Method for Systematic Assessment of Requirement Change Risk in Industrial Practice
Abstract
:1. Introduction
- RQ 1: How to assess the risk of requirement changes systematically?
- RQ 2: How to reach an application effort for risk assessment, which is appropriate for industrial application?
2. Materials and Methods
2.1. Requirement Change–Definition and Demarcation
“Engineering changes are changes and/or modification in fits, functions, materials, dimensions, etc. of a product and constituent components after the design is released”([39]; S.481)
“Requirement changes are defined as any change made to formal requirements.”
2.2. Conceptual Model of Requirement Change Risk Factors
- External market (including stakeholders like customers/users, government bodies and competitors).
- Customer organization (changes impact the needs of the customer and as a result, impact the design and requirements).
- Project vision (better understanding of the problem space from a customer point-of-view and the emergence of new opportunities and challenges).
- Requirement specification (developer’s point-of-view and their improved understanding of the problem space and resolution of ambiguities related to requirements).
- Solution (related to the solution of the customer’s requirements and the techniques used to resolve this).
3. Research Approach
4. Results
4.1. Method for Systematic Assessment of Requirement Change Risk
4.1.1. Consideration of Change Impact and Exogenous Change Likelihood
- Efficiency of application.
- User-friendly approach.
- Transparency of results.
- Integration into existing business and requirements engineering processes.
- Formalization of implicit knowledge.
- Increasing learning effect.
4.1.2. Consideration of Change Propagation Impact and Endogenous Change Likelihood
- By the Active Sum (AS), the impact of a single requirements on other requirements is described.
- By the Passive Sum (PS), the potential impact from other requirements on a single requirement is described.
4.1.3. Requirement Change Risk Portfolio
4.2. Implementation of a Software Prototype
- Upload of requirement lists either with or without assigned main features and influence factors (Microsoft Excel data format .xlsx).
- Upload, editing and export of a rule base for requirement interrelations (Microsoft Excel or Mathworks Matlab proprietary format).
- Upload, editing and export of influence factors and their prioritization (Microsoft Excel or Mathworks Matlab proprietary format).
- Assignment of main features and influence factors to requirements.
- Adaptation of classification boundaries for priority score.
- Calculate requirement change risk for the requirement list.
- Illustration using the requirement change risk portfolio.
- Detailed requirement view to identify actively influencing requirements and passively influenced requirements related to a requirement ri.
- Export of requirement lists enriched by change risk (Microsoft Excel data format .xlsx).
- Distinction of users (for traceability of editing).
- Change history with comment section (requirement changes).
- Editing history with comment section (adaptions of the rule base of prioritization).
- Determination and selection of an individual dataset (rule base and influence factors: Type of project, branch and customer).
4.3. Support Evaluation
5. Application and Success Evaluation
- Personal background.
- Requirement changes (general).
- Method for systematic assessment of requirement change risk.
- Software prototype.
- Future research potentials.
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Professional background: All participants come from the field of mechanical engineering or industrial engineering.
- Work experience: Participants have between 3 and 20 years of work experience (exception: one attendee had less than one year work experience).
- Age: All participants are between 20 and 45 years old.
- 2: Agree
- 1: Rather agree
- 0: Partly-partly
- −1: Rather not agree
- −2: Do not agree
References
- Neumann, M. Ein Modellbasierter Ansatz zur Risikoorientierten Entwicklung Innovativer Produkte. Ph.D. Thesis, Ruhr-University, Bochum, Germany, 2016. [Google Scholar]
