Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control the Botanical Authenticity and Quality of Cold-Pressed Functional Oils Commercialized in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Samples
2.2. UV–Vis Spectrometry
2.3. ATR-FTIR Analysis
2.4. Chemometrics
3. Results
3.1. UV–VIS Spectra Fingerprints Related to Botanical Origin
3.2. ATR-FTIR-MIR Spectra Fingerprints
3.3. Classification of Oils by Unsupervised PCA
3.4. Peak-Intensity Matrices and Calculation of the Unsaturation Index
3.5. Multivariate Analysis Based on Metaboanalyst 4.0
3.6. ANOVA Univariate Analysis and Post-Hoc Analysis by Fischer’s Least Significant Difference (LSD)
3.7. Correlation Matrices and Heatmaps
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Van de Voort, F.R.; Sedman, J.; Russin, T. Lipid analysis by vibrational spectroscopy. Eur. J. Lipid Sci. Technol. 2001, 103, 815–826. [Google Scholar] [CrossRef]
- Socaciu, C.; Ranga, F.; Fetea, F.; Leopold, D.; Dulf, F.; Parlog, R. Complementary advanced techniques applied for plant and food Authentication. Czech J. Food Sci. 2009, 27, S70–S75. [Google Scholar] [CrossRef] [Green Version]
- Su, W.-H.; Sun, D.-W. Mid-infrared (MIR) Spectroscopy for Quality Analysis of Liquid Foods. Food Eng. Rev. 2019, 11, 142–158. [Google Scholar] [CrossRef]
- Maggio, R.M.; Cerretani, L.; Chiavaro, E.; Kaufman, T.S.; Bendini, A. A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Control 2010, 21, 890–895. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Huyan, Z.; Kou, Y.; Xu, L.; Yu, X.; Gao, J.-M. Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3597–3611. [Google Scholar] [CrossRef]
- Guillén, M.D.; Cobo, N. Infrared Spectroscopy in the study of Edible Oils and fats. J. Sci. Food Agric. 1997, 75, 1–11. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, X.; Yu, X.; Huyan, Z.; Wang, X. Rapid and Simultaneous Determination of the Iodine Value and Saponification Number of Edible Oils by FTIR Spectroscopy. Eur. J. Lipid Sci. Technol. 2018, 120, 1700396. [Google Scholar] [CrossRef]
- Yang, H.; Irudayaraj, J.; Paradkar, M.M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 2005, 93, 25–32. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Allen Dorf, M.E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Ann. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef]
- Safar, M.; Bertrand, D.; Robert, P.; Devaux, M.F.; Genot, C. Characterization of edible oils, butters and margarines by Fourier transform infrared spectroscopy with attenuated total reflectance. J. Oil Fat Ind. 1994, 71, 371–377. [Google Scholar] [CrossRef]
- Lai, Y.W.; Kemsley, E.K.; Wilson, R.H. Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. J. Agric. Food Chem. 1994, 42, 1154–1159. [Google Scholar] [CrossRef]
- Ozen, B.F.; Weiss, I.; Mauer, L.J. Dietary supplement oil classification and detection of adulteration using Fourier transform infrared spectroscopy. J. Agric. Food Chem. 2003, 57, 5871–5876. [Google Scholar] [CrossRef] [PubMed]
- Gurdeniz, G.; Tokatli, F.; Ozen, B. Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics. Eur. J. Lipid Sci. Technol. 2007, 109, 1194–1202. [Google Scholar] [CrossRef] [Green Version]
- Rusak, D.A.; Brown, L.M.; Martin, S.D. Classification of vegetable oils by principal component analysis of FTIR spectra. J. Chem. Educ. 2003, 80, 541–543. [Google Scholar] [CrossRef]
