Anti-Osteoarthritic Effects of Terminalia Chebula Fruit Extract (AyuFlex®) in Interleukin-1β-Induced Human Chondrocytes and in Rat Models of Monosodium Iodoacetate (MIA)-Induced Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. AyuFlex® Preparation and Component Analyze
2.2. Culture and Sample Processing of Primary Human Chondrocytes (HCHs)
2.3. Cell Viability Analysis
2.4. Western Blotting
2.5. Animals
2.6. Monosodium iodoacetate (MIA)-Incurred Osteoarthritis (OA) and Drug Administration
2.7. Progression of OA and Hind Paw Weight-Bearing Distribution
2.8. Histological Examination of Joints
2.9. Cartilage Protein Expression
2.10. Statistical Analysis
3. Results
3.1. Effects of AyuFlex® on Cell Viability in Primary Human Chondrocytes (HCHs)
3.2. AyuFlex® Repressed the Expression of iNOS, 5-LOX, LTB4, and IL-6 in IL-1β-Treated HCHs
3.3. AyuFlex® Diminished the Production of MMP-2, -3, and -13 in IL-1β-Treated HCHs
3.4. AyuFlex® Treatment Attenuated the Degradation of Collagen Synthesis-Involved Proteins in IL-1β-Treated HCHs
3.5. Effects of AyuFlex® on the NF-κB and MAPK Mechanisms in IL-1β-Treated HCHs
3.6. Effects of AyuFlex® on Changes in the Body Weight of Rats with Monosodium Iodoacetate (MIA)-Incurred Osteoarthritis (OA)
3.7. Effects of AyuFlex® on Weight-Bearing Distribution in the Hind Paw for 21 Days in MIA-Incurred OA in Rats
3.8. Effects of AyuFlex® on Arthritis Index (AI) for 21 Days in MIA-Incurred OA in Rats
3.9. Effects of AyuFlex® on the Expression of iNOS, 5-LOX, LTB4, and IL-6 in Arthrodial Cartilage
3.10. Effects of AyuFlex® on Joint Pathology in MIA-Incurred OA in Rats
3.11. AyuFlex® Decreased the Production of MMP-2, -3, and -13 in Arthrodial Cartilage
3.12. AyuFlex® Treatment Attenuated the Degradation of Collagen Synthesis-Involved Proteins in Arthrodial Cartilage
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lane, N.E.; Shidara, K.; Wise, B.L. Osteoarthritis year in review 2016: Clinical. Osteoarthr. Cartil. 2017, 25, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glyn-Jones, S.; Palmer, A.J.R.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef]
- Yang, H.J.; Kim, M.J.; Qiu, J.Y.; Zhang, T.; Wu, T.Z.; Wu, X.; Jang, D.-J.; Park, S.M. Rice Porridge Containing Welsh Onion Root Water Extract Alleviates Osteoarthritis-Related Pain Behaviors, Glucose Levels, and Bone Metabolism in Osteoarthritis-Induced Ovariectomized Rats. Nutrients 2019, 11, 1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.H. Effect of Green Lipped Mussel Extract Oil Complex (Gwanjeolpalpal) on Monosodium Iodoacetate-Induced Osteoarthritis in Animal Model. J. Korean Soc. Food Sci. Nutr. 2019, 48, 206–214. [Google Scholar] [CrossRef]
- Olivotto, E.; Otero, M.; Marcu, K.B.; Goldring, M.B. Pathophysiology of osteoarthritis: Canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open 2015, 1 (Suppl. S1), e000061. [Google Scholar] [CrossRef] [Green Version]
- DeLise, A.Á.; Fischer, L.; Tuan, R.S. Cellular interactions and signaling in cartilage development. Osteoarthr. Cartil. 2000, 8, 309–334. [Google Scholar] [CrossRef] [Green Version]
- Van der Kraan, P.M.; Van den Berg, W.B. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 2012, 20, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Dreier, R. Hypertrophic differentiation of chondrocytes in osteoarthritis: The developmental aspect of degenerative joint disorders. Arthritis Res. Ther. 2010, 12, 216. [Google Scholar] [CrossRef] [Green Version]
- Goldring, S.R.; Goldring, M.B. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res. 2004, 427, S27–S36. [Google Scholar] [CrossRef]
- Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015, 16, 113. [Google Scholar] [CrossRef] [Green Version]
- Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, K.; Nuovo, G.J.; Bertone, A.L. In vivo reduction or blockade of interleukin-1β in primary osteoarthritis influences expression of mediators implicated in pathogenesis. Osteoarthr. Cartil. 2012, 20, 1610–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, X.; Wei, L.; Wu, Q.; Zhang, Y.; Chen, Q. Mitogen-activated protein kinase p38 mediates regulation of chondrocyte differentiation by parathyroid hormone. J. Biol. Chem. 2001, 276, 4879–4885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, H.; de Caestecker, M.P.; Yamada, Y. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J. Biol. Chem. 2001, 276, 14466–14473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Takada, Y.; Boriek, A.M.; Aggarwal, B.B. Nuclear factor-κB: Its role in health and disease. J. Mol. Med. 2004, 82, 434–448. [Google Scholar] [CrossRef]
- Csaki, C.; Mobasheri, A.; Shakibaei, M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: Inhibition of IL-1β-induced NF-κB-mediated inflammation and apoptosis. Arthritis Res. Ther. 2009, 11, R165. [Google Scholar] [CrossRef] [Green Version]
- Loeser, R.F.; Erickson, E.A.; Long, D.L. Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. Curr. Opin. Rheumatol. 2008, 20, 581. [Google Scholar] [CrossRef]
- Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R.R. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac. J. Trop. Biomed. 2013, 3, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Jokar, A.; Masoomi, F.; Sadeghpour, O.; Nassiri-Toosi, M.; Hamedi, S. Potential therapeutic applications for Terminalia chebula in Iranian traditional medicine. J. Tradit. Chin. Med. 2016, 36, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Oketani, H.; Singyouchi, K.; OHTSUBO, T.; KIHARA, M.; SHIBATA, H.; HIGUTI, T. Extraction and purification of effective antimicrobial constituents of Terminalia chebula RETS. against methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 1997, 20, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Hazra, B.; Sarkar, R.; Biswas, S.; Mandal, N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement Altern. Med. 2010, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bag, A.; Kumar Bhattacharyya, S.; Kumar Pal, N.; Ranjan Chattopadhyay, R. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits. Pharm. Biol. 2013, 51, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvan, S.; Rasool, M. Triphala exhibits anti-arthritic effect by ameliorating bone and cartilage degradation in adjuvant-induced arthritic rats. Immunol. Investig. 2015, 44, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Verma, R.J. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J. Taibah Univ. Sci. 2016, 10, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Kishore, K.K.; Kishan, P.V.; Ramakanth, G.S.H.; Chandrasekhar, N.; Usharani, P. A study of Terminalia chebula extract on endothelial dysfunction and biomarkers of oxidative stress in patients with metabolic syndrome. Eur. J. Biomed. Pharm. Sci. 2016, 3, 181–188. [Google Scholar]
- Vnukov, V.V.; Panina, S.B.; Krolevets, I.V.; Milutina, N.P.; Ananyan, A.A.; Zabrodin, M.A.; Plotnikov, A.A. Features of oxidative stress in the blood and the synovial fluid associated with knee osteoarthritis. Adv. Gerontol. 2015, 28, 284–289. [Google Scholar]
- Siems, W.; Bresgen, N.; Brenke, R.; Siems, R.; Kitzing, M.; Harting, H.; Eckl, P.M. Pain and mobility improvement and MDA plasma levels in degenerative osteoarthritis, low back pain, and rheumatoid arthritis after infrared A-irradiation. Acta Biochim. Pol. 2010, 57, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Heidari, B.; Hajian-Tilaki, K.; Babaei, M. Determinants of pain in patients with symptomatic knee osteoarthritis. Casp. J. Intern. Med. 2016, 7, 153. [Google Scholar]
