Improving the Structural Behavior of Tied-Arch Bridges by Doubling the Set of Hangers
Abstract
:Featured Application
Abstract
1. Introduction
2. Reference Bridges and Considered Load Cases
- The self-weight (SW) of the bridge, evaluated for a specific weight of 78.5 kN/m3, and a dead load (DL), with a value of 3.75 kN/m2.
- The wind load (W) (Figure 6b) has been considered in a simplified way, as an equivalent static transversal loading (parallel to the Y-axis) of 2 kN/m, acting both at the centroids of the cross-sections of the arch and the deck.
3. Structural Behavior of the Tied-Arch Bridge with One Set of Central Hangers
4. Structural Behavior of the Tied-Arch Bridge with Two Sets of Lateral Hangers
5. Structural Systems in the Studied Bridges
5.1. Actions Contained within the Plane of the Arch
5.2. Out-of-Plane Actions
6. The Forked Arch
7. Buckling
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karnowsky, I. Theory of Arched Structures; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Stavridis, L. Structural Systems: Behaviour and Design; Thomas Telford: London, UK, 2010. [Google Scholar]
- García-Guerrero, J.M. The Spatial Arch Bridge as a Typological Evolution (El Puente Arco Espacial Como una Evolución Tipológica). Ph.D. Thesis, Technical University of Cartagena, Cartagena, Spain, 2018. (In Spanish). [Google Scholar]
- Jorquera-Lucerga, J.J. Form-finding of funicular geometries in spatial arch bridges through simplified force density method. Appl. Sci. 2018, 8, 2553. [Google Scholar] [CrossRef] [Green Version]
- Thalla, O.; Stiros, S.C. Wind-induced fatigue and asymmetric damage in a timber bridge. Sensors 2018, 18, 3867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, R.; Nettis, A.; Raffaele, D. