Effectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources and Search Profile
2.3. Data Extraction and Selection Criteria
2.4. Outcomes
2.5. Evaluation of the Methodology of the Studies Selected
2.6. Data Synthesis and Statistical Analysis
3. Results
3.1. General Characteristics of the Studies
3.2. Heterogeneity and Risk of Bias Assessment
3.3. Meta-Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2019, 205, 2–8. [Google Scholar] [CrossRef]
- Düking, P.; Zinner, C.; Reed, J.L.; Holmberg, H.; Sperlich, B. Predefined vs. data guided training prescription based on autonomic nervous system variation: A systematic review. Scand. J. Med. Sci. Sport. 2020, 30, 2291–2304. [Google Scholar] [CrossRef]
- Martín, J.P.G.; Clemente-Suárez, V.J.; Ramos-Campo, D.J. Hematological and running performance modification of trained athletes after reverse vs. block training periodization. Int. J. Environ. Res. Public Health 2020, 17, 4825. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int. J. Environ. Res. Public Health 2019, 16, 2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, L.; Taube, W.; Brandt, M.; Heyer, L.; Wyss, T. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweiz. Z. Sportmed. Sporttraumatol. 2013, 61, 30–36. [Google Scholar]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sport. Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sport. Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sport. Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [Google Scholar] [CrossRef]
- Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training prescription guided by heart rate variability vs. block periodization in welltrained cyclists. J. Strength Cond. Res. 2019, 34, 1511–1518. [Google Scholar] [CrossRef]
- Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training prescription guided by heart-rate variability in cycling. Int. J. Sport. Physiol. Perform. 2019, 14, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int. J. Sport. Med. 2017, 38, 909–920. [Google Scholar] [CrossRef]
- Botek, M.; McKune, A.J.; Krejci, J.; Stejskal, P.; Gaba, A. Change in performance in response to training load adjustment based on autonomic activity. Int. J. Sport. Med. 2014, 35, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-moro, I.; Granero-Gallegos, A. HRV-guided training for professional endurance athletes: A protocol for a cluster-randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J. Periodized training achieves better autonomic modulation and aerobic performance than non-periodized training. J. Sport. Med. Phys. Fitness 2018, 58, 1559–1564. [Google Scholar] [CrossRef]
- Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sport. Med. 2003, 33, 889–919. [Google Scholar] [CrossRef]
- Yanlin, C.; Fei, H.; Shengjia, X. Training variables and autonomic nervous system adaption. Chin. J. Tissue Eng. Res. Zhongguo Zu Zhi Gong Cheng Yan Jiu 2020, 24, 312–319. [Google Scholar] [CrossRef]
- Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [Google Scholar] [CrossRef]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur. Heart J. 1996, 17, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Palak, K.; Furgała, A.; Biel, P.; Szyguła, Z.; Thor, P.J. Influence of physical training on the function of Autonomic nervous system in professional swimmers. Med. Sport. 2013, 17, 119–124. [Google Scholar] [CrossRef]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, L.; Willis, S.J.; Fardel, A.; Coulmy, N.; Millet, G.P. Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur. J. Appl. Physiol. 2018, 118, 419–428. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 5928. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557. [Google Scholar] [CrossRef] [Green Version]
- Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual endurance training prescription with heart rate variability. Med. Sci. Sport. Exerc. 2016, 48, 1347–1354. [Google Scholar] [CrossRef] [Green Version]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of hr variability among men and women. Med. Sci. Sport. Exerc. 2010, 42, 1355–1363. [Google Scholar] [CrossRef]
- Da Silva, D.F.; Ferraro, Z.M.; Adamo, K.B.; Machado, F.A. Endurance running training individually guided by HRV in ultrained women. J. Strength Cond. Res. 2019, 33, 736–746. [Google Scholar] [CrossRef]
- Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sport. Med. 2017, 38, 975–982. [Google Scholar] [CrossRef] [Green Version]
- Tamburs, N.Y.; Rebelo, A.C.S.; Cesar, M.D.C.; Catai, A.M.; Takahashi, A.C.D.M.; Andrade, C.P.; Porta, A.; Silva, E.D. Relationship between heart rate variability and VO2 peak in active women. Rev. Bras. Med. Esporte 2014, 20, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Vesterinen, V.; Hakkinen, K.; Hynynen, E.; Mikkola, J.; Hokka, L.; Nummela, A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand. J. Med. Sci. Sport. 2013, 23, 171–180. [Google Scholar] [CrossRef]
- Kiviniemi, A.M.; Tulppo, M.P.; Eskelinen, J.J.; Savolainen, A.M.; Kapanen, J.; Heinonen, I.H.A.; Hautala, A.J.; Hannukainen, J.C.; Kalliokoski, K.K. Autonomic function predicts fitness response to short-term high-intensity interval training. Int. J. Sport. Med. 2015, 36, 915–921. [Google Scholar] [CrossRef]
- Schmitt, L.; Regnard, J.; Parmentier, A.L.; Mauny, F.; Mourot, L.; Coulmy, N.; Millet, G.P. Typology of fatigue by heart rate variability analysis in elite Nordic-skiers. Int. J. Sport. Med. 2015, 36, 999–1007. [Google Scholar] [CrossRef]
- Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring fatigue status with HRV measures in elite athletes: An avenue beyond RMSSD? Front. Physiol. 2015, 6, 343. [Google Scholar] [CrossRef] [Green Version]
- Bourdillon, N.; Schmitt, L.; Yazdani, S.; Vesin, J.M.; Millet, G.P. Minimal window duration for accurate HRV recording in athletes. Front. Neurosci. 2017, 11. [Google Scholar] [CrossRef]
- Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. 2018, 23, e12565. [Google Scholar] [CrossRef] [Green Version]
- Saboul, D.; Pialoux, V.; Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 2013, 13, 534–542. [Google Scholar] [CrossRef]
- Sandercock, G.R.H.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [Google Scholar] [CrossRef]
Study, Year of Publication | Country of the Study | Groups | n | Type of Athletes | Sex | Age (Years) |
---|---|---|---|---|---|---|
Da Silva et al. [28] | Canada | HRV-g | 15 | Untrained | Females | 25.8 ± 3.1 |
PT | 15 | 27.7 ± 3.6 | ||||
Javaloyes et al. [11] | Spain | HRV-g | 9 | Trained cyclist | Males | 39.2 ± 5.3 |
PT (TP) | 8 | 37.6 ± 7.1 | ||||
Javaloyes et al. [10] | Spain | HRV-g | 8 | Trained cyclist | Not specified | 28.1 ± 13.2 |
PT (BP) | 7 | 30.8 ± 10.5 | ||||
Kiviniemi et al. [27] | Finland | HRV-g-I | 14 | Actives | 50% Males | ♂ 35 ± 4 ♀ 33 ± 4 |
HRV-g-II | 10 | Females | 35 ± 4.0 | |||
PT | 14 | 50% Males | ♂ 37 ± 3 ♀ 34 ± 4 | |||
Kiviniemi et al. [9] | Finland | HRV-g | 8 | Recreational endurance runners | Males | 31 ± 6.0 |
PT (TP) | 9 | 32 ± 5.0 | ||||
Nuuttila et al. [12] | Finland | HRV-g | 13 | Endurance trained | Males | 29.0 ± 4.0 |
PT (BP) | 11 | 31.0 ± 5.0 | ||||
