In Situ Monitoring of Sugar Content in Breakfast Cereals Using a Novel FT-NIR Spectrometer
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Reference Analysis
2.3. Novel FT-NIR Spectral Sensor Prototype
2.4. Partial Least Square Regression (PLSR) Analysis
3. Results and Discussion
3.1. Reference Values for Sugar Content in Breakfast Cereal Samples
3.2. Spectral Characterization of the Breakfast Cereal Samples
3.3. Quantification of Individual and Total Sugars by Regression Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Credence Research Breakfast Cereals Market by Product (Hot Cereals, Ready to Eat)—Growth, Future Prospects, Competitive Analysisi and Forecast to 2016–2023. Available online: https://www.credenceresearch.com/report/breakfast-cereals-market (accessed on 9 January 2020).
- Grand View Research Breakfast Cereal Market Size, Share & Trends Analysis Report by Product (RTE, Hot Cereal), by Distribution Channel (Supermarket, E-Commerce, Convenience Store), by Region, Vendor Landscape, and Segment Forecasts, 2018–2025. Available online: https://www.grandviewresearch.com/industry-analysis/breakfast-cereals-market (accessed on 9 January 2020).
- Perdon, A.A.; Poutanen, K.S.; Schonauer, S.L. Breakfast Cereals and How They Are Made—Introduction; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128120439. [Google Scholar]
- Williams, P.G. The Benefits of Breakfast Cereal Consumption: A Systematic Reviewof the Evidence Base. Adv. Nutr. 2014, 5, 636S–673S. [Google Scholar] [CrossRef]
- Williamson, C.S. Breakfast cereals—Why all the bad press? Nutr. Bull. 2010, 35, 30–33. [Google Scholar] [CrossRef]
- Devi, A.; Eyles, H.; Rayner, M.; Mhurchu, C.N.; Swinburn, B.; Lonsdale-Cooper, E.; Vandevijvere, S. Nutritional quality, labelling and promotion of breakfast cereals on the New Zealand market. Appetite 2014, 81, 253–260. [Google Scholar] [CrossRef] [PubMed]
- FDA Guidance for Industry: Guide for Developing and Using Data Bases for Nutrition Labeling. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-developing-and-using-data-bases-nutrition-labeling (accessed on 9 July 2020).
- Walker, R.W.; Goran, M.I. Laboratory determined sugar content and composition of commercial infant formulas, baby foods and common grocery items targeted to children. Nutrients 2015, 7, 5850–5867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerning-Beroard, J. The use of invertase for determination of sucrose. Application to cereals, cereal products, and other plant materials. Cereal Chem. 1975, 52, 431–438. [Google Scholar]
- Fernández-Artigas, P.; Guerra-Hernández, E.; García-Villanova, B. Changes in sugar profile during infant cereal manufacture. Food Chem. 2001, 74, 499–505. [Google Scholar] [CrossRef]
- Li, B.W.; Schuhmann, P.J. Gas-Liquid Chromatographic Analysis of Sugars in Ready-to-Eat Breakfast Cereals. J. Food Sci. 1980, 45, 138–141. [Google Scholar] [CrossRef]
- Jager, A.V.; Tonin, F.G.; Tavares, M.F.M. Comparative evaluation of extraction procedures and method validation for determination of carbohydrates in cereals and dairy products by capillary electrophoresis. J. Sep. Sci. 2007, 30, 586–594. [Google Scholar] [CrossRef]
- Ispiryan, L.; Heitmann, M.; Hoehnel, A.; Zannini, E.; Arendt, E.K. Optimization and Validation of an HPAEC-PAD Method for the Quantification of FODMAPs in Cereals and Cereal-Based Products. J. Agric. Food Chem. 2019, 67, 4384–4392. [Google Scholar] [CrossRef]
- AOAC International AOAC Official Method 982.14. In Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 2007.