- Pottebaum, J.; Gräßler, I. Informationsqualität in der Produktentwicklung: Modellbasiertes Systems Engineering mit expliziter Berücksichtigung von Unsicherheit. Konstr. Z. Prod. Ing. Werkst. 2020, 7, 34–42. [Google Scholar]
- Fiorineschi, L.; Becattini, N.; Borgianni, Y.; Rotini, F. Testing a new structured tool for supporting requirements’ formulation and decomposition. Appl. Sci. 2020, 10, 3259. [Google Scholar] [CrossRef]
- Forsberg, K.; Mooz, H.; Cotterman, H. Visualizing Project Management. Models and Frameworks for Mastering Complex Systems, 3rd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 0-471-64848-5. [Google Scholar]
- Walden, D.D.; Roedler, G.J.; Forsberg, K.; Hamelin, R.D.; Shortell, T.M. Systems Engineering Handbook. A Guide for System Life Cycle Processes and Activities, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 9781118999400. [Google Scholar]
- Hein, P.H.; Voris, N.; Morkos, B. Predicting requirement change propagation through investigation of physical and functional domains. Res. Eng. Des. 2018, 29, 309–328. [Google Scholar] [CrossRef]
- Fiorineschi, L.; Rotini, F.; Rissone, P. A new conceptual design approach for overcoming the flaws of functional decomposition and morphology. J. Eng. Des. 2016, 27, 438–468. [Google Scholar] [CrossRef]
- Giffin, M.; de Weck, O.; Bounova, G.; Keller, R.; Eckert, C.; Clarkson, P.J. Change propagation analysis in complex technical systems. J. Mech. Des. 2009, 131, 81001. [Google Scholar] [CrossRef] [Green Version]
- Koh, E.C.Y.; Caldwell, N.H.M.; Clarkson, P.J. A method to assess the effects of engineering change propagation. Res. Eng. Des. 2012, 23, 329–351. [Google Scholar] [CrossRef]
- Morkos, B. Computational Representation and Reasoning Support for Requirements Change Management In Complex System Design. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2012. [Google Scholar]
- Kurrle, A. Durchgängige Dokumentation von verteilten Zielsystemen in der Produktentwicklung durch Verwendung semantischer Metainformationen am Beispiel Connected Car. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2018. [Google Scholar]
- Fernandes, J.; Henriques, E.; Silva, A.; Moss, M.A. Requirements change in complex technical systems: An empirical study of root causes. Res. Eng. Des. 2015, 26, 37–55. [Google Scholar] [CrossRef]
- Gräßler, I.; Oleff, C. Risikoorientierte Analyse und Handhabung von Anforderungsänderungen. In Design for X, Proceedings of the Beiträge zum 30. DfX-Symposium, Jesteburg, Germany, 18–19 September 2019; Krause, D., Paetzold, K., Wartzack, S., Eds.; TuTech Innovation: Hamburg, Germany, 2019; pp. 49–60. [Google Scholar] [CrossRef]
- Gräßler, I.; Oleff, C.; Scholle, P. Methode zur Bewertung von Anforderungsänderungen additiv gefertigter Produkte. In Design for X, Proceedings of the Beiträge zum 29DfX Symposium, Tutzing, Germany, 25–26 September 2018; Krause, D., Paetzold, K., Wartzack, S., Eds.; TuTech Innovation: Hamburg, Germany, 2018; pp. 333–344. [Google Scholar]
- The Standish Group. The CHAOS Report; The Standish Group: Boston, MA, USA, 1995. [Google Scholar]
- The Standish Group. Chaos Manifesto 2011; The Standish Group: Boston, MA, USA, 2011. [Google Scholar]
- The Standish Group. Chaos Manifesto 2018; The Standish Group: Boston, MA, USA, 2017. [Google Scholar]
- Deubzer, F.; Kreimeyer, M.; Lindemann, U. Exploring strategies in change management: Current status and activitiy Benchmark. In Proceedings of the DESIGN 2006, the 9th International Design Conference, Dubrovnik, Croatia, 15–18 May 2006; Marjanovic, D., Ed.; Faculty of Mechanical Engineering and Naval Architecture, University of Zagrab: Zagreb, Croatia, 2006; pp. 815–822, ISBN 953-6113-78-2. [Google Scholar]
- Wickel, M.C. Änderungen Besser Managen: Eine Datenbasierte Methodik zur Analyse Technischer Änderungen. Ph.D. Thesis, Technical University Munich, Munich, Germany, 2017. [Google Scholar]
- Jayatilleke, S.; Lai, R. A systematic review of requirements change management. Inf. Softw. Technol. 2018, 93, 163–185. [Google Scholar] [CrossRef]
- Hamraz, B.; Caldwell, N.H.M.; Clarkson, P.J. A holistic categorization framework for literature on engineering change management. Syst. Eng. 2013, 16, 473–505. [Google Scholar] [CrossRef]
