Accurate Output Forecasting Method for Various Photovoltaic Modules Considering Incident Angle and Spectral Change Owing to Atmospheric Parameters and Cloud Conditions
Abstract
:1. Introduction
2. Methods
2.1. Measurement Data
2.2. Databases for Irradiance and Solar Spectrum
2.3. How to Calculate the PV Output by MS2E Method
2.3.1. Extraction of Atmospheric Parameters
2.3.2. Calculation of All-Weather Solar Spectrum
2.3.3. Calculation of Power Output
3. Results
3.1. Variation of Atmospheric Parameters
3.2. Verification of Solar Spectrum Reproducibility for MS2E Method
3.3. Verification of Output Energy Reproducibility for MS2E Method
3.4. Application of MS2E Method
3.4.1. Atmospheric Parameter Fluctuation in Five Solar Radiation Climate Zone
3.4.2. The Optimum Installation Location of Various PV Modules in Japan
4. Discussion
4.1. The Necessity of Spectral Changes Owing to Atmospheric Parameters and Cloud Conditions
4.2. The Necessity of Incident Angle Modifier
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
β | The aerosol optical depth in a vertical path at 500 nm wavelength |
W | The precipitable water in the vertical path (cm) |
Taλ | The atmospheric transmittances for aerosol scattering at wavelength |
Twλ | The atmospheric transmittances for water vapor absorption at wavelength |
Trλ | The atmospheric transmittances for Rayleigh scattering at wavelength |
Toλ | The atmospheric transmittances for ozone absorption at wavelength |
Tmλ | The atmospheric transmittances for mixed gas absorption at wavelength |
αn | The angstrom turbidity exponent |
awλ | The water absorption coefficient as a function of wavelength at wavelength (cm−1) |
M | The air mass |
Idλ | The direct spectral irradiance at wavelength (W/m2/nm) |
Iaλ | The spectral irradiance on a horizontal surface for aerosol scattering at wavelength (W/m2/nm) |
Irλ | The spectral irradiance on a horizontal surface for Rayleigh scattering at wavelength (W/m2/nm) |
Igλ | The spectral irradiance on a horizontal surface for reflection at the ground at wavelength (W/m2/nm) |
Igλ clear | The global spectral irradiance calculated using Bird’s spectrum model at wavelength (W/m2/nm) |
Igλ overcast | The global spectral irradiance calculated using a new spectrum model assuming full cloud cover at wavelength (W/m2/nm) |
Igλ all | The global spectral irradiance using MS2E model considering all-weather at wavelength (W/m2/nm) |
θ | The incident angle (°) |
t | The tilt angle (°) |
fw | The weather correction factor |
TSI | The total solar irradiance (W/m2) |
DNI | The direct normal irradiance (W/m2) |
Jphoto | The photocurrent density (A/m2) |
Jsc | The short-circuit current density (A/m2) |
JSC without LC | The short-circuit density without luminescence coupling (A/m2) |
JSC with LC | The short-circuit density with luminescence coupling (A/m2) |
JSC Std | The calculated short-circuit current density using the standard solar spectrum (A/m2) |
JSC rate | The short-circuit current density under the standard test condition (A/m2) |
EQEλ | The external quantum efficiency at wavelength |
RCC | The radiative coupling coefficient |
VOC | The open-circuit voltage (V) |
VOC rate | The open-circuit voltage under the standard test condition (V) |
Vt | The thermal voltage (V) |
βth | The temperature coefficient of the open-circuit voltage (%/°C) |
Nseries | The number of cells in series |
Njunction | The number of junctions |
Tcell | The cell temperature (°C) |
Tamb | The ambient temperature (°C) |
NOCT | The nominal operation cell temperature (°C) |
FF | The fill factor |
FFrate | The fill factor under the standard test condition |
Pmax | The maximum operation output (W) |
Amod | The area of the module (m2) |
ηopt | The optical efficiency of the incident angle modifier |
ηsys | The system efficiency |
References
- Richter, A.; Hermle, M.; Glunz, S.W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 2013, 3, 1184–1191. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, W.W.; Liu, C.W.; Ding, W.T.; Liu, D.; Zhao, F.Y. Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations. Renew. Energy 2020, 147, 1565–1583. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 2019, 27, 565–575. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2018, 26, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Marion, B. Comparison of Predictive Models for Photovoltaic Module Performance. In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–6. [Google Scholar]
