.getElementsByClassName(“nav navbar-nav”); |
navbar[0].getElementsByTagName(“li”)[0].className += “active”; |
document.getElementById(“dataset”).style.display = “none”; |
document.getElementById(“graph-plot”).style.display = “none”; |
setContentView(tab); |
} |
function setTabActive(event, tab) { |
var navbar = document.getElementsByClassName(“nav navbar-nav”); |
var tabs = navbar[0].getElementsByTagName(“li”); |
for (var index = 0; index < tabs.length; index++) |
if (tabs[index].className == “active”) |
tabs[index].className = ““; |
if (event.currentTarget != null) { |
event.currentTarget.className += “active”; |
} |
var callback = null; |
if (tab == “Neural Network”) { |
callback = function () { |
document.getElementById(“train_set”).innerHTML = getSMATable(1); |
} |
} |
setContentView(tab, callback); |
} |
function setContentView(tab, callback) { |
var tabs_content = document.getElementsByClassName(“container”); |
for (var index = 0; index < tabs_content.length; index++) |
tabs_content[index].style.display = “none”; |
if (document.getElementById(tab).style.display == “none”) |
document.getElementById(tab).style.display = “block”; |
if (callback != null) { |
callback(); |
} |
} |
function readInputFile(e) { |
var file = e.target.files[0]; |
var reader = new FileReader(); |
reader.onload = function(e) { |
var contents = e.target.result; |
document.getElementById(“input-data”).value = ““; |
parseCSVData(contents); |
}; |
reader.readAsText(file); |
} |
function parseCSVData(contents) { |
data_raw = []; sma_vec = []; |
var rows = contents.split(“\n”); |
var params = rows[0].split(“,”); |
var size = parseInt(params[0].split(“=“)[1]); |
var window_size = parseInt(params[1].split(“=“)[1]); |
document.getElementById(“n-items”).value = size.toString(); |
document.getElementById(“window-size”).value = window_size.toString(); |
for (var index = 1; index < size + 1; index++) { |
var cols = rows[index].split(“,”); |
data_raw.push({ id: cols[0], timestamp: cols[1], price: cols[2] }); |
} |
sma_vec = ComputeSMA(data_raw, window_size); |
onInputDataClick(); |
} |
function initDataset() { |
var n_items = parseInt(document.getElementById(“n-items”).value); |
var window_size = parseInt(document.getElementById(“window-size”).value); |
data_raw = GenerateDataset(n_items); |
sma_vec = ComputeSMA(data_raw, window_size); |
onInputDataClick(); |
} |
async function onTrainClick() { |
var inputs = sma_vec.map(function(inp_f) { |
return inp_f[‘set’].map(function(val) { return val[‘price’]; })}); |
var outputs = sma_vec.map(function(outp_f) { return outp_f[‘avg’]; }); |
var n_epochs = parseInt(document.getElementById(“n-epochs”).value); |
var window_size = parseInt(document.getElementById(“window-size”).value); |
var lr_rate = parseFloat(document.getElementById(“learning-rate”).value); |
var n_hl = parseInt(document.getElementById(“hidden-layers”).value); |
var n_items = parseInt(document.getElementById(“n-items-percent”).value); |
var callback = function(epoch, log) { |
var log_nn = document.getElementById(“nn_log”).innerHTML; |
log_nn += “<div>Epoch: “ + (epoch + 1) + “ Loss: “ + log.loss + “</div>“; |
document.getElementById(“nn_log”).innerHTML = log_nn; |
document.getElementById(“training_pg”).style.width = ((epoch + 1) * (100/n_epochs)).toString() + “%”; |
document.getElementById(“training_pg”).innerHTML = ((epoch + 1) * (100/n_epochs)).toString() + “%”; |
} |
result = await trainModel(inputs, outputs, |
n_items, window_size, n_epochs, lr_rate, n_hl, callback); |
alert(‘Your model has been successfully trained...’); |
} |
function onPredictClick(view) { |
var inputs = sma_vec.map(function(inp_f) { |
return inp_f[‘set’].map(function (val) { return val[‘price’]; }); }); |
var outputs = sma_vec.map(function(outp_f) { return outp_f[‘avg’]; }); |
var n_items = parseInt(document.getElementById(“n-items-percent”).value); |
var outps = outputs.slice(Math.floor(n_items/100 * outputs.length), outputs.length); |
var pred_vals = Predict(inputs, n_items, result[‘model’]); |
var data_output = ““; |
for (var index = 0; index < pred_vals.length; index++) { |
data_output += “<tr><td>“ + (index + 1) + “</td><td>“ + |
outps[index] + “</td><td>“ + pred_vals[index] + “</td></tr>“; |
} |
document.getElementById(“pred-res”).innerHTML = “<table class=\”table\”><thead><tr><th scope=\”col\”>#</th><th scope=\”col\”>Real Value</th> \ |
<th scope=\”col\”>Predicted Value</th></thead><tbody>“ + data_output + “</tbody></table>“; |
var window_size = parseInt(document.getElementById(“window-size”).value); |
var timestamps_a = data_raw.map(function (val) { return val[‘timestamp’]; }); |
var timestamps_b = data_raw.map(function (val) { |
return val[‘timestamp’]; }).splice(window_size, data_raw.length); |
var timestamps_c = data_raw.map(function (val) { |
return val[‘timestamp’]; }).splice(window_size + Math.floor(n_items/100 * outputs.length), data_raw.length); |
var sma = sma_vec.map(function (val) { return val[‘avg’]; }); |
var prices = data_raw.map(function (val) { return val[‘price’]; }); |
var graph_plot = document.getElementById(‘graph-pred’); |
Plotly.newPlot( graph_plot, [{ x: timestamps_a, y: prices, name: “Series” }], { margin: { t: 0 } } ); |
Plotly.plot( graph_plot, [{ x: timestamps_b, y: sma, name: “SMA” }], { margin: { t: 0 } } ); |