- Klyne, D.M.; Barbe, M.F.; Hodges, P.W. Systemic inflammatory profiles and their relationships with demographic, behavioural and clinical features in acute low back pain. Brain Behav. Immun. 2017, 60, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Murdock, N.; Gupta, C.R.; Vega, N.; Kotora, K.; Miller, J.; Goad, T.J.; Lasher, A.M.; Canerdy, D.T.; Kalidindi, S.R. Evaluation of Terminalia chebula extract for anti-arthritic efficacy and safety in osteoarthritic dogs. J. Vet. Sci. Technol. 2016, 7. [Google Scholar] [CrossRef]
- Kumar, C.U.; Pokuri, V.K.; Pingali, U. Evaluation of the analgesic activity of standardized aqueous extract of Terminalia Chebula in healthy human participants using hot air pain model. J. Clin. Diagn. Res. 2015, 9, FC01. [Google Scholar] [CrossRef] [PubMed]
- Murdock, N. Therapeutic Efficacy and Safety Evaulation of Terminalia Chebula Extract in Moderately Arthritic Canines. Master’s Thesis, Murray State University, Murray, KY, USA, 2015. [Google Scholar]
- Nutalapati, C.H.; Chiranjeevi, U.K.; Kishan, P.V.; Kiran, K.K.; Pingali, U. A randomized, double-blind, placebo-controlled, parallel group clinical study to evaluate the analgesic effect of aqueous extract of Terminalia chebula, a proprietary chromium complex, and their combination in subjects with joint discomfort. Asian J. Pharm. Clin. Res. 2016, 9, 264–269. [Google Scholar]
- Pokuri, V.K.; Kumar, C.U.; Pingali, U. A randomized, double-blind, placebo-controlled, cross-over study to evaluate analgesic activity of Terminalia chebula in healthy human volunteers using a mechanical pain model. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 329. [Google Scholar]
- Lopez, H.L.; Habowski, S.M.; Sandrock, J.E.; Raub, B.; Kedia, A.; Bruno, E.J.; Ziegenfuss, T.N. Effects of dietary supplementation with a standardized aqueous extract of Terminalia chebula fruit (AyuFlex®) on joint mobility, comfort, and functional capacity in healthy overweight subjects: A randomized placebo-controlled clinical trial. BMC Complement Altern. Med. 2017, 17, 475. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, R.; Zhong, Y.; Zhang, S.; Zhou, L.; Shang, S. Fuyuan decoction enhances SOX9 and COL2A1 expression and Smad2/3 phosphorylation in IL-1β-activated chondrocytes. Evid. Based Complement Alternat. Med. 2015, 2015, 821947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeser, R.F. Aging and osteoarthritis: The role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil. 2009, 17, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Altman, R.D. Practical considerations for the pharmacologic management of osteoarthritis. Am. J. Manag. Care 2009, 15 (Suppl. S8), S236–S243. [Google Scholar]
- Koch, B.; Baum, W.; Burmester, G.R.; Rohwer, P.; Reinke, M.; Zacher, J.; Kalden, J.R. Prostaglandin E2, interleukin 1 and gamma interferon production of mononuclear cells of patients with inflammatory and degenerative joint diseases. Z. Rheumatol. 1989, 48, 194–199. [Google Scholar]
- Sasaki, K.; Hattori, T.; Fujisawa, T.; Takahashi, K.; Inoue, H.; Takigawa, M. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J. Biochem. 1998, 123, 431–439. [Google Scholar] [CrossRef]
- Boileau, C.; Pelletier, J.P.; Tardif, G.; Fahmi, H.; Laufer, S.; Lavigne, M.; Martel-Pelletier, J. The regulation of human MMP-13 by licofelone, an inhibitor of cyclo-oxygenases and 5-lipoxygenase, in human osteoarthritic chondrocytes is mediated by the inhibition of the p38 MAP kinase signalling pathway. Ann. Rheum. Dis. 2005, 64, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Hardy, M.M.; Seibert, K.; Manning, P.T.; Currie, M.G.; Woerner, B.M.; Edwards, D.; Koki, A.; Tripp, C.S. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 2002, 46, 1789–1803. [Google Scholar] [CrossRef]