- Tapp, H.S.; Defernez, M.; Kemsley, E.K. FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. J. Agric. Food Chem. 2003, 51, 6110–6115. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Di Virgilio, F.; Belloni, P.; Bonoli-Carbognin, M.; Lercker, G. Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 2007, 30, 424–437. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F.; Ruckebusch, C.; Vitale, R. Chemometric Strategies for Spectroscopy-Based Food Authentication. Appl. Sci. 2020, 10, 6544. [Google Scholar] [CrossRef]
- Messai, H.; Farman, M.; Sarraj-Laabidi, A.; Hammami-Semmar, A.; Semmar, N. Chemometrics Methods for Specificity, Authenticity and Traceability Analysis of Olive Oils: Principles, Classifications and Applications. Foods 2016, 5, 77. [Google Scholar] [CrossRef]
- Dupuy, N.; Duponchel, L.; Huvenne, J.P.; Sombret, B.; Legrand, P. Classification of edible fats and oils by principal component analysis of Fourier transform infrared spectra. Food Chem. 1996, 57, 245–251. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Maggio, R.M.; Cerretani, L. Chemometric Applications to Assess Quality and Critical Parameters of Virgin and Extra-Virgin Olive Oil. A Review. Anal. Chim. Acta 2016, 913, 1–91. [Google Scholar] [CrossRef]
- Godoy, A.C.; dos Santos, P.D.S.; Nakano, A.Y.; Bini, R.A.; Siepmann, D.A.B.; Schneider, R.; Gaspar, P.A.; Pfrimer, P.W.D.; da Paz, R.F.; Santos, O.O. Analysis of Vegetable Oil from Different Suppliers by Chemometric Techniques to Ensure Correct Classification of Oil Sources to Deal with Counterfeiting. Food Anal. Methods 2020, 13, 1138–1147. [Google Scholar] [CrossRef]
- Bertran, E.; Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Montoliu, I. Determination of olive oil free fatty acid by Fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 1999, 76, 611–616. [Google Scholar] [CrossRef]
- Al-Alawi, A.; van de Voort, F.R.; Sedman, J. New FTIR method for the determination of FFA in oils. J. Am. Oil Chem. Soc. 2004, 81, 441–446. [Google Scholar] [CrossRef]
- Maggio, R.M.; Kaufman, T.S.; Del Carlo, M.; Cerretani, L.; Bendini, A.; Cichelli, A.; Compagnone, D. Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chem. 2009, 114, 1549–1554. [Google Scholar] [CrossRef]
- Bachion de Santana, F.; Borges Neto, W.; Poppi, R.J. Random forest as one-class classifier and infrared spectroscopy for food adulteration detection. Food Chem. 2919, 293, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Bajoub, A.; Bendini, A.; Fernández-Gutiérrez, F.; Carrasco-Pancorbo, A. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 832–857. [Google Scholar] [CrossRef]
- Le Dreau, Y.; Dupuy, N.; Artaud, J.; Ollivier, D.; Kister, J. Infrared study of aging of edible oils by oxidative spectroscopic index and MCRALS chemometric method. Talanta 2009, 77, 1748–1756. [Google Scholar] [CrossRef]
- Climaco Pinto, R.; Locquet, N.; Eveleigh, L.; Rutledge, D.N. Preliminary studies on the midinfrared analysis of edible oils by direct heating on an ATR diamond crystal. Food Chem. 2010, 120, 1170–1177. [Google Scholar] [CrossRef]
- Cerretani, L.; Giuliani, A.; Maggio, R.M.; Bendini, A.; Toschi, T.G.; Cichell, A. Rapid FTIR determination of water, phenolics and antioxidant activity of olive oil. Eur. J. Lipid Sci. Technol. 2010, 112, 1150–1157. [Google Scholar] [CrossRef]
- Lerma-Garcia, M.J.; Ramis-Ramos, G.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 2009, 118, 78–83. [Google Scholar] [CrossRef]