- Pohl, K.; Rupp, C. Requirements Engineering Fundamentals, 2nd ed.; Rocky Nook: Santa Barbara, CA, USA, 2015; ISBN 9781937538774. [Google Scholar]
- Jarratt, T.A.W.; Eckert, C.M.; Caldwell, N.H.M.; Clarkson, P.J. Engineering change: An overview and perspective on the literature. Res. Eng. Des. 2011, 22, 103–124. [Google Scholar] [CrossRef]
- Eben, K.G.M.; Daniilis, C.; Lindemann, U. Interrelating and prioritising requirements on multiple hierachy levels. In Proceedings of the DESIGN 2010 11th International Design Conference, Dubrovnik, Croatia, 17–20 May 2010; Marjanović, D., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 1055–1064, ISBN 978-953-7738-03-7. [Google Scholar]
- Eben, K.G.M.; Lindemann, U. Structural analysis of requirements: Interpretation of structural criterions. In Proceedings of the 12th International Dependency and Structure Modelling Conference DSM ‘10, Cambridge, UK, 22–23 July 2010; pp. 249–261. [Google Scholar]
- Ebert, C. Systematisches Requirements Engineering. Anforderungen Ermitteln, Dokumentieren, Analysieren und Verwalten, 6th ed.; dpunkt.verlag: Heidelberg, Germany, 2019; ISBN 9783960884545. [Google Scholar]
- Gabriel, A.O.; Stahovich, T.F. ReDesignIT—A constraint-basedtool for managing design changes. In Proceedings of the ASME Design Engineering Technical Conferences, Pittsburg, PA, USA, 9–12 September 2001. [Google Scholar]
- Hamraz, B.; Caldwell, N.H.M.; Wynn, D.C.; Clarkson, P.J. Requirements-based development of an improved engineering change management method. J. Eng. Des. 2013, 24, 765–793. [Google Scholar] [CrossRef] [Green Version]
- Morkos, B.; Shankar, P.; Summers, J.D. Predicting requirement change propagation, using higher order design structure matrices: An industry case study. J. Eng. Des. 2012, 23, 905–926. [Google Scholar] [CrossRef] [Green Version]
- Shao, F.; Peng, R.; Lai, H.; Wang, B. DRank: A semi-automated requirements prioritization method based on preferences and dependencies. J. Syst. Softw. 2017, 126, 141–156. [Google Scholar] [CrossRef]
- Felfernig, A.; Stettinger, M.; Falkner, A.; Atas, M.; Franch, X.; Palomares, C. OpenReq: Recommender systems in requirements engineering. In Proceedings of the Workshop Papers of i-Know 2017: Co-located with International Conference on Knowledge Technologies and Data-Driven Business 2017 (i-Know 2017), Graz, Austria, 11–12 October 2017; pp. 1–4. [Google Scholar]
- Briand, L.C.; Labiche, Y.; O’Sullivan, L. Impact analysis and change management of UML models. In Proceedings of the International Conference on Software Maintenance, 2003. ICSM 2003, Amsterdam, The Netherlands, 22–26 September 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 256–265. [Google Scholar] [CrossRef]
- Müller, K.; Rumpe, B. A model-based approach to impact analysis using model differencing. ECEASST J. 2014, 65. [Google Scholar] [CrossRef]
- Arnarsson, I.Ö.; Frost, O.; Gustavsson, E.; Stenholm, D.; Jirstrand, M.; Malmqvist, J. Supporting knowledge re-Use with effective searches of related engineering documents—A comparison of search engine and natural language processing-based algorithms. In Proceedings of the Design Society International Conference on Engineering Design ICED 2019, Delft, The Netherlands, 5–8 August 2019; pp. 2597–2606. [Google Scholar] [CrossRef] [Green Version]
- Gräßler, I.; Preuß, D.; Oleff, C. Automatisierte Identifikation und Charakterisierung von Anforderungsabhängigkeiten—Literaturstudie zum Vergleich von Lösungsansätzen. In Design fox X, Proceedings of the Beiträge zum 30. DfX-Symposium, Jesteburg, Germany, 18–19 September 2019; Krause, D., Paetzold, K., Wartzack, S., Eds.; TuTech Verlag: Hamburg, Germany, 2020; pp. 199–208. [Google Scholar]
- Clarkson, P.J.; Simons, C.; Eckert, C. Predicting change propagation in complex design. J. Mech. Des. 2004, 126, 788–797. [Google Scholar] [CrossRef] [Green Version]
- Hamraz, B. Engineering Change Modelling Using a Function-Behaviour-Structure Scheme. Ph.D. Thesis, Apollo—University of Cambridge Repository, Cambridge, UK, 2013. [CrossRef]
- Nuseibeh, B.; Easterbrook, S. Requirements engineering. In Proceedings of the Conference on The Future of Software Engineering, Limerick, Ireland, 6 April–6 November 2000; Finkelstein, A., Ed.; ACM: New York, NY, USA, 2000; pp. 35–46, ISBN 1581132530. [Google Scholar]