Plotly.plot( graph_plot, [{ x: timestamps_c, y: pred_vals, name: “Predicted” }], { margin: { t: 0 } } ); |
} |
function getInputDataTable() { |
var data_output = ““; |
for (var index = 0; index < data_raw.length; index++) |
{ |
data_output += “<tr><td>“ + data_raw[index][‘id’] + “</td><td>“ + |
data_raw[index][‘timestamp’] + “</td><td>“ + data_raw[index][‘price’] + “</td></tr>“; |
} |
return “<table class=\”table\”><thead><tr><th scope=\”col\”>#</th><th scope=\”col\”>Timestamp</th> \ |
<th scope=\”col\”>Feature</th></thead><tbody>“ + data_output + “</tbody></table>“; |
} |
function getSMATable(view) { |
var data_output = ““; |
if (view == 0) { |
for (var index = 0; index < sma_vec.length; index++) |
{ |
var set_output = ““; |
var set = sma_vec[index][‘set’]; |
for (var t = 0; t < set.length; t++) { |
set_output += “<tr><td width=\”30px\”>“ + set[t][‘price’] + |
“</td><td>“ + set[t][‘timestamp’] + “</td></tr>“; |
} |
data_output += “<tr><td width=\”20px\”>“ + (index + 1) + |
“</td><td>“ + “<table width=\”100px\” class=\”table\”>“ + set_output + |
“<tr><td><b>“ + “SMA(t) = “ + sma_vec[index][‘avg’] + “</b></tr></td></table></td></tr>“; |
} |
return “<table class=\”table\”><thead><tr><th scope=\”col\”>#</th><th scope=\”col\”>Time Series</th>\ |
</thead><tbody>“ + data_output + “</tbody></table>“; |
} |
else if (view == 1) { |
var set = sma_vec.map(function (val) { return val[‘set’]; }); |
for (var index = 0; index < sma_vec.length; index++) |
{ |
data_output += “<tr><td width=\”20px\”>“ + (index + 1) + |
“</td><td>[ “ + set[index].map(function (val) { |
return (Math.round(val[‘price’] * 10000)/10000).toString(); }).toString() + |
“ ]</td><td>“ + sma_vec[index][‘avg’] + “</td></tr>“; |
} |
return “<table class=\”table\”><thead><tr><th scope=\”col\”>#</th><th scope=\”col\”>\ |
Input</th><th scope=\”col\”>Output</th></thead><tbody>“ + data_output + “</tbody></table>“; |
} |
} |
function onInputDataClick() { |
document.getElementById(“dataset”).style.display = “block”; |
document.getElementById(“graph-plot”).style.display = “block”; |
document.getElementById(“data”).innerHTML = getInputDataTable(); |
var timestamps = data_raw.map(function (val) { return val[‘timestamp’]; }); |
var prices = data_raw.map(function (val) { return val[‘price’]; }); |
var graph_plot = document.getElementById(‘graph’); |
Plotly.newPlot( graph_plot, [{ x: timestamps, y: prices, name: “Stocks Prices” }], { margin: { t: 0 } } ); |
} |
function onSMAClick() { |
document.getElementById(“data”).innerHTML = getSMATable(0); |
var sma = sma_vec.map(function (val) { return val[‘avg’]; }); |
var prices = data_raw.map(function (val) { return val[‘price’]; }); |
var window_size = parseInt(document.getElementById(“window-size”).value); |
var timestamps_a = data_raw.map(function (val) { return val[‘timestamp’]; }); |
var timestamps_b = data_raw.map(function (val) { |
return val[‘timestamp’]; }).splice(window_size, data_raw.length); |
var graph_plot = document.getElementById(‘graph’); |
Plotly.newPlot( graph_plot, [{ x: timestamps_a, y: prices, name: “Series” }], { margin: { t: 0 } } ); |
Plotly.plot( graph_plot, [{ x: timestamps_b, y: sma, name: “SMA” }], { margin: { t: 0 } } ); |
} |
function ComputeSMA(time_s, window_size) |
{ |
var r_avgs = [], avg_prev = 0; |
for (let i = 0; i <= time_s.length - window_size; i++) |
{ |
var curr_avg = 0.00, t = i + window_size; |
for (let k = i; k < t andand k <= time_s.length; k++) |
curr_avg += time_s[k][‘price’]/window_size; |
r_avgs.push({ set: time_s.slice(i, i + window_size), avg: curr_avg }); |
avg_prev = curr_avg; |
} |
return r_avgs; |
} |
function GenerateDataset(size) |
{ |
var dataset = []; |
var dt1 = new Date(), dt2 = new Date(); |
dt1.setDate(dt1.getDate() - 1); |
dt2.setDate(dt2.getDate() - size); |
var time_start = dt2.getTime(); |
var time_diff = new Date().getTime() - dt1.getTime(); |
let curr_time = time_start; |
for (let i = 0; i < size; i++, curr_time+=time_diff) { |
var curr_dt = new Date(curr_time); |
var hours = Math.floor(Math.random() * 100 % 24); |
var minutes = Math.floor(Math.random() * 100 % 60); |
var seconds = Math.floor(Math.random() * 100 % 60); |
dataset.push({ id: i + 1, price: (Math.floor(Math.random() * 10) + 5) + Math.random(), |
timestamp: curr_dt.getFullYear() + “-” + ((curr_dt.getMonth() > 9) ? curr_dt.getMonth() : (“0” + curr_dt.getMonth())) + “-” + |
((curr_dt.getDate() > 9) ? curr_dt.getDate() : (“0” + curr_dt.getDate())) + “ [“ + ((hours > 9) ? hours : (“0” + hours)) + |
“:” + ((minutes > 9) ? minutes : (“0” + minutes)) + “:” + ((seconds > 9) ? seconds : (“0” + seconds)) + “]” }); |
} |
return dataset; |
} |
async function trainModel(inputs, outputs, size, window_size, n_epochs, learning_rate, n_layers, callback) |
{ |
const input_layer_shape = window_size; |
const input_layer_neurons = 100; |
const rnn_input_layer_features = 10; |
const rnn_input_layer_timesteps = input_layer_neurons/rnn_input_layer_features; |
const rnn_input_shape = [ rnn_input_layer_features, rnn_input_layer_timesteps ]; |
const rnn_output_neurons = 20; |
const rnn_batch_size = window_size; |
const output_layer_shape = rnn_output_neurons; |
const output_layer_neurons = 1; |
const model = tf.sequential(); |
inputs = inputs.slice(0, Math.floor(size/100 * inputs.length)); |