- Sinelli, N.; Cosio, M.S.; Gigliotti, C.; Casiraghi, E. Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil “freshness”. Anal. Chim. Acta 2007, 598, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Baeten, V.; Fernández Pierna, J.A.; Dardenne, P.; Meurens, M.; García-González, D.L.; Aparicio-Ruiz, R. Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem. 2005, 53, 6201–6206. [Google Scholar] [CrossRef]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 2006, 573–574, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Muik, B.; Lendl, B.; Molina-Diaz, A.; Valcarcel, M.; Ayora-Canada, M.J. Two dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman. Anal. Chim. Acta 2007, 593, 54–67. [Google Scholar] [CrossRef]
- De Souza, L.M.; de Santana, F.B.; Gontijo, L.C.; Mazivila, S.J.; Neto, W.B. Quantification of Adulterations in Extra Virgin Flaxseed Oil Using MIR and PLS. Food Chem. 2015, 182, 35–40. [Google Scholar] [CrossRef]
- Dulf, F.; Bele, C.; Ungureşan, M.; Parlog, R.; Socaciu, C. Phytosterols as markers in identification of the adulerated pumpkin seed oil with sunflower oil. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Agric. 2009, 66, 301–307. [Google Scholar] [CrossRef]
- Rohman, A.; Ariani, R. Authentication of Nigella Sativa Seed Oil in Binary and Ternary Mixtures with Corn Oil and Soybean Oil Using FTIR Spectroscopy Coupled with Partial Least Square. Sci. World J. 2013, 2013, 740142. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A.; Man, Y.B.; Nurrulhidayah, A.F. Fourier-Transform Infrared Spectra Combined with Chemometrics and Fatty Acid Composition for Analysis of Pumpkin Seed Oil Blended into Olive Oil. Int. J. Food Prop. 2015, 18, 1086–1096. [Google Scholar] [CrossRef]
- Jović, O.; Jović, A. FTIR-ATR adulteration study of hempseed oil of different geographic origins. J. Chemom. 2017, 31, e2938. [Google Scholar] [CrossRef]
- Pop, R.; Buzoianu, A.; Rati, I.; Socaciu, C. Untargeted Metabolomics for Sea Buckthorn (Hippophae rhamnoides ssp. carpatica) Berries and Leaves: Fourier Transform Infrared Spectroscopy as a Rapid Approach for Evaluation and Discrimination. Not. Bot. Horti Agrobot. Cluj Napoca 2014, 42, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Elzey, B.; Pollard, D.; Fakayode, S.O. Determination of Adulterated Neem and Flaxseed Oil Compositions by FTIR Spectroscopy and Multivariate Regression Analysis. Food Control 2016, 68, 303–309. [Google Scholar] [CrossRef]
- Liang, P.J.; Wang, H.; Chen, C.Y.; Ge, F.; Liu, D.Q.; Li, S.Q.; Han, B.Y.; Xiong, X.F.; Zhao, S.L. The Use of Fourier Transform Infrared Spectroscopy for Quantification of Adulteration in Virgin Walnut Oil. J. Spectrosc. 2013, 1, 101–109. [Google Scholar] [CrossRef]
- Akin, G.; Karuk Elmas, Ş.N.; Arslan, F.N.; Yilmaz, İ.; Kenar, A. Chemometric classification and quantification of cold pressed grape seed oil in blends with refined soybean oils using attenuated total reflectance–mid infrared (ATR–MIR) spectroscopy. LWT Food Sci. Technol. 2018, 100, 126–137. [Google Scholar] [CrossRef]
- Amit; Jamwal, R.; Kumari, S.; Dhaulaniya, A.S.; Balan, B.; Kelly, S.; Cannavan, A.; Singh, D.K. Utilizing ATR-FTIR spectroscopy combined with multivariate chemometric modelling for the swift detection of mustard oil adulteration in virgin coconut oil. Vib. Spectrosc. 2020, 103066. [Google Scholar] [CrossRef]