- De Soto, W.; Klein, S.A.; Beckman, W.A. Improvement and validation of a model for photovoltaic array performance. Sol. Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Marion, B.; Rummel, S.; Anderberg, A. Current—Voltage curve translation by bilinear interpolation. Prog. Photovolt. Res. Appl. 2004, 12, 593–607. [Google Scholar] [CrossRef]
- Mazzer, M.; Rampino, S.; Spaggiari, G.; Annoni, F.; Bersani, D.; Bissoli, F.; Bronzoni, M.; Calicchio, M.; Gombia, E.; Kingma, A.; et al. Bifacial cigs solar cells grown by low temperature pulsed electron deposition. Sol. Energy Mater. Sol. Cells 2017, 166, 247–253. [Google Scholar] [CrossRef]
- Bahgat, A.B.G.; Helwa, N.H.; Ahmad, G.; El Shenawy, E. Maximum power point traking controller for pv systems using neural networks. Renew. Energy 2005, 30, 1257–1268. [Google Scholar] [CrossRef]
- Bahgat, A.B.G.; Helwa, N.H.; Ahamd, G.E.; El Shenawy, E.T. Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks. Renew. Energy 2004, 29, 443–457. [Google Scholar] [CrossRef]
- Almonacid, F.; Rus, C.; Pérez, P.J.; Hontoria, L. Estimation of the energy of a pv generator using artificial neural network. Renew. Energy 2009, 34, 2743–2750. [Google Scholar] [CrossRef]
- Almonacid, F.; Rus, C.; Hontoria, L.; Fuentes, M.; Nofuentes, G. Characterisation of si-crystalline pv modules by artificial neural networks. Renew. Energy 2009, 34, 941–949. [Google Scholar] [CrossRef]
- Al-Amoudi, A.; Zhang, L. Application of radial basis function networks for solar-array modelling and maximum power-point prediction. IEE Proc. Gener. Transm. Distrib. 2000, 147, 310–316. [Google Scholar] [CrossRef]
- Veerachary, M.; Yadaiah, N. Ann based peak power tracking for pv supplied dc motors. Sol. Energy 2000, 69, 343–350. [Google Scholar] [CrossRef]
- Ishii, T.; Otani, K.; Takashima, T.; Xue, Y. Solar spectral influence on the performance of photovoltaic (pv) modules under fine weather and cloudy weather conditions. Prog. Photovolt. Res. Appl. 2013, 21, 481–489. [Google Scholar] [CrossRef]
- Araki, K.; Yamaguchi, M. Influences of spectrum change to 3-junction concentrator cells. Sol. Energy Mater. Sol. Cells 2003, 75, 707–714. [Google Scholar] [CrossRef]
- Faine, P.; Kurtz, S.R.; Riordan, C.; Olson, J.M. The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells. Sol. Cells 1991, 31, 259–278. [Google Scholar] [CrossRef]
- Kirn, B.; Topic, M. Diffuse and direct light solar spectra modeling in pv module performance rating. Sol. Energy 2017, 150, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Nofuentes, G.; García-Domingo, B.; Muñoz, J.V.; Chenlo, F. Analysis of the dependence of the spectral factor of some pv technologies on the solar spectrum distribution. Appl. Energy 2014, 113, 302–309. [Google Scholar] [CrossRef]
- Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramírez, M. Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites. Energy 2014, 67, 435–443. [Google Scholar] [CrossRef]
- Bird, R.E.; Riordan, C. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Clim. Appl. Meteorol. 1986, 25, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C.A.; Myers, D.; Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Sol. Energy 2002, 73, 443–467. [Google Scholar] [CrossRef]
- Takamoto, T.; Washio, H.; Juso, H. Application of ingap/gaas/ingaas triple junction solar cells to space use and concentrator photovoltaic. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 1–5. [Google Scholar]
- Itagaki, A.; Okamura, H.; Yamada, M. Preparation of meteorological data set throughout japan for suitable design of pv systems. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; pp. 2074–2077. [Google Scholar]
- Hay, J.E. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Sol. Energy 1979, 23, 301–307. [Google Scholar] [CrossRef]
- New Energy and Industrial Technology Development Organization, Spectrum Database. Available online: http://app0_2.infoc.nedo.go.jp/ (accessed on 6 December 2019).