outputs = outputs.slice(0, Math.floor(size/100 * outputs.length)); |
const xs = tf.tensor2d(inputs, [inputs.length, inputs[0].length]).div(tf.scalar(10)); |
const ys = tf.tensor2d(outputs, [outputs.length, 1]).reshape([outputs.length, 1]).div(tf.scalar(10)); |
model.add(tf.layers.dense({units: input_layer_neurons, inputShape: [input_layer_shape]})); |
model.add(tf.layers.reshape({targetShape: rnn_input_shape})); |
var lstm_cells = []; |
for (let index = 0; index < n_layers; index++) { |
lstm_cells.push(tf.layers.lstmCell({units: rnn_output_neurons})); |
} |
model.add(tf.layers.rnn({cell: lstm_cells, |
inputShape: rnn_input_shape, returnSequences: false})); |
model.add(tf.layers.dense({units: output_layer_neurons, inputShape: [output_layer_shape]})); |
const opt_adam = tf.train.adam(learning_rate); |
model.compile({ optimizer: opt_adam, loss: ‘meanSquaredError’}); |
const hist = await model.fit(xs, ys, |
{ batchSize: rnn_batch_size, epochs: n_epochs, callbacks: { |
onEpochEnd: async (epoch, log) => { callback(epoch, log); }}}); |
return { model: model, stats: hist }; |
} |
function Predict(inputs, size, model) |
{ |
var inps = inputs.slice(Math.floor(size/100 * inputs.length), inputs.length); |
const outps = model.predict(tf.tensor2d(inps, [inps.length, inps[0].length]).div(tf.scalar(10))).mul(10); |
return Array.from(outps.dataSync()); |
} |
References
- Pudar, S.; Manimaran, G.; Liu, C.C. PENET: A practical method and tool for integrated modeling of security attacks and countermeasures. Comput. Secur. 2009, 28, 754–771. [Google Scholar] [CrossRef]
- Papadopoulos, Y. Model-based system monitoring and diagnosis of failures using state charts and fault trees. Int. J. Lean Sustain. Engng. Syst. Saf. 2003, 81, 325–341. [Google Scholar]
- Zuzek, A.; Biasizzo, A.; Novak, F. Towards a general test presentation in the test sequencing problem. In Proceedings of the Second International On-Line Testing Workshop; IEEE Computer Society Press: Biarritz, France, 1996; pp. 236–237. [Google Scholar]
- Biasizzo, A.; Zuzek, A.; Novak, F. Sequential Diagnosis Tool; Microprocessors Microsystems: Ljubljana, Slovenia, 2000; Volume 24, pp. 191–197. [Google Scholar]
- Chang, J.I.; Liang, C. Performance Evaluation of Process Safety Management Systems of Paint Manufacturing Facilities. J. Loss Prev. Process Ind. 2009, 22, 398–404. [Google Scholar] [CrossRef]
- DuPont Quick 4-Step Review of Process Safety Management. 2016. Available online: http://www2.dupont.com/DuPont_Sustainable_Solutions/en_US/assets/downloads/Quick4-StepReview_Sheet.pdf (accessed on 3 April 2016).
- Energy Institute. High Level Framework for Process Safety Management 2016. Available online: https://publishing.energyinst.org/_users/ei2/registered/[email protected]/High-level-framework-for-process-safety-management070416044249.pdf (accessed on 3 April 2016).
- Pattipati, K.R.; Alexandridis, M.G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. Syst. Man Cybern. 1990, 20, 872–887. [Google Scholar] [CrossRef]
- Shakeri, M.; Raghavan, V.; Pattipati, K.R.; Patterson-Hine, A. Sequential testing algorithms for multiple fault diagnosis. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2000, 30, 1–14. [Google Scholar] [CrossRef]
- Rao, N.S.V. Expected-value analysis of two single fault diagnosis algorithms. IEEE Trans. Comput. 1993, 42, 272–280. [Google Scholar] [CrossRef]
- Price, C. Computer-Based Diagnostic Systems; Springer: London, UK, 1999. [Google Scholar]
- Paasch, R.; Mocko, G. Incorporating uncertainty in diagnostic analysis of mechanical systems. Trans. ASME J. Mech. Des. 2005, 217, 315–325. [Google Scholar]
- Yue, Y.; Li, X.; Zong, Q. Development of Automobile Fault Diagnosis Expert System Based on Fault Tree—Neural Network Ensamble. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2008; pp. 2028–2031. [Google Scholar]
- Anvari, A.; Zulkifli, N.; Yusuff, R.M. Evaluation of approaches to safety in lean manufacturing and safety management systems and clarification of the relationship between them. World Appl. Sci. J. 2011, 15, 19–26. [Google Scholar]
- Underwood, P.; Waterson, P. Systemic accident analysis: Examining the gap between research and practice. Accid. Anal. Prev. 2013, 55, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.D. The use of NOT logic in fault tree analysis. Qual. Lean Sustain. Eng Int. 2001, 17, 143–150. [Google Scholar] [CrossRef]
- Billinton, R.; Allan, R.N. Lean Sustainability Evaluation of Engineering Systems, 2nd ed.; Plenum: New York, NY, USA, 1992. [Google Scholar]
- Laura, H.I.; Isabelina, N.; James, J. Use of Safety and Lean Integrated Kaizen to Improve Performance in Modular Homebuilding. J. Constr. Eng. Manag. 2011. [Google Scholar] [CrossRef]
- Hartini, S.; Ciptomulyono, U. The relationship between lean and sustainable manufacturing on performance: Literature review. Ind. Eng. Serv. Sci. Procedia Manuf. 2015, 4, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Kurdve, M.; Zackrisson, M.; Wiktorsson, M.; Harlin, U. Lean and green integration into production system models e experiences from Swedish industry’. J. Clean. Prod. 2014, 85, 180–190. [Google Scholar] [CrossRef]