- Arslan, F.N.; Çağlar, F. Attenuated Total Reflectance–Fourier Transform Infrared (ATR–FTIR) Spectroscopy Combined with Chemometrics for Rapid Determination of Cold-Pressed Wheat Germ Oil Adulteration. Food Anal. Methods 2019, 12, 355–370. [Google Scholar] [CrossRef]
- Leopold, L.F.; Leopold, N.; Diehl, H.A.; Socaciu, C. Quantification of carbohydrates in fruit juices using FTIR spectroscopy and multivariate analysis. Spectroscopy 2011, 1–12. [Google Scholar] [CrossRef]
- Banc, R.; Loghin, F.; Miere, D.; Fetea, F.; Socaciu, C. Romanian wines quality and authenticity using FT-MIR spectroscopy coupled with multivariate data analysis. Not. Bot. Horti Agrobot. Cluj Napoca 2014, 42, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Coldea, T.E.; Socaciu, C.; Fetea, F.; Ranga, F.; Pop, R.M.; Florea, M. Rapid Quantitative Analysis of Ethanol and Prediction of Methanol Content in Traditional Fruit Brandies from Romania, using FTIR Spectroscopy and Chemometrics. Not. Bot. Horti Agrobot. Cluj Napoca 2013, 41, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Coldea, T.E.; Mudura, E.; Socaciu, C. Advances in distilled beverages authenticity and quality testing. In Ideas and Applications toward Sample Preparation for Food and Beverage Analysis; Stauffer, M., Ed.; InTech: Rijeka, Croatia; London, UK, 2017; ISBN 978-953-51-3686-6. [Google Scholar] [CrossRef] [Green Version]
- Poiana, M.A.; Alexa, E.; Munteanu, M.F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR Spectroscopy to Detect the Changes in Extra Virgin Olive Oil by Adulteration with Soybean Oil and High Temperature Heat Treatment. Open Chem. 2015, 13, 689–698. [Google Scholar] [CrossRef]
- Tay, A.; Singh, R.K.; Krishnan, S.S.; Gore, J.P. Authentication of Olive Oil Adulterated with Vegetable Oils Using Fourier Transform Infrared Spectroscopy. LWT Food Sci. Technol. 2002, 35, 99–103. [Google Scholar] [CrossRef]
- Irnawati, I.; Riyanto, S.; Martono, S.; Rohman, A. The employment of FTIR spectroscopy and chemometrics for authentication of pumpkin seed oil from sesame oil. Food Res. 2019, 4, 42–48. [Google Scholar] [CrossRef]
Botanical Origin/Group no. | Commercial Samples Declared/Labeled Quality/Brand 1 (Sample Code) | Authentic Samples Brand (Sample Code) |
---|---|---|
Sunflower (I) | Cold-pressed/V (SFO1), S (SFO2), C(SFO3) | LS (SFO4) |
Pumpkin (II) | Cold-pressed/S (PO1), V (PO2), C (PO3) | LS (PO4) |
Linseed (III) | Cold-pressed/V (LSO1), C (LSO2), | LS (LSO3) |
Hempseed (IV) | Cold-pressed/V (HO1), C (HO2), GreeN (HO3) | LS (HO4) |
Soybean (V) | Cold-pressed/C (SO2), E (SO3) | V (SO1) |
Walnut (VI) | Cold-pressed/S (WO1) V (WO2), C (WO3), | LS (WO4) |
Sea buckthorn (VII) | Cold-pressed/V (SBO2), Lm (SBO3 and SBO4) | C (SBO1) |
Olive (VIII) | Extra virgin Italy (EVOO1), virgin Spain (EVOO2), Extra virgin oil Greece (EVOO3), virgin Greece (EVOO4) | - |
Range (cm−1) | Functional Group | Mode of Vibration |
---|---|---|
3029–2989 | =C–H (trans and cis) | Stretching |
2946–2782 | -C–H (CH3, CH2) | Stretching (asym/sym) |
1795–1677 | -C=O (ester, acid) | Stretching |
1486–1425 | -C–H (CH3, CH2) | Bending |
1425–1409 | =C–H (cis) | Bending (rocking) |
1396–1371 | -C–H (CH3) | Bending |
1290–1211 | -C–O; -CH2- | Stretching; Bending |
1211–1147 | -C–O; -CH2- | Stretching; Bending |
1147–1006 | -C–O | Stretching |
1006–885 | -HC=CH- (trans/cis) | Bending (out of plane) |
885–802 | =CH2 | Wagging |
802–701 | -C–H; -HC=CH- (cis) | Bending (out of plane) |