- Brinckerhoff, C.E.; Matrisian, L.M. Matrix metalloproteinases: A tail of a frog that became a prince. Nat. Rev. Mol. Cell Biol. 2002, 3, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Cheleschi, S.; Pascarelli, N.A.; Valacchi, G.; Di Capua, A.; Biava, M.; Belmonte, G.; Giordani, A.; Sticozzi, C.; Anzini, M.; Fioravanti, A. Chondroprotective effect of three different classes of anti-inflammatory agents on human osteoarthritic chondrocytes exposed to IL-1β. Int. Immunopharmacol. 2015, 28, 794–801. [Google Scholar] [CrossRef]
- Madhavan, S.; Anghelina, M.; Rath-Deschner, B.; Wypasek, E.; John, A.; Deschner, J.; Piesco, N.; Agarwal, S. Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes. Osteoarthr. Cartil. 2006, 14, 1023–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nummenmaa, E.; Hämäläinen, M.; Moilanen, T.; Vuolteenaho, K.; Moilanen, E. Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, aggrecan, and type II collagen in primary human OA chondrocytes. Scand. J. Rheumatol. 2015, 44, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Tetlow, L.C.; Adlam, D.J.; Woolley, D.E. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: Associations with degenerative changes. Arthritis Rheum. 2001, 44, 585–594. [Google Scholar] [CrossRef]
- Dean, D.D.; Martel-Pelletier, J.; Pelletier, J.P.; Howell, D.S.; Woessner, J.F. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J. Clin. Investig. 1989, 84, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Wieland, H.A.; Michaelis, M.; Kirschbaum, B.J.; Rudolphi, K.A. Osteoarthritis—An untreatable disease? Nat. Rev. Drug Discov. 2005, 4, 331–344. [Google Scholar] [CrossRef]
- Heinegård, D. Fell-Muir Lecture: Proteoglycans and more–from molecules to biology. Int. J. Exp. Pathol. 2009, 90, 575–586. [Google Scholar] [CrossRef]
- Bell, D.M.; Leung, K.K.; Wheatley, S.C.; Ng, L.J.; Zhou, S.; Ling, K.W.; Sham, M.H.; Koopman, P.; Tam, P.P.L.; Cheah, K.S. SOX9 directly regulates the type-II collagen gene. Nat. Genet. 1997, 16, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Wilusz, R.E.; Sanchez-Adams, J.; Guilak, F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014, 39, 25–32. [Google Scholar] [CrossRef]
- Shakibaei, M.; Csaki, C.; Nebrich, S.; Mobasheri, A. Resveratrol suppresses interleukin-1β-induced inflammatory signaling and apoptosis in human articular chondrocytes: Potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol. 2008, 76, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Buhrmann, C.; Mobasheri, A.; Matis, U.; Shakibaei, M. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res. Ther. 2010, 12, R127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakibaei, M.; Mobasheri, A.; Buhrmann, C. Curcumin synergizes with resveratrol to stimulate the MAPK signaling pathway in human articular chondrocytes in vitro. Genes Nutr. 2011, 6, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Buhrmann, C.; Popper, B.; Aggarwal, B.B.; Shakibaei, M. Resveratrol downregulates inflammatory pathway activated by lymphotoxin α (TNF-β) in articular chondrocytes: Comparison with TNF-α. PLoS ONE 2017, 12, e0186993. [Google Scholar] [CrossRef]
- Jeong, J.-W.; Lee, H.H.; Kim, J.S.; Choi, E.-O.; Hyun, H.-B.; Kim, H.J.; Kim, M.Y.; Ahn, K.I.; Kim, G.-Y.; Lee, K.W.; et al. Mori Folium water extract alleviates articular cartilage damages and inflammatory responses in monosodium iodoacetate-induced osteoarthritis rats. Mol. Med. Rep. 2017, 16, 3541–3848. [Google Scholar] [CrossRef]
- Sabri, M.I.; Ochs, S. Inhibition of glyceraldehyde-3-phosphate dehydrogenase in mammalian nerve by iodoacetic acid. J. Neurochem. 1971, 18, 1509–1514. [Google Scholar] [CrossRef]