- Potes Ruiz, P.; Kamsu Foguem, B.; Grabot, B. Generating knowledge in maintenance from Experience Feedback. Knowl. Based Syst. 2014, 68, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chen, Y.; Hassan, S.; Li, D. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method. Sci. Rep. 2016, 6, 72–92. [Google Scholar] [CrossRef]
- Sakouhi, A.; Nadeau, S. Integration of Occupational Health and Safety into Lean Manufacturing: Quebec Aeronautics Case Study. Am. J. Ind. Bus. Manag. 2016, 6, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Mathiyazhagan, K. Sustainability in lean manufacturing: A systematic literature review. Int. J. Bus. Excell. 2018. [Google Scholar] [CrossRef]
- Brown, A.; Amundson, J.; Badurdeen, F. Sustainable value stream mapping (Sus-VSM) in different manufacturing system configurations: Application case studies. J. Clean. Prod. 2014, 85, 164–179. [Google Scholar] [CrossRef]
- Ibrahim, S.; Halim, M.A.; Abed, A.M. Modeling VSM with quality Control using Image Verification. In Proceedings of the AL-Azhar Engineering 11th International Conference, AEIC 11, Cairo, Egypt, 23–24 December 2010; Volume 5, pp. 181–193. [Google Scholar]
- Shimada, Y.; Kitajima, T.; Takeda, K. Practical Framework for Process Safety Management Based on Plant Life Cycle Engineering. In Proceedings of the 3rd International Conference on Integrity, Lean Sustainability and Failure, Porto, Portugal, 10 July 2009; pp. 20–24. [Google Scholar]
- Nawaz, W.; Linke, P.; Koç, M. Safety and sustainability nexus: A review and appraisal. J. Clean. Prod. 2019, 216, 74–87. [Google Scholar] [CrossRef]
- Hyytiä, E.; Righter, R.; Virtamo, J.; Viitasaari, L. On value functions for FCFS queues with batch arrivals and general cost structures. Perform. Eval. J. 2020, 138, 102083. [Google Scholar] [CrossRef]
- Fraser, K. Facilities management: The strategic selection of a maintenance system. J. Facil. Manag. 2014, 12, 18–37. [Google Scholar] [CrossRef]
- Faccio, M.; Persona, A.; Sgarbossa, F.; Zanin, G. Industrial maintenance policy development: A quantitative framework. Int. J. Prod. Econ. 2014, 147, 85–93. [Google Scholar] [CrossRef]
- Ching, J.M.; Williams, B.L.; Idemoto, L.M.; Blackmore, C.C. How the Lean Method of Jidoka Optimizes Technology Implementation. J. Qual. Patient Saf. 2014, 40, 342–350. [Google Scholar]
- Jiménez, M.; Romero, L.; Fernández, J.; Espinosa, M.M.; Domínguez, M. Extension of the Lean 5S Methodology to 6S with An Additional Layer to Ensure Occupational Safety and Health Levels. Sustainability 2019, 11, 3827. [Google Scholar] [CrossRef] [Green Version]
- Narkhede, B.E.; Gardas, B.B. Hindrances to sustainable workforce in the upstream oil and gas industries –interpretive structural modelling approach. Int. J. Bus. Excell. 2018, 16, 61–81. [Google Scholar] [CrossRef]
- Nehete, R.; Narkhede, B.E.; Raut, R.D. Manufacturing performance and relevance of operational performance to small and medium scale enterprises–literature review. Int. J. Bus. Excell. 2016, 10, 354–391. [Google Scholar] [CrossRef]
- Paranitharan, K.P.; Ramesh Babu, T.; Iskanius, P.; Pal Pandi, A. An integrated model for achieving sustainability in the manufacturing industry—An empirical study. Int. J. Bus. Excell. 2018, 16, 82–109. [Google Scholar] [CrossRef]
- Khalil, Y.F. A novel probabilistically timed dynamic model for physical security attack scenarios on critical infrastructures. Process Saf. Environ. Prot. 2016, 102, 473–484. [Google Scholar] [CrossRef]
- Ramesh, N.; Ravi, A. Determinants of total employee involvement: A case study of cutting tool company. Int. J. Bus. Excell. 2017, 11, 221–240. [Google Scholar] [CrossRef]
- Sumant, M.; Negi, A. Review of lean-green manufacturing practices in SMEs for sustainable framework. Int. J. Bus. Innov. Res. 2018, 17, 38–64. [Google Scholar] [CrossRef]
- Prescott, L.S.; Taylor, J.S.; Lopez-Olivo, M.A.; Munsell, M.F.; VonVille, H.M.; Lairson, D.R.; Bodurka, D.C. How Low should we Go: A Systematic Review and Meta-Analysis of the Impact of Restrictive Red Blood Cell Transfusion Strategies in Oncology. Cancer Treat. Rev. 2016, 46, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NSC ‘Elements of an Effective Safety Management System’. 2016. Available online: http://www.nsc.org/Measure/Pages/elements-of-an-effective-safety-management-system.aspx (accessed on 3 April 2016).
- Kumar, S.; Kumar, N.; Haleem, A. Conceptualisation of sustainable green Lean Six Sigma: An empirical analysis. Int. J. Bus. Excell. 2015, 8, 210–250. [Google Scholar] [CrossRef]
- Abed, A.M.; Ibrahim, M.S. Defect Control via Forecasting of Processes’ Deviation as JIDOKA Methodology. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, 6–8 March 2018, 8th ed.; IEOM Society International: Southfield, MI, USA, 2018; pp. 2436–2449. ISSN 2169-8767. ISBN 978-1-5323-5944-6. [Google Scholar]
- Kaepernick, H.; Kara, S. Environmentally Sustainable Manufacturing: A Survey on Industry Practice; Katholieke Universiteit Leuven: Leuven, Belgium, 2006; Available online: http://www.mech.kuleuven.be/lce2006/key5.pdf (accessed on 2 August 2018).
- Pattipati, K.R. Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2003, 33, 73–85. [Google Scholar]
- Occupational Safety and Health Administration (OSHA). Sustainability in the Workplace: A New Approach for Advancing Worker Safety and Health 2016. Available online: www.osha.gov/sustainability (accessed on 30 June 2018).