- Chávez-Servín, J.L.; Castellote, A.I.; López-Sabater, M.C. Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection. J. Chromatogr. A 2004, 1043, 211–215. [Google Scholar] [CrossRef]
- Baker, D.; Norris, K.H. Near-Infrared Reflectance Measurement of Total Sugar Content of Breakfast Cereals. Appl. Spectrosc. 1985, 39, 618–621. [Google Scholar] [CrossRef]
- Wang, T.; Rodriguez-Saona, L.E. Rapid Determination of Sugar Level in Snack Products Using Infrared Spectroscopy. J. Food Sci. 2012, 77. [Google Scholar] [CrossRef] [PubMed]
- Benes, E.; Gere, A.; Fodor, M. Predicting macronutrients and energy content of snack products using FT-NIR analysis and chemometric techniques. J. Food Eng. 2020, 280, 109954. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Randall, P.G. Measurement of fat and sucrose in dry cake mixes by near infrared reflectance spectroscopy. Int. J. Food Sci. Technol. 1983, 18, 651–656. [Google Scholar] [CrossRef]
- Lin, C.A.; Ayvaz, H.; Rodriguez-Saona, L.E. Application of Portable and Handheld Infrared Spectrometers for Determination of Sucrose Levels in Infant Cereals. Food Anal. Methods 2014, 7, 1407–1414. [Google Scholar] [CrossRef]
- Shotts, M.-L.; Plans, M.; Wong, K.; Milligan, A.M.; Aykas, D.P.; Rodriguez-Saona, R.E. Application of mid-infrared portable spectrometer for the rapid determination of trans-fatty acid content in lipid extracts of snack and bakery products. J. AOAC Int. 2020. [Google Scholar] [CrossRef]
- Priego-Capote, F.; Ruiz-Jiménez, J.; García-Olmo, J.; Luque De Castro, M.D. Fast method for the determination of total fat and trans fatty-acids content in bakery products based on microwave-assisted Soxhlet extraction and medium infrared spectroscopy detection. Anal. Chim. Acta 2004, 517, 13–20. [Google Scholar] [CrossRef]
- Shiroma, C.; Rodriguez-Saona, L. Application of NIR and MIR spectroscopy in quality control of potato chips. J. Food Compos. Anal. 2009, 22, 596–605. [Google Scholar] [CrossRef]
- Aykas, D.P.; Rodriguez-Saona, L.E. Analytical Methods Assessing potato chip oil quality using a portable infrared spectrometer combined with pattern recognition analysis. Anal. Methods 2016, 8, 731–741. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urbina, A.U. Miniaturization of Optical Sensors and their Potential for High-Throughput Screening of Foods. Curr. Opin. Food Sci. 2020. [Google Scholar] [CrossRef]
- de la Roza-Delgado, B.; Garrido-Varo, A.; Soldado, A.; González Arrojo, A.; Cuevas Valdés, M.; Maroto, F.; Pérez-Marín, D. Matching portable NIRS instruments for in situ monitoring indicators of milk composition. Food Control 2017, 76, 74–81. [Google Scholar] [CrossRef]
- Birkel, E.; Rodriguez-Saona, L. Application of a portable handheld infrared spectrometer for quantitation of trans fat in edible oils. JAOCS J. Am. Oil Chem. Soc. 2011, 88, 1477–1483. [Google Scholar] [CrossRef]
- Aykas, D.P.; Shotts, M.-L.; Rodriguez-Saona, L.E. Authentication of commercial honeys based on Raman fingerprinting and pattern recognition analysis. Food Control 2020, 117, 107346. [Google Scholar] [CrossRef]
- Pan, L.; Zhu, Q.; Lu, R.; McGrath, J.M. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy. Food Chem. 2015, 167, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Tian, C. Determining sugar content and firmness of ‘Fuji’ apples by using portable near-infrared spectrometer and diffuse transmittance spectroscopy. J. Food Process Eng. 2018, 41. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Sun, D.W.; Riccioli, C.; Buccheri, M.; Grassi, M.; Cattaneo, T.M.P.; Gowen, A. Calibration Transfer from Micro NIR Spectrometer to Hyperspectral Imaging: A Case Study on Predicting Soluble Solids Content of Bananito Fruit (Musa acuminata). Food Anal. Methods 2018, 11, 1021–1033. [Google Scholar] [CrossRef]