Schmitt et al. [22] | France | HRV-g +SH | 9 | Elite Nordic skiers | M = 7; W = 2 | M = 22.9 ± 4.3; W = 20.5 ± 0.7 |
PT+SH | 9 | M = 6; W = 3 | M = 21.8 ± 1.3; W = 24.3 ± 4.9 | |||
Vesterinen et al. [26] | Finland | HRV-g | 13 | Recreational endurance runners * | M = 10; W = 10 | M = 34 ± 8.0 |
PT (TP) | 18 | M = 10; W = 10 | W = 35 ± 7.0 |
Group | Type of HRV-g | Duration | Training Distribution (% Time) | Training Volume (Hours) | Training Volume (km) | Training Frequency | Training Load | |||
---|---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | Z3 | ||||||||
Da Silva et al. [28] | HRV-g | Ref: 10-day average rMSSD. If rMSSD < mean rMSSD-1SD: MT; If not: HIT | 8 weeks | - | - | - | - | - | 3 | - |
PT | 3 | |||||||||
Javaloyes et al. [11] | HRV-g | SWC of rMSSD7D: If rMSSD7D outside the SWC: low intensity or rest | 8 weeks | 66 | 24 | 10 | 9.3 ± 2.8 | - | - | - |
PT (TP) | 64 | 27 | 9 | 8.8 ± 2.8 | ||||||
Javaloyes et al. [10] | HRV-g | SWC of rMSSD7D: If rMSSD7D outside the SWC: low intensity or rest | 8 weeks | 49 | 39 | 12 | 11.1 ± 3.1 | - | - | 1033.3 ± 312.5 a.u. |
PT (BP) | 54 | 33 | 13 | 11.4 ± 3.1 | 1028.8 ± 214.5 a.u. | |||||
Kiviniemi et al. [27] | HRV-g-I | Ref: 10-day average SD1. HRV-I: If SD1 ≥ SD1 ref:VG; SD1 ↓ SD SD1 ref:MD; If SD1 ↓ 2 consecutive days: rest; HRV-II = HRV-I but only VT if SD1 > SD1 ref. | 8 weeks | ♂ 5.8 ± 0.2 ♀ 5.8 ± 0.3 | ♂ 515 ± 49 ♀ 390 ± 42 TRIMPS × week | |||||
HRV-g-II | 5.0 ± 0.3 | 314 ± 46 TRIMPS × week | ||||||||
PT | ♂ 5.3 ± 0.6 ♀ 5.0 ± 0.8 | ♂ 492 ± 91 ♀ 343 ± 107 TRIMPS × week | ||||||||
Kiviniemi et al. [9] | HRV-g | Ref: 10-day average HF power. If HF > HF ref ↓ load; If HF ↓ 2 consecutive days: rest | 4 weeks | - | - | - | - | 36 ± 4 | - | 463 ± 74 TRIMPS × week |
PT (TP) | 38 ± 6 | 529 ± 49 TRIMPS × week | ||||||||
Nuuttila et al. [12] | HRV-g | LIT if QRT was higher than ref | 8 weeks | 82 ± 8 | 15 ± 6 | 3 ± 3 | 5.7 ± 2.1 | - | 6.3 ± 1.4 | - |
PT (BP) | 84 ± 7 | 12 ± 5 | 4 ± 3 | 6.0 ± 1.9 | 6.1 ± 0.4 | |||||
Schmitt et al. [22] | HRV-g+SH | If HF ↑ or →: ↑ load; If HF ↓ ≥30%: ↓ load; If HF ↓ 2 consecutive days: rest | 15 days | - | - | - | - | - | - | 3365 ± 425 a.u. |
PT+SH | 3481 ± 179 a.u. | |||||||||
Vesterinen et al. [26] | HRV-g | SWC of rMSSD7D: If rMSSD7D outside the SWC: low intensity or rest | 8 weeks | 83 ± 27 | 14 ± 25 | 3 ± 5 | 6.5 ± 2.8 | 42 ± 22 | 6.1 ± 1.8 | |
PT (TP) | 84 ± 12 | 13 ± 10 | 3 ± 4 | 6.3 ± 2.5 | 41 ± 20 | 5.6 ± 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medellín Ruiz, J.P.; Rubio-Arias, J.Á.; Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements: A Systematic Review and Meta-Analysis. Appl. Sci. 2020, 10, 8532. https://doi.org/10.3390/app10238532
Medellín Ruiz JP, Rubio-Arias JÁ, Clemente-Suarez VJ, Ramos-Campo DJ. Effectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements: A Systematic Review and Meta-Analysis. Applied Sciences. 2020; 10(23):8532. https://doi.org/10.3390/app10238532
Chicago/Turabian StyleMedellín Ruiz, Juan Pablo, Jacobo Ángel Rubio-Arias, Vicente Javier Clemente-Suarez, and Domingo Jesús Ramos-Campo. 2020. "Effectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements: A Systematic Review and Meta-Analysis" Applied Sciences 10, no. 23: 8532. https://doi.org/10.3390/app10238532
APA StyleMedellín Ruiz, J. P., Rubio-Arias, J. Á., Clemente-Suarez, V. J., & Ramos-Campo, D. J. (2020). Effectiveness of Training Prescription Guided by Heart Rate Variability Versus Predefined Training for Physiological and Aerobic Performance Improvements: A Systematic Review and Meta-Analysis. Applied Sciences, 10(23), 8532. https://doi.org/10.3390/app10238532