- Lindstrom, J.; Kyosti, P.; Birk, W.; Lejon, E. An Initial Model for Zero Defect Manufacturing. Appl. Sci. 2020, 10, 4570. [Google Scholar] [CrossRef]
- Shafiee, M.; Enjema, E.; Kolios, A. An Integrated FTA-FMEA Model for Risk Analysis of Engineering Systems: A Case Study of Subsea Blowout Preventers. Appl. Sci. 2019, 9, 1192. [Google Scholar] [CrossRef] [Green Version]
Source: Deduced from Kaner, 1996:6 and Heizer and Render, 2001:179 Cost of Poor Performance (CoPP) | HBL Investment’s Elements | ||
---|---|---|---|
1. Direct costs | High NNVA | 1.1. Equipment | Economical, technology |
1.2. Workers (people) | social | ||
1.3. Raw material | Environmental, economical | ||
1.4. Waste treatment | |||
2. Indirect costs | Moderate NNVA | 2.1. Reporting | Technology |
2.2. Monitoring | |||
2.3. Regulatory (e.g., operating permits and fees) | Economical | ||
3. Contingent Costs | Very Low NNVA | 3.1. Liabilities | Social, economic, and policy |
3.2. Lawsuit | |||
3.3. Damage to resource | Social, economic, and environmental | ||
3.4. Mishap/injury/accidents | |||
4. Internal intangible costs | Commitment NNVA | 4.1. Company or Brand image | Social, economic |
4.2. Enterprise loyalty | Policy, technology, | ||
4.3. People (labor) morale | Social, enlightenment | ||
4.4. People (labor) relations | |||
4.5. Community relations | Social | ||
5. External intangible costs | Customer burden | 5.1. Handicap | Social, environmental, and economical |
5.2. Depression leads to neglecting | |||
5.3. Time waste | |||
5.4. Replacement | |||
5.5. Jobless | |||
Enterprise burden | 5.6. Increase of housing | Economical | |
5.7. Reputation loss | |||
5.8. Guarantee | Social, economical | ||
5.9. Discounts | Economical | ||
5.10. Degradation of resources |
Lean Safety Performance Level | SFD Elements | Indicators | Type | ||||||
---|---|---|---|---|---|---|---|---|---|
Sustainability impacts | Social | Improved | Workers moral and commitments | Via focuses on | People | Saving needs for | Individual and community | Diversity | C1.2, C4.5 |
Standards of livings | Equity | ||||||||
Working conditions | Resources of education and jobs | Education and skills | C5.2, C3.3 | ||||||
Awareness about Environmental Health and Safety procedures | empowerment | Employment | |||||||
Healthy and safety | Roles and responsibilities | C4.3 | |||||||
Environmental | Improved resource efficiency and effectiveness | planet | Examines activities and practices related to use of | Natural resources and material | Failure in efficient use | C1.3, C3.3, C5.2 | |||
Reduced risks for noncompliance safety procedures | Energy consumption | Violation and mistakes | C1.4 | ||||||
Reduced environmental impacts | Pollution | Prevention emissions to | |||||||
Reduce nonorganic or harmful material | Irradiate | Air | |||||||
Smut | Water | ||||||||
Folklore | Land | ||||||||
Ecological health | Use of renewable energy | C5.1, C5.2 | |||||||
Economical | Improved profit (cost-effective) | profit | Strategies that | Promote economic growth | Distribution of wealth | C5.1 | |||
Complete cycle time (impact on MLT) | Consumption patterns | C2.3 | |||||||
Increase process and equipment Lean Sustainability | Cost-saving | Revenue generation | |||||||
meeting manufacturer expectation (business impact) | R&D | OEE | C1.1 | ||||||
Enlightenment | deployed | Innovation | People | increased | Communication without embarrassment | Efficient use of ERP systems | C2.1, C2.2 | ||
Rapid communication interface | Overprocess maturity | ||||||||
Data validation | |||||||||
Training (rapid responsiveness) | Proficiency | Maintenance and skill-based errors | C3.1, C3.2 | ||||||
Corrective action acceleration | |||||||||
Oriented politics | Hazard management | Planet and People | Fault identification | Fault Mode and Effect Forecasted (FMEF) | C2.1, C2.2, C3.4 | ||||
Assess and besiege the faults | |||||||||
Risk management | Review and document | Poor design of equipment | |||||||
Strategy framework | Database Documentation | Benchmarking | C2.2 | ||||||
Technology | Process improvement (timely) | Profit sustain | Kaizen/Lean | Productivity | C4.1 | ||||
Process fault | Poka-yoke | FMEF | C3.4 | ||||||
Function capability | |||||||||
Incident investigation (timely) | Procedures (cause and effect, action plan) | Verification of safety data procedures | C4.2 | ||||||
Local ERP system | Lean +/− sustainability |
Lean Safety Rules | Suggested Implementation Tool |
---|---|
Specifying value: Value is realized by the end-user or the next requirement’s step in some of the sequential processes, to meet its needs at a specific cost, time, and quality, and with fewer people’s efforts (i.e., eliminate overprocessing) | Gemba or workplace is a Japanese term meaning “the actual place”, where value-creating occurs to look for waste and opportunities to practice workplace kaizen or practical shop-floor improvement. |
Identify and create a value stream: In a value stream, all activities are required to bring a specific goal (supplier–producer–customer). | |
Making value flow: It flows through a Lean enterprise at the rate that the next or customer needs, and just in the amount needed without excess inventory. | Kanban is the name given to inventory control via using a pull system, which determines the suitable moving quantities in every process, between upstream processes. |
Pull not push: Only make as required. Pull the value according to the end-user’s demand. | |
Striving for perfection: perfection does not just mean quality. It means producing exactly what the end-user wants, exactly when required. Therefore, must focus on tackling six major losses: failure (1), adjustment (2), minor stoppages (3), reduced operating speeds (4), scrap (5), and rework (6). | Jidoka can be defined as automation with a human touch, as opposed to a device that simply moves under the monitoring of an operator. |