- Das, A.J.; Wahi, A.; Kothari, I.; Raskar, R. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.S.; Jin, F.; Swaminathan, S.R.; Patel, S.; Ramer, E.D.; Trivedi, S.B.; Brown, E.E.; Hommerich, U.; Samuels, A.C. Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer. Opt. Express 2017, 25, 26885. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, W.; Peng, Y.; Chen, Q.; Ouyang, Q.; Zhao, J. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of “Fuji” apple. Postharvest Biol. Technol. 2016, 115, 81–90. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Pombo-Rodrigues, S.; Hashem, K.M.; He, F.J.; Macgregor, G.A. Salt and sugars content of breakfast cereals in the UK from 1992 to 2015. Public Health Nutr. 2017, 20, 1500–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, C.; Patiño, S.R.G.; Tolentino-Mayo, L.; Carriedo, A.; Barquera, S. Characterization of breakfast cereals available in the Mexican market: Sodium and sugar content. Nutrients 2017, 9, 884. [Google Scholar] [CrossRef]
- Schwartz, M.B.; Vartanian, L.R.; Wharton, C.M.; Brownell, K.D. Examining the Nutritional Quality of Breakfast Cereals Marketed to Children. J. Am. Diet. Assoc. 2008, 108, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Kays, S.E.; Barton, F.E.; Windham, W.R.; Himmelsbach, D.S. Prediction of Total Dietary Fiber by Near-Infrared Reflectance Spectroscopy in Cereal Products Containing High Sugar and Crystalline Sugar. J. Agric. Food Chem. 1997, 45, 3944–3951. [Google Scholar] [CrossRef]
- Kays, S.E.; Barton, F.E. Near-infrared analysis of soluble and insoluble dietary fiber fractions of cereal food products. J. Agric. Food Chem. 2002, 50, 3024–3029. [Google Scholar] [CrossRef] [PubMed]
- Fodor, M.; Woller, A.; Turza, S.; Szigedi, T. Development of a rapid, non-destructive method for egg content determination in dry pasta using FT-NIR technique. J. Food Eng. 2011, 107, 195–199. [Google Scholar] [CrossRef]
- de Oliveira, G.A.; de Castilhos, F.; Renard, C.M.G.C.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Ścibisz, I.; Reich, M.; Bureau, S.; Gouble, B.; Causse, M.; Bertrand, D.; Renard, C.M.G.C. Mid-infrared spectroscopy as a tool for rapid determination of internal quality parameters in tomato. Food Chem. 2011, 125, 1390–1397. [Google Scholar] [CrossRef]
- Xie, L.; Ye, X.; Liu, D.; Ying, Y. Quantification of glucose, fructose and sucrose in bayberry juice by NIR and PLS. Food Chem. 2009, 114, 1135–1140. [Google Scholar] [CrossRef]
- Chen, S.F.; Danao, M.G.; Singh, V.; Brown, P.J. Determining sucrose and glucose levels in dual-purpose sorghum stalks by Fourier transform near infrared (FT-NIR) spectroscopy. J. Sci. Food Agric. 2014, 94, 2569–2576. [Google Scholar] [CrossRef]
- da Costa Filho, P.A. Rapid determination of sucrose in chocolate mass using near infrared spectroscopy. Anal. Chim. Acta 2009, 631, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR Spectroscopy to Agricultural Products. In Handbook of Near-Infrared Analysis; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 347–386. ISBN 978-0-8493-7393-0. [Google Scholar]