- Huang, G.Q.; Mak, K.L. Internet Applications in Product Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Rupp, C.; die SOPHISTen. Requirements-Engineering und -Management. Aus der Praxis von Klassisch bis Agil, 6th ed.; Hanser: Munich, Germany, 2014; ISBN 9783446443136. [Google Scholar]
- McGee, S.; Greer, D. A software requirements change source taxonomy. In Proceedings of the 2009 Fourth International Conference on Software Engineering Advances. ICSEA ‘09, Porto, Portugal, 20–25 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 51–58. [Google Scholar] [CrossRef]
- Curtis, B.; Krasner, H.; Iscoe, N. A field study of the software design process for large systems. Commun. ACM 1988, 1268–1287. [Google Scholar] [CrossRef]
- Tripsas, M. Customer preference discontinuities: A trigger for radical technological change. Manag. Decis. Econ. 2008, 29, 79–97. [Google Scholar] [CrossRef]
- Löfgren, M.; Witell, L.; Gustafsson, A. Theory of attractive quality and life cycles of quality attributes. TQM J. 2011, 23, 235–246. [Google Scholar] [CrossRef]
- Borgianni, Y.; Rotini, F. Towards the fine-tuning of a predictive Kano model for supporting product and service design. Total Qual. Manag. Bus. Excell. 2015, 26, 263–283. [Google Scholar] [CrossRef]
- Deubel, T.; Conrad, J.; Köhler, C.; Wanke, S.; Weber, C. Change impact and risk analysis (CIRA): Combining the CPM/PDD theory and FMEA-methodology for an improved engineering change management. In Proceedings of the 16th International Conference on Engineering Design—ICED 07, Paris, France, 28–31 July 2007. [Google Scholar]
- Blessing, L.T.M.; Chakrabarti, A. DRM, a Design Research Methodology, 1st ed.; Springer: London, UK, 2009; ISBN 978-1-84882-587-1. [Google Scholar]
- Ulrich, H. Anwendungsorientierte Wissenschaft. Unternehmung 1982, 36, 1–10. [Google Scholar]
- Machi, L.A.; McEvoy, B.T. The Literature Review. Six Steps to Success, 2nd ed.; Corwin: Thousand Oaks, CA, USA, 2012; ISBN 9781452240886. [Google Scholar]
- Franke, W.D.; FMEA. Fehlermöglichkeits- und -Einflussanalyse in der Industriellen Praxis, 2nd ed.; Verl. Moderne Industrie: Landsberg/Lech, Germany, 1989; ISBN 3478412803. [Google Scholar]
- Gräßler, I.; Scholle, P.; Hentze, J.; Oleff, C. Semi-automatized assessment of requirement interrelations. In Proceedings of the DESIGN 2018 15th International Design Conference, Dubrovnik, Croatia, 21–24 May 2018; Marjanović, D., Storga, M., Pavkovic, N., Bojcetic, N., Škec, S., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 325–334. [Google Scholar] [CrossRef]
- Duperrin, J.C.; Godet, M. Méthode de Hiérarchisation des Éléments d’un Système: Essai de Prospective du Système de L’énergie Nucléaire dans son Contexte Sociétal. 1973. Available online: https://hal-lara.archives-ouvertes.fr/hal-02185432 (accessed on 30 November 2020).
- Reibnitz, U.V. Szenario-Technik. Instrumente für die Unternehmerische und Persönliche Erfolgsplanung, 2nd ed.; Gabler: Wiesbaden, Germany, 1992; ISBN 340913431x. [Google Scholar]
- Yin, R.K. Case Study Research and Applications. Design and Methods, 6th ed.; SAGE: Thousand Oaks, CA, USA, 2018; ISBN 978-1506336169. [Google Scholar]
- Scholle, P.; Song, Y.-W.; Herzog, M.; Bender, B.; Gräßler, I. Methoden der Anforderungsstrukturierung zur Steuerung von Produktentwicklungsprozessen. In Design for X, Proceedings of the 26th DfX Symposium. DfX Symposium, Herrsching, Germany, 4–5 October 2015; Krause, D., Paetzold, K., Wartzack, S., Eds.; TuTech Innovation: Hamburg, Germany, 2015; pp. 121–132. ISBN 9783941492936. [Google Scholar]
- Witzel, A. Das problemzentrierte Interview. Forum Qual. Soz. Forum Qual. Soc. Res. 2000. [Google Scholar] [CrossRef]
- Werdich, M. FMEA—Einführung und Moderation; Vieweg+Teubner Verlag: Wiesbaden, Germany, 2012; ISBN 978-3-8348-1787-7. [Google Scholar]
- Pohl, K. Process-Centered Requirements Engineering; Research Studies Press: Taunton, UK, 1996; ISBN 9780863801938. [Google Scholar]
- Gräßler, I.; Hentze, J. Structuring and describing requirements in a flexible mesh for development of smart interdisciplinary systems. In Smart Structures and Materials, Proceedings of the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, Ponta Delgada, Portugal, 3–6 June 2015; Araujo, A., Mota Soares, C.A., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 1622–1631. ISBN 978-3-319-44507-6. [Google Scholar]