- Brown, A.; Green, M. Radiative coupling as a means to reduce spectral mismatch in monolithic tandem solar cell stacks-theoretical considerations. In Proceedings of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002; pp. 868–871. [Google Scholar]
- Araki, K.; Lee, K.H.; Yamaguchi, M. Opportunities for breaking an energy generation limit of photovoltaic using multijunction and super-multijunction cells. In Proceedings of the 2018 18th International Workshop on Junction Technology (IWJT), Shanghai, China, 8–9 March 2018; pp. 1–4. [Google Scholar]
- Geisz, J.F.; Steiner, M.A.; Garcia, I.; France, R.M.; McMahon, W.E.; Osterwald, C.R.; Friedman, D.J. Generalized optoelectronic model of series-connected multijunction solar cells. IEEE J. Photovolt. 2015, 5, 1827–1839. [Google Scholar] [CrossRef] [Green Version]
- Sogabe, T.; Ogura, A.; Hung, C.Y.; Evstropov, V.; Mintairov, M.; Shvarts, M.; Okada, Y. Experimental characterization and self-consistent modeling of luminescence coupling effect in iii-v multijunction solar cells. Appl. Phys. Lett. 2013, 103, 263907. [Google Scholar] [CrossRef]
- Derkacs, D.; Bilir, D.T.; Sabnis, V.A. Luminescent coupling in gaas/gainnassb multijunction solar cells. IEEE J. Photovolt. 2013, 3, 520–527. [Google Scholar] [CrossRef]
- Nishioka, K.; Sakitani, N.; Kurobe, K.I.; Yamamoto, Y.; Ishikawa, Y.; Uraoka, Y.; Fuyuki, T. Analysis of the temperature characteristics in polycrystalline si solar cells using modified equivalent circuit model. Jpn. J. of Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2003, 42, 7175–7179. [Google Scholar] [CrossRef]
- Alonso García, M.C.; Balenzategui, J.L. Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renew. Energy 2004, 29, 1997–2010. [Google Scholar] [CrossRef]
- Jakhrani, A.Q.; Othman, A.K.; Rigitand, A.R.H.; Samo, S.R. Comparison of solar photovoltaic module temperature models. World Appl. Sci. J. 2011, 14, 1–8. [Google Scholar]
- Araki, K.; Lee, K.H.; Yamaguchi, M. Bandgaps of multi-junction solar cells potentially determined at the sun height of the culmination on the winter solstice. Sol. Energy 2017, 153, 445–453. [Google Scholar] [CrossRef]
- Araki, K.; Ota, Y.; Saiki, H.; Tawa, H.; Nishioka, K.; Yamaguchi, M. Super-multi-junction solar cells—Device configuration with the potential for more than 50% annual energy conversion efficiency (Non-Concentration). Appl. Sci. 2019, 9, 4598. [Google Scholar] [CrossRef] [Green Version]
- Ota, Y.; Ueda, K.; Takamoto, T.; Nishioka, K. Output evaluation of a world’s highest efficiency flat sub module with InGaP/GaAs/InGaAs inverted triple-junction solar cell under outdoor operation. Jpn. J. Appl. Phys. 2018, 57, 08RD08. [Google Scholar] [CrossRef]
- Reise, C.; Müller, B.; Moser, D.; Belluardo, G.; Ingenhoven, P. Uncertainties in PV System Yield Predictions and Assessments; IEA-PVPS T13-12: St. Ursen, Switzerland, 2018. [Google Scholar]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 39). Prog. Photovolt. 2012, 20, 12–20. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 48). Prog. Photovolt. 2016, 24, 905–913. [Google Scholar] [CrossRef] [Green Version]
Cloud Conditions | Atmospheric Parameters | Incident Angle Modifier | Air Mass | |
---|---|---|---|---|
Case-1 (MS2E) | ✓ | ✓ | ✓ | ✓ |
Case-2 | ✓ | ✓ | ✓ | |
Case-3 | ✓ | ✓ | ||
Case-4 | ✓ |
Annual Irradiance without Incident Angle Modifier (kWh/m2) | Annual Irradiance with Incident Angle Modifier (kWh/m2) | Effective Insolation Rate | |
---|---|---|---|
Fixed Si | 1606 | 1586 | 98.75% |
Tracking Si | 1923 | 1917 | 99.69% |
Fixed IMM | 1606 | 1577 | 98.19% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawa, H.; Saiki, H.; Ota, Y.; Araki, K.; Takamoto, T.; Nishioka, K. Accurate Output Forecasting Method for Various Photovoltaic Modules Considering Incident Angle and Spectral Change Owing to Atmospheric Parameters and Cloud Conditions. Appl. Sci. 2020, 10, 703. https://doi.org/10.3390/app10020703
Tawa H, Saiki H, Ota Y, Araki K, Takamoto T, Nishioka K. Accurate Output Forecasting Method for Various Photovoltaic Modules Considering Incident Angle and Spectral Change Owing to Atmospheric Parameters and Cloud Conditions. Applied Sciences. 2020; 10(2):703. https://doi.org/10.3390/app10020703
Chicago/Turabian StyleTawa, Hiroki, Hiromu Saiki, Yasuyuki Ota, Kenji Araki, Tatsuya Takamoto, and Kensuke Nishioka. 2020. "Accurate Output Forecasting Method for Various Photovoltaic Modules Considering Incident Angle and Spectral Change Owing to Atmospheric Parameters and Cloud Conditions" Applied Sciences 10, no. 2: 703. https://doi.org/10.3390/app10020703
APA StyleTawa, H., Saiki, H., Ota, Y., Araki, K., Takamoto, T., & Nishioka, K. (2020). Accurate Output Forecasting Method for Various Photovoltaic Modules Considering Incident Angle and Spectral Change Owing to Atmospheric Parameters and Cloud Conditions. Applied Sciences, 10(2), 703. https://doi.org/10.3390/app10020703