OEE is defined as the effect implying, how effectively planned time was used for producing good parts. |
SFD Title or Process Name | Sustainable Safety Process (Functions), While VA/NNVA Activities | |
---|---|---|
Ys (WHATs) | Imp. | Xs (HOWs) |
Enterprises expectation (HBL elements) | 5 | Critical to Safety (CTS) |
Process reliability (economic impact) | 3 | Within less than 1% variance in process deviation |
Timely (technological impact) | 3 | Local ERP analysis |
Business Impact (policy and technological impact) | 4 | All corrective actions within “1” min of faults appear. |
Rapid Responsiveness (enlightenment and social impact) | 4 | Respond to fault identification and LSPL stage cycle |
Cost-effectiveness (economic impact) | 5 | Less expensive than the cost listed Table 1 |
Safety procedures (social, economic, and environment impact) | 5 | 100% inspection implementation (continuous tracking actions) aided by NN |
Xs (HOWs) | ||||||||
---|---|---|---|---|---|---|---|---|
Ys (WHATs) | Importance | Within Less than 1% variance in process deviation | All corrective actions within “1” min of faults appear (processes deviation monitor timely) | Local ERP analysis | Respond to fault identification and LSPL stage cycle | Less expensive than cost listed Table 1 | 100% inspection implementation (continuous tracking actions) | Total |
Process reliability (economic impact) | 5 | H | -- | H | M | -- | H | 150 |
Timely (technological impact) | 3 | L | H | M | H | -- | L | 66 |
Business impact (policy and technological impact) | 3 | -- | L | H | H | -- | M | 66 |
Rapid responsiveness (enlightenment and social impact) | 4 | H | L | H | H | -- | -- | 112 |
Cost-effectiveness (economic impact) | 4 | -- | -- | L | M | H | M | 64 |
Safety procedures (social, economic, and environment impact) | 5 | H | H | M | H | L | H | 195 |
Total | 126 | 79 | 136 | 162 | 36 | 114 | 653 | |
Detection weight (priority) | 19.30% | 12.10% | 20.83% | 24.81% | 5.51% | 17.46% |
Xs (HOWs) Functional Requirement | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ys (WHATs) | Relative Weight | Complete Cycle Time | injection Fault data into Local ERP system (Documentation) | Data Validation | Procedures (Cause and Effect, Action Plan) | Ecological health | Healthy and safety | Efficient use of ERP systems | Total |
Respond to fault identification and LSPL stage cycle | 19.03 | H | H | L | H | -- | H | -- | 713.94 |
All corrective actions within “1” min of faults appear (processes deviation monitor timely) | 12.1 | L | L | M | L | -- | M | 108.88 | |
Local ERP analysis | 20.83 | -- | M | L | -- | H | -- | M | 333.23 |
Less than 1% variance in process deviation | 24.81 | -- | L | L | -- | M | -- | H | 347.32 |
Less expensive than cost that listed Table 1 | 5.51 | L | L | -- | M | L | L | -- | 38.59 |
100% inspection implementation (continuous tracking actions) | 17.46 | H | L | H | H | L | L | -- | 523.74 |
Total | 348.4 | 296.018 | 258.4 | 359.4 | 284.8 | 232.9 | 285.8 | 2065.7 | |
Detection weight (priority) | 16.87% | 14.33% | 12.51% | 17.40% | 13.79% | 11.28% | 13.83% |
Xs (HOWs) Design Requirements | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ys (WHATs) | Relative Weight | Statistical validation | Function capability | Automated verification of safety data procedures | VA capability | Reliability +/− | Poor design of equipment | OEE | Failure in Efficient use FMEA | Maintenance and skill-based errors (proficiency) | Roles and responsibilities | Total |
Complete cycle time | 12.51 | H | H | -- | M | -- | M | H | H | H | L | 650.4 |
Injection fault data into a Local ERP system (documentation) | 14.33 | H | H | L | -- | -- | L | H | H | -- | -- | 544.6 |
Data validation | 16.87 | -- | L | H | L | M | -- | -- | L | H | 404.8 | |
Procedures (cause and effect, action plan) | 17.40 | L | -- | M | M | L | -- | -- | -- | -- | -- | 135 |
Ecological health | 13.79 | L | -- | -- | L | L | H | -- | H | -- | -- | 289.6 |
Healthy and safety | 11.28 | -- | -- | -- | H | -- | H | H | L | H | -- | 417.2 |
Efficient use of ERP systems | 13.83 | -- | -- | -- | -- | -- | -- | M | H | -- | H | 290.5 |
Total | 272.2 | 241.53 | 64.93 | 203.4 | 30.65 | 277.4 | 384.5 | 501.4 | 214 | 137. | 2327.1 | |
Detection weight (priority) | 11.7% | 10.4% | 2.8% | 8.7% | 1.3% | 11.9% | 16.5% | 21.5% | 9.2% | 5.9% |
Xs (HOWs) Key Process Variables | ||||||||
---|---|---|---|---|---|---|---|---|
Ys (WHATs) | Relative Weight | Social/People | Environmental | Economic/profit | Enlightenment | Oriented politics | Technology | Total |
Statistical validation | 11.7 | H | H | L | M | -- | L | 269.02 |
Function capability | 10.38 | -- | H | -- | -- | -- | H | 186.82 |
Automated verification of safety data procedures | 2.79 | -- | M | -- | L | H | L | 39.1 |
VA capability | 8.74 | M | L | -- | H | -- | -- | 113.62 |
Reliability +/− | 1.317 | -- | -- | H | M | H | 27.66 | |
Poor design of equipment | 11.92 | -- | -- | L | H | L | 131.14 | |
OEE | 16.5 | -- | M | H | M | -- | M | 297.42 |
Maintenance and skill-based errors (proficiency) | 21.55 | L | H | H | L | -- | M | 211.55 |
Failure in efficient use FMEA | 9.20 | -- | -- | -- | -- | M | H | 258.56 |
Roles and responsibilities | 5.89 | H | -- | -- | M | H | H | 176.63 |
Total | 193.67 | 348.1 | 255 | 204.9 | 254 | 455.75 | 1711.48 | |
Detection weight (priority) | 11% | 20% | 15% | 12% | 14% | 27% |
Lean Six Sigma (LSS) Roadmap | ||||||
---|---|---|---|---|---|---|
Define and Measures | Analysis | Improve | Control | |||
Lean Safety Performance Level (LSPL) | Identify | Project charter | VSM | Spaghetti diagram for functions | Poka-Yoke | Proficiency level |
Analysis | Function/process/activities map | Run charts | Regression analysis | Risk analysis | Dashboard | |
Prioritization matrix | Audit plans | |||||
Plan | ||||||
Track | Critical to poor safety tree | KPI | ANOVA to DOE | 6′ S | Performance management | |