- Burns, R.E.; Caldwell, E.F.; Fast, R.B.; Jones, W.H. Application of Nutritional and Flavoring/Sweetening Coatings. In Breakfast Cereals and How They Are Made; Fast, R.B., Caldwell, E.F., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; ISBN 1-891127-15-2. [Google Scholar]
g/100 g Cereal | Minimum | Maximum | Average | STDEV * | |
---|---|---|---|---|---|
Snack food company | Sucrose | 0.5 | 25.9 | 12.2 | 7.8 |
Glucose | 1.1 | 3.9 | 2.3 | 0.6 | |
Fructose | 1.5 | 4.2 | 2.8 | 0.7 | |
Total | 3.7 | 32.0 | 17.0 | 8.9 | |
Grocery stores | Sucrose | 0.9 | 61.0 | 21.5 | 15.3 |
Glucose | 0.9 | 3.4 | 2.1 | 0.7 | |
Fructose | 1.3 | 6.7 | 3.6 | 1.3 | |
Total | 3.7 | 67.2 | 27.6 | 16.1 |
Sample | Parameter | Calibration Model | External Validation Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Range a | N b | Factor | SECV c | RCV d | Range | N e | SEP f | RPre g | ||
Ground | Sucrose | 0.5–43.2 | 127 | 5 | 1.93 | 0.98 | 0.5–43.2 | 32 | 2.18 | 0.97 |
Glucose | 1.2–3.9 | 125 | 6 | 0.14 | 0.94 | 1.2–3.8 | 31 | 0.14 | 0.94 | |
Fructose | 1.1–5.1 | 125 | 6 | 0.25 | 0.95 | 1.1–5.1 | 31 | 0.26 | 0.95 | |
Total | 3.7–51.7 | 127 | 6 | 1.99 | 0.98 | 3.7–51.7 | 32 | 1.95 | 0.98 | |
Intact | Sucrose | 0.5–39.2 | 45 | 5 | 2.42 | 0.97 | 0.5–34.9 | 11 | 2.38 | 0.96 |
Glucose | 1.2–3.8 | 46 | 5 | 0.20 | 0.94 | 1.2–3.8 | 11 | 0.20 | 0.96 | |
Fructose | 2.5–4.8 | 42 | 6 | 0.21 | 0.92 | 2.5–4.7 | 11 | 0.20 | 0.93 | |
Total | 5.4–47.1 | 45 | 5 | 2.48 | 0.96 | 5.7–42.8 | 11 | 2.39 | 0.97 |
Product | Analyzed Sugar | Instrument | Range | Results | Reference |
---|---|---|---|---|---|
Ready-to-eat breakfast cereals | Total sugar | Benchtop NIR a | 0.5–52.9% | R b = 0.98, Standard error = 2.7% | [16] |
Cereal-based snack foods | Sucrose, glucose, and fructose | Benchtop FT-NIR c | Sucrose: 0.7–25.7 g/100 g | Seven factors, R = 0.97, SEP d = 1.47 g/100 g | [17] |
Glucose: 1.48–4.66 g/100 g | Six factors, R = 0.95, SEP = 0.36 | ||||
Fructose: 1.78–2.96 g/100 g | Eight factors, R = 0.89, SEP = 0.20 | ||||
Infant cereals | Sucrose and total sugar | Handheld dispersive NIR | Sucrose: 0.6–16.7 g/100 g | Five factors, R = 0.96, SEP = 1.53 g/100 g | [20] |
Total sugar: 1.4–19.9 g/100 g | Four factors, R = 0.96, SECV e = 1.52 g/100 g | ||||
Dry cake mixes | Sucrose | Benchtop dispersive NIR | Sucrose: 10–40% | Prediction accuracy = 5.4% | [19] |
Savory snacks | Total sugar | Benchtop FT-NIR | 1.7–8.6 g/100 g | Ten Factors, R2 f = 0.94, RMSEC g = 0.49 g/100g | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aykas, D.P.; Ball, C.; Menevseoglu, A.; Rodriguez-Saona, L.E. In Situ Monitoring of Sugar Content in Breakfast Cereals Using a Novel FT-NIR Spectrometer. Appl. Sci. 2020, 10, 8774. https://doi.org/10.3390/app10248774
Aykas DP, Ball C, Menevseoglu A, Rodriguez-Saona LE. In Situ Monitoring of Sugar Content in Breakfast Cereals Using a Novel FT-NIR Spectrometer. Applied Sciences. 2020; 10(24):8774. https://doi.org/10.3390/app10248774
Chicago/Turabian StyleAykas, Didem Peren, Christopher Ball, Ahmed Menevseoglu, and Luis E. Rodriguez-Saona. 2020. "In Situ Monitoring of Sugar Content in Breakfast Cereals Using a Novel FT-NIR Spectrometer" Applied Sciences 10, no. 24: 8774. https://doi.org/10.3390/app10248774
APA StyleAykas, D. P., Ball, C., Menevseoglu, A., & Rodriguez-Saona, L. E. (2020). In Situ Monitoring of Sugar Content in Breakfast Cereals Using a Novel FT-NIR Spectrometer. Applied Sciences, 10(24), 8774. https://doi.org/10.3390/app10248774