Wavenumber | Region no. | Mean Peak Intensity | RMS | ANOVA p-Value | Log 10(p) | FDR | Random Forest MDA |
---|---|---|---|---|---|---|---|
719–721 | 1 | 0.461 | 0.463 | 4.01 × 10−8 | 7.396 | 6.93 × 10−8 | 0.0439 |
790 | 2 | 0.010 | 0.03 | 3.61 × 10−29 | 28.443 | 2.2910−28 | 0.0103 |
846 | 3 | 0.067 | 0.086 | 2.14 × 10−10 | 9.669 | 4.07 × 10−10 | 0.0253 |
866–871 | 4 | 0.024 | 0.052 | 1.01 × 10−36 | 35.997 | 1.91 × 10−35 | 0.0289 |
912–914 | 5 | 0.143 | 0.144 | 6.74 × 10−4 | 3.171 | 8 × 10−4 | 0.0173 |
964–968 | 6 | 0.163 | 0.163 | 2.21 × 10−6 | 5.655 | 3.50 × 10−6 | 0.0177 |
1026–1031 | 7 | 0.247 | 0.267 | 5.31 × 10−26 | 25.275 | 2.52 × 10−25 | 0.0292 |
1097 | 8 | 0.428 | 0.428 | 13.91 × 10−4 | 2.857 | 16 × 10−4 | 0.006 |
1118–1120 | 9 | 0.142 | 0.233 | 5.16 × 10−36 | 35.288 | 4.90 × 10−35 | 0.0439 |
1159–1161 | 10 | 0.729 | 0.729 | 3.34 × 10−5 | 4.476 | 4.54 × 10−5 | 0.027 |
1234–1236 | 11 | 0.337 | 0.337 | >0.005 | <2 | >0.005 | <0.001 |
1375 | 12 | 0.197 | 0.197 | 18.25 × 10−4 | 2.739 | 23 × 10−4 | 0.0013 |
1396 | 13 | 0.070 | 0.096 | 2.84 × 10−22 | 21.547 | 1.08 × 10−21 | 0.047 |
1417–1419 | 14 | 0.144 | 0.144 | >0.005 | <2 | >0.005 | <0.001 |
1460–1462 | 15 | 0.336 | 0.336 | 3.72 × 10−6 | 5.429 | 5.44 × 10−6 | 0.0096 |
1651–1653 | 16 | 0.045 | 0.049 | 3.71 × 10−12 | 11.431 | 1.18 × 10−11 | 0.0292 |
2852 | 17 | 0.543 | 0.546 | 1.62 × 10−11 | 10.791 | 4.40 × 10−11 | 0.0692 |
2922–2924 | 18 | 0.782 | 0.786 | 2.36 × 10−11 | 10.628 | 5.59 × 10−11 | 0.0554 |
3007–3008 | 19 | 0.130 | 0.133 | 4.82 × 10−11 | 10.317 | 1.02 × 10−10 | 0.0759 |
Oil Type | WO | SFO | SO | LSO | SBO | PO | EVOO | HO |
---|---|---|---|---|---|---|---|---|
Maximal UV–Vis (nm) Absorption peaks | 220–280 | 220–280 325 | 443 | 448 | 447–470 668 | 526–590 620 | 668 | 668 |
Maximal peak ATR-FTIR-MIR Wavenumbers (cm−1) | 3007 | 3007 | 3007 | |||||
2852, 2922 | 2852, 2922 | |||||||
1651 | ||||||||
1396 | 1375 and 1460 | |||||||
1159 | ||||||||
1118 | 1118 | |||||||
1026 | 1026 | |||||||
1097 | ||||||||
846 | 846 and 866 | 964 | 912 | 964 | 846 | |||
790 | 719 | 719 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socaciu, C.; Fetea, F.; Ranga, F.; Bunea, A.; Dulf, F.; Socaci, S.; Pintea, A. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control the Botanical Authenticity and Quality of Cold-Pressed Functional Oils Commercialized in Romania. Appl. Sci. 2020, 10, 8695. https://doi.org/10.3390/app10238695
Socaciu C, Fetea F, Ranga F, Bunea A, Dulf F, Socaci S, Pintea A. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control the Botanical Authenticity and Quality of Cold-Pressed Functional Oils Commercialized in Romania. Applied Sciences. 2020; 10(23):8695. https://doi.org/10.3390/app10238695
Chicago/Turabian StyleSocaciu, Carmen, Florinela Fetea, Floricuta Ranga, Andrea Bunea, Francisc Dulf, Sonia Socaci, and Adela Pintea. 2020. "Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control the Botanical Authenticity and Quality of Cold-Pressed Functional Oils Commercialized in Romania" Applied Sciences 10, no. 23: 8695. https://doi.org/10.3390/app10238695
APA StyleSocaciu, C., Fetea, F., Ranga, F., Bunea, A., Dulf, F., Socaci, S., & Pintea, A. (2020). Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control the Botanical Authenticity and Quality of Cold-Pressed Functional Oils Commercialized in Romania. Applied Sciences, 10(23), 8695. https://doi.org/10.3390/app10238695