Control | Process capability | FMEF | ||||
SIPOC | Histograms | 5′ Why | FMEA | |||
Critical to quality tree | Management system analysis | Embedding sustainability | ||||
House of Quality | ||||||
Kano analysis |
(1) Fault Opportunities: (Specific loss of any of HBL functions), related to opportunities aforementioned in Table 1. | |
(2) Fault mode “effect”: A description of the consequence and ramification of any HBL faults, to rank these faults according to a severity scale. A typical Fault Mode may have several “effects” depending on a review of which manufacturer, manufacturer, or any of stakeholders are considered (i.e., analyzed and tailored according to needs via brainstorming recommendations). | (3) Severity rating η: (seriousness of the effect) Severity is the numerical rating (e.g., 1:10) of the impact on customers, manufacturer or any of HBL elements, related with loss function (i.e., nonideality, which use expenses indicator as a costs’ reference estimated according to Table 1). Severity against the maintainability level or mean time to repair the fault MTTR. |
(4) Fault mode “causes”: A description of the proficiency’ losses (high ramifications of direct and root causes) that results in the Fault Mode, which can be formulated via classical cause and effect diagram. | (5) Occurrence rating ω: An estimated number of tenfold relative frequencies of the cumulative number of specific causes over the intended period “threatening the sustainability of the safety case” (i.e., frequency codification and tracked out via mining in the local dataset). |
This step needs for creating a time schedule for predicted faults and codify via closely monitoring its behavior at a specified period using any of forecasting procedures, such as ARIMA or using the codes of artificial intelligent as Neural Network (e.g., time of the birth of the fault: t, fault’s lifespan: δt, severity: η, occurrence: ω and loss cost estimations: θ) | |
(6) Fault Mode “(safety investigation)”: The methods, tests, procedures, or controls used to prevent the cause of the Fault Mode or detect the Fault Mode or cause should it occur. | (7) Detection rating (forecasted via ARIMA) [45]: A numerical rating (i.e., 1:10, 1 being detectable via forecasting every time, 10 being impossible to detect via forecasting) of the probability that a given set of the investigation will discover a specific cause of Fault Mode to resist consequences. |
(8) Risk Priority Number (RPN; descending Order): = Severity × Occurrence × Detecting is a response | |
(9) Action planning: A high-risk framework that is not followed with corrective actions has little or no value, other than having a chart for an audit. Therefore, the FMEF is created. If ignored, you have probably wasted much of your valuable time. A good action plan focused on reducing the RPN by adopting the obvious safety roadmap has many VA functions. |
Limits | 60–70% | >70–80% | >80–94% | >94–96% | >96–99.99996% |
Risk level | Under Risk | Moderate | Adequate | Near Safe | Completely Safe |
LSPL Stages | Influencing Requirements |
---|---|
Identify and Planning Stage | IPS1: Prevention plan safety deployment among all workers |
IPS2: Identify risks in all manufacturing processes stations | |
IPS3: Work procedures based on risk standard evaluation | |
IPS4: Respect the periodic checks of prevention activities execution and compliance with regulations | |
IPS5: Ensuring that all risks are measured their severity, investigated, analyzed, and documented | |
Design Stage Instruments | DSI1: Control the impact of our manufacturing processes on safety |
DSI2: A systematic framework to identify the safety targets | |
DSI3: A systematic framework to achieve the safety targets | |
DSI4: A systematic framework to demonstrate that safety targets have been met | |
DSI5: Control Lean influencing of manufacturing processes | |
DSI6: A systematic framework to adjust and achieve the Lean targets | |
DSI7: A systematic framework to demonstrating that Lean targets have been met | |
Tracking and Test Stage | TaTS1: The occurrence scale of accidents at the participated enterprises |
TaTS2: Lean’s health and safety long-term precautions at participated enterprises | |
TaTS3: Energy and water consumptions in participating enterprises | |
TaTS4: Waste reutilization at participating enterprises | |
Work safety and Control Performance | WSCP1: Reduced the number of incidents at participating enterprises |
WSCP 2: Reduced the number of injuries at participating enterprises | |
WSCP 3: Reduced the number of ill health at participating enterprises | |
WSCP 4: Reduced the number of insurance claims at participating enterprises | |
Expected Lean Performance | ELP1: Reduced losses costs at participating enterprises (review Table 1) |
ELP2: Reduced the NNVA Occurrence Rating ω in participating enterprises (review Table 10 and Equation (1)) | |
ELP3: Reduced the NNVA Severity Rating η level in participating enterprises (review Table 10) | |
ELP4: Increased the ideality value (review Equation (4)) to deploy the performance level/monthly | |
ELP5: Measure the cost of poor proficiency that generated due to NNVA faults to be controlled |
PCA | CFA | |||||||
---|---|---|---|---|---|---|---|---|
Questions Outlines of LSPL Variables Stages | Eigenvalue | Percent of Variance Explained | Variables Loading | Expected Loading | t-Value | p-Value | Cronbach’s Alphas | |
Identify and planning stage | IPS 1 | 2.901 | 8.431 | 0.795 | 0.861 | 15.111 | 0.000 | 0.904 |
IPS 2 | 0.862 | 0.923 | 16.610 | 0.000 | ||||
IPS 3 | 0.885 | 0.958 | 17.744 | 0.000 | ||||
IPS 4 | 0.876 | 0.930 | 16.839 | 0.000 | ||||
IPS 5 | 0.794 | 0.822 | - | - | ||||
Design stage instruments | DSI 1 | 13.079 | 43.502 | 0.727 | 0.709 | 10.953 | 0.000 | 0.897 |
DSI 2 | 0.689 | 0.675 | 10.247 | 0.000 | ||||