- Becattini, N.; Cascini, G.; Rotini, F. Requirements checklists: Benchmarking the comprehensiveness of the design specification. In Design Methods and Tools–Part 1; Weber, C., Husung, S., Cascini, G., Cantamessa, M., Marjanovic, D., Rotini, F., Eds.; Design Society: Milan, Italy, 2015; Volume 5, pp. 41–50. [Google Scholar]
- Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H. Engineering Design, 3rd ed.; Springer: London, UK, 2007; ISBN 978-1-84628-318-5. [Google Scholar]
- Song, Y.-W.; Chahin, A.; Scholle, P.; Bender, B.; Gräßler, I.; Paetzold, K. Optimierung des Produktentwicklungsprozesses mittels Risikoanalyse vernetzter Anforderungen. In Design for X, Proceedings of the Beiträge zum 28. DfX-Symposium, Bamberg, Germany, 4–5 October 2017; Krause, D., Paetzold, K., Wartzack, S., Eds.; TuTech Innovation: Hamburg, Germany, 2017; pp. 339–351. ISBN 978-3-946094-20-3. [Google Scholar]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Gäßler, I.; Thiele, H.; Oleff, C.; Scholle, P.; Schulze, V. Method for analysing requirement change propagation based on a modified pagerank algorithm. In Proceedings of the International Conference on Engineering Design 2019, Delft, The Netherlands, 5–8 August 2019; Wartzack, S., Schleich, B., Gonçalves, M.G., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 3681–3690. [Google Scholar] [CrossRef] [Green Version]
- Porst, R. Fragebogen. Ein Arbeitsbuch, 4th ed.; Springer VS: Wiesbaden, Germany, 2014; ISBN 9783658021184. [Google Scholar]
- VDI. Gründruck: VDI 2206. Entwicklung Cyber-Physischer Mechatronischer Systeme. 2020. Available online: https://www.vdi.de/richtlinien/details/vdivde-2206-entwicklung-cyber-physischer-mechatronischer-systeme-cpms (accessed on 30 November 2020).
- Gräßler, I.; Dattner, M.; Bothen, M. Main feature List as core success criteria of organizing requirements elicitation. In Proceedings of the R&D Management Conference, R&Designing Innovation: Transformational Challenges for Organizations and Society, Milan, Italy, 30 June–4 July 2018; pp. 1–16. [Google Scholar]
No. | Title | Industrial Branch | Enterprise(s) | Exposure to Requirements Engineering |
---|---|---|---|---|
1 | Grab | Forming | Large | Low |
2 | Control cam | Bakery technology/machinery | SMEs 1 | Low |
3 | Rear wing mount | Automotive | Large | High |
Criterion | Description | |
---|---|---|
U | Uncertainty | Assessment of predictability, measurability, completeness and individual assessment of the likelihood of a requirement change resulting from the influence factor. |
D | Dynamics | Frequency and intensity of changes to the influence factor as well as timing and potential to discover changes. |
R | Relevance | Criticality and interference of changes to the influence factor as well as feasibility of changes of such and the potential to handle these. |
Criterion | Reflexive Questions | |
---|---|---|
U | Uncertainty |
|
D | Dynamics |
|
R | Relevance |
|
AS | ||
---|---|---|
PS | ASi ≥ ØAS | ASi < ØAS |
PSi ≥ ØPS | Class I | Class II |
PSi < ØPS | Class I | Class III |
Class | Numerical Boundaries | |
---|---|---|
Lower | Upper | |
I | 2 | 3 |
II | 1 | 2 |
III | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graessler, I.; Oleff, C.; Scholle, P. Method for Systematic Assessment of Requirement Change Risk in Industrial Practice. Appl. Sci. 2020, 10, 8697. https://doi.org/10.3390/app10238697
Graessler I, Oleff C, Scholle P. Method for Systematic Assessment of Requirement Change Risk in Industrial Practice. Applied Sciences. 2020; 10(23):8697. https://doi.org/10.3390/app10238697
Chicago/Turabian StyleGraessler, Iris, Christian Oleff, and Philipp Scholle. 2020. "Method for Systematic Assessment of Requirement Change Risk in Industrial Practice" Applied Sciences 10, no. 23: 8697. https://doi.org/10.3390/app10238697
APA StyleGraessler, I., Oleff, C., & Scholle, P. (2020). Method for Systematic Assessment of Requirement Change Risk in Industrial Practice. Applied Sciences, 10(23), 8697. https://doi.org/10.3390/app10238697