- Van der Kraan, P.M.; Vitters, E.L.; van de Putte, L.B.; van den Berg, W.B. Development of osteoarthritic lesions in mice by “metabolic” and “mechanical” alterations in the knee joints. Am. J. Pathol. 1989, 135, 1001–1014. [Google Scholar]
- Lee, A.S.; Ellman, M.B.; Yan, D.; Kroin, J.S.; Cole, B.J.; van Wijnen, A.J.; Im, H.J. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 2013, 527, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Bove, S.E.; Calcaterra, S.L.; Brooker, R.M.; Huber, C.M.; Guzman, R.E.; Juneau, P.L.; Schrier, D.J.; Kilgore, K.S. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthr. Cartil. 2013, 11, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Woo, Y.J.; Joo, Y.B.; Jung, Y.O.; Ju, J.H.; Cho, M.L.; Oh, H.J.; Jhun, J.Y.; Park, M.K.; Park, J.S.; Kang, C.M.; et al. Grape seed proanthocyanidin extract ameliorates monosodium iodoacetate-induced osteoarthritis. Exp. Mol. Med. 2011, 43, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.Y.; Lee, S.H.; Na, H.-S.; Jung, K.A.; Choi, J.W.; Cho, K.-H.; Lee, C.-Y.; Kim, S.J.; Park, S.-H.; Shin, D.-Y.; et al. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
Treatment | Weight Bearing Distribution (%) | |||
---|---|---|---|---|
Day 0 | Day 7 | Day 14 | Day 21 | |
Normal Control | 51.33 ± 0.95 | 49.91 ± 0.58 | 51.05 ± 0.75 | 48.80 ± 0.49 |
MIA Control | 30.08 ± 2.86 ## | 27.54 ± 3.47 ## | 33.45 ± 1.18 ## | 39.01 ± 1.31 ## |
A 25 mg/kg | 32.07 ± 2.40 | 34.84 ± 2.87 | 36.95 ± 3.17 | 42.60 ± 0.72 * |
A 50 mg/kg | 31.75 ± 2.70 | 37.63 ± 2.46 * | 39.18 ± 1.41 ** | 45.50 ± 0.29 ** |
A 100 mg/kg | 30.56 ± 2.80 | 38.57 ± 2.31 * | 40.57 ± 1.17 ** | 46.21 ± 0.77 ** |
I 20 mg/kg | 31.41 ± 3.45 | 36.45 ± 3.30 | 41.53 ± 1.20 ** | 45.34 ± 0.74 ** |
Treatment | Arthritis Index | |||
---|---|---|---|---|
Day 0 | Day 7 | Day 14 | Day 21 | |
Normal Control | 0.00 | 0.00 | 0.00 | 0.00 |
MIA Control | 2.06 ± 0.34 ## | 2.07 ± 0.30 ## | 1.56 ± 0.06 ## | 1.51 ± 0.12 ## |
A 25 mg/kg | 2.10 ± 0.19 | 2.05 ± 0.25 | 1.28 ± 0.14 | 1.08 ± 0.08 ** |
A 50 mg/kg | 1.95 ± 0.20 | 1.50 ± 0.21 | 1.14 ± 0.07 ** | 0.90 ± 0.04 ** |
A 100 mg/kg | 2.00 ± 0.20 | 1.48 ± 0.26 | 0.99 ± 0.01 ** | 0.91 ± 0.05 ** |
I 20 mg/kg | 1.94 ± 0.21 | 1.61 ± 0.31 | 1.04 ± 0.08 ** | 0.74 ± 0.12 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.L.; Lee, H.J.; Lee, D.-R.; Choi, B.-K.; Yang, S.H. Anti-Osteoarthritic Effects of Terminalia Chebula Fruit Extract (AyuFlex®) in Interleukin-1β-Induced Human Chondrocytes and in Rat Models of Monosodium Iodoacetate (MIA)-Induced Osteoarthritis. Appl. Sci. 2020, 10, 8698. https://doi.org/10.3390/app10238698
Kim HL, Lee HJ, Lee D-R, Choi B-K, Yang SH. Anti-Osteoarthritic Effects of Terminalia Chebula Fruit Extract (AyuFlex®) in Interleukin-1β-Induced Human Chondrocytes and in Rat Models of Monosodium Iodoacetate (MIA)-Induced Osteoarthritis. Applied Sciences. 2020; 10(23):8698. https://doi.org/10.3390/app10238698
Chicago/Turabian StyleKim, Hae Lim, Hae Jin Lee, Dong-Ryung Lee, Bong-Keun Choi, and Seung Hwan Yang. 2020. "Anti-Osteoarthritic Effects of Terminalia Chebula Fruit Extract (AyuFlex®) in Interleukin-1β-Induced Human Chondrocytes and in Rat Models of Monosodium Iodoacetate (MIA)-Induced Osteoarthritis" Applied Sciences 10, no. 23: 8698. https://doi.org/10.3390/app10238698
APA StyleKim, H. L., Lee, H. J., Lee, D. -R., Choi, B. -K., & Yang, S. H. (2020). Anti-Osteoarthritic Effects of Terminalia Chebula Fruit Extract (AyuFlex®) in Interleukin-1β-Induced Human Chondrocytes and in Rat Models of Monosodium Iodoacetate (MIA)-Induced Osteoarthritis. Applied Sciences, 10(23), 8698. https://doi.org/10.3390/app10238698