DSI 3 | 0.478 | 0.496 | 10.670 | 0.000 | ||||
DSI 4 | 0.717 | 0.879 | 15.074 | 0.000 | ||||
DSI 5 | 0.734 | 0.838 | 13.999 | 0.000 | ||||
DSI 6 | 0.742 | 0.862 | 18.382 | 0.000 | ||||
DSI 7 | 0.760 | 0.841 | - | - | ||||
Tracking and test stage | TaTS 1 | 1.936 | 8.412 | 0.619 | 0.755 | 13.079 | 0.000 | 0.899 |
TaTS 2 | 0.637 | 0.783 | 13.722 | 0.000 | ||||
TaTS 3 | 0.741 | 0.778 | 10.824 | 0.000 | ||||
TaTS 4 | 0.818 | 0.754 | 12.696 | 0.000 | ||||
Work safety and control performance | WSCP 1 | 1.596 | 3.339 | 0.822 | 0.913 | 22.445 | 0.000 | 0.936 |
WSCP 2 | 0.832 | 0.944 | 24.953 | 0.000 | ||||
WSCP 3 | 0.817 | 0.935 | 24.140 | 0.000 | ||||
WSCP 4 | 0.829 | 0.929 | - | 0.000 | ||||
Expected Lean performance | ELP 1 | 1.148 | 2.825 | 0.741 | 0.774 | 11.492 | 0.000 | 0.861 |
ELP 2 | 0.840 | 0.864 | 13.204 | 0.000 | ||||
ELP 3: | 0.848 | 0.884 | 13.565 | 0.000 | ||||
ELP 4 | 0.841 | 0.872 | 13.214 | 0.000 | ||||
ELP 5 | 0.871 | 0.863 | - | - |
Fault Opportunity | Cost Type ($) | 7/2014 | 10/2015 | 3/2016 | 8/2017 | 1/2018 | 11/2019 | Time (h) | Ideality |
---|---|---|---|---|---|---|---|---|---|
IPS 1 | C1.1, C5.1 | 168 | 346 | 224 | 321 | 153 | 113 | 220.83 | 0.22 |
IPS 2 | C1.2, C2.2 | 474 | 279 | 34 | 37 | 82 | 71 | 162.83 | 0.16 |
IPS 3 | C1.1, C3.3 = $3871 for example | 757.2 | 284.1 | 168.9 | 129 | 173 | 114 | 271.03 | 0.27 |
IPS 4 | 453 | 493 | 117 | 229 | 86 | 18 | 232.67 | 0.23 | |
IPS 5 | C1.4 | 318 | 49 | 129.6 | 196 | 24 | 19 | 122.6 | 0.12 |
TaTS 1 | C1.3, C1.4 | 432 | 208 | 139 | 313 | 613 | 128 | 305.5 | 0.35 |
TaTS 2 | C2.1 | 483 | 284 | 125 | 169 | 287 | 69 | 236.17 | 0.21 |
TaTS 3 | C1.3, C1.4, C5.10 | 21 | 552 | 106 | 328 | 183 | 71 | 210.17 | 0.20 |
TaTS 4 | 345 | 413 | 148 | 663 | 74 | 55 | 283 | 0.28 | |
DSI 1 | C1.1, C2.3, C3.1, C3.3, C5.7 | 252 | 305 | 24 | 64 | 2 | 157 | 134 | 0.135 |
DSI 2 | 6 | 17 | 41 | 110 | 244 | 18 | 72.67 | 0.073 | |
DSI 4 | ------- | 100 | ------- | ------- | 15 | 61 | 29.33 | 0.029 | |
DSI 5 | 135 | 51 | ------- | 35 | ------- | 61 | 47 | 0.047 | |
DSI 6 | 438 | 54 | 89 | 78 | 30 | 15 | 117.33 | 0.12 | |
DSI 7 | 348 | 33 | 18 | 55 | 66 | 13 | 88.83 | 0.089 | |
WSCP 1 | C1.4, C3.1, C3.4 | 150 | 22 | 57 | 253 | 187 | 143 | 135.33 | 0.136 |
WSCP 2 | C4.3, C4.4 | 655 | 33 | 115 | 40 | 52 | 57 | 158.67 | 0.15 |
WSCP 3 | C3.2 | 78 | 1 | 108 | 135 | 47 | 4 | 62.17 | 0.06 |
WSCP 4 | C4.2, C4.5, C5.9 | 516 | 56 | 87 | 39 | 105 | 103 | 151 | 0.151 |
Total consumed downtime and costs of poor proficiency | 3041.1 |
Former Year | Vacuum Pump Malfunction | Blockage in Air Stream | Air Cavity Close | Damage Cavity | Incomplete Air Conduit | ||||||
Incident | injury | Incident | injury | Incident | injury | Incident | injury | Incident | injury | ||
28 | 35 | 32 | 12 | 36 | 21 | 38 | 32 | 38 | 35 | ||
2014 | 23 | 29 | 19 | 3 | 17 | 10 | 15 | 12 | 1 | 3 | |
2015 | 4 | 24 | 4 | 14 | 25 | 4 | 1 | 4 | 1 | 5 | |
2016 | 1 | 5 | 5 | 1 | 4 | 4 | 4 | 16 | 17 | 2 | |
2017 | 3 | 12 | 12 | 10 | 17 | 19 | 15 | 11 | 1 | 9 | |
2018 | 5 | 7 | 27 | 5 | 3 | 1 | 5 | 5 | 2 | 27 | |
2019 | 5 | 1 | 1 | 11 | 22 | 15 | 25 | 11 | 15 | 11 | |
38 | 32 | 21 | 21 | 32 | 14 | 35 | 28 | 38 | 35 | Upper level [U] | |
1 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | Lower level [L] | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Target [T] | |
38 | 32 | 5 | 21 | 32 | 14 | 35 | 28 | 38 | 35 | U-T | |
1 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | T-L | |
38 | 32 | 2 | 21 | 32 | 14 | 35 | 28 | 38 | 35 | Deviation about [T] | |
5 | 16 | 1 | 5 | 5 | 16 | 16 | 16 | 30 | 14 | C | |
0.57143 | 0.457 | 1.14286 | 0.156 | 0.23809 | 0.5 | 0.5 | 0.131 | 0.78948 | 0.4 | K=C/D | |
9.85714 | 16.14 | 8 | 14.29 | 10.5714 | 17.715 | 13 | 14.71 | 10.7143 | 13.15 | Avg. | |
118.144 | 172.8 | 24.6667 | 145.2 | 62.9523 | 135.24 | 87.3334 | 174.2 | 193.571 | 164.2 | Variance | |
1301 | 123.03 | 198.1 | 101.33 | 54.58 | 41.6 | 224.52 | 128.17 | 51.41 | 243.45 | 134.7 | Loss |
1300.97 | 321.16 | 155.91 | 266.12 | 179.58 | 378.2 | Total Loss |
LSPL | x2 | d.f | x2/d.f | GFI | AGFI | CFI | SRMR | RMSEA |
---|---|---|---|---|---|---|---|---|
Measurement values | 562.175 | 237 | 2.030 | 0.831 | 0.820 | 0.974 | 0.071 | 0.074 |
Recommended values |
LSPL Stages | Identify and Planning Stage | Design Stage Instruments | Tracking and Test Stage | Work Safety and Control Performance | Expected Lean Performance |
---|---|---|---|---|---|
Identify and Planning stage | 0.881 | ||||
Design stage instruments | 0.608 ** | 0.787 | |||
Tracking and Test stage | 0.534 ** | 0.693 ** | 0.819 | ||
Work safety and control performance | 0.397 ** | 0.657 ** | 0.638 ** | 0.949 | |
Expected Lean performance | 0.429 ** | 0.449 ** | 0.540 ** | 0.640 ** | 0.851 |
CR | 0.946 | 0.919 | 0.924 | 00.974 | 0.913 |
AVE | 0.777 | 0.620 | 0.671 | 0.902 | 0.725 |
Parameters | Down | Up | |
---|---|---|---|
X1 | Neuron number | 2 | 25 |
X2 | Learning rate | 0.01 | 0.4 |
X3 | Training epoch | 100 | 2500 |
X4 | Momentum constant | 0.1 | 0.9 |
X5 | Number of training runs | 3 | 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elattar, S.; Abed, A.M.; Alrowais, F. Safety Maintains Lean Sustainability and Increases Performance through Fault Control. Appl. Sci. 2020, 10, 6851. https://doi.org/10.3390/app10196851
Elattar S, Abed AM, Alrowais F. Safety Maintains Lean Sustainability and Increases Performance through Fault Control. Applied Sciences. 2020; 10(19):6851. https://doi.org/10.3390/app10196851
Chicago/Turabian StyleElattar, Samia, Ahmed M. Abed, and Fadwa Alrowais. 2020. "Safety Maintains Lean Sustainability and Increases Performance through Fault Control" Applied Sciences 10, no. 19: 6851. https://doi.org/10.3390/app10196851
APA StyleElattar, S., Abed, A. M., & Alrowais, F. (2020). Safety Maintains Lean Sustainability and Increases Performance through Fault Control. Applied Sciences, 10(19), 6851. https://doi.org/10.3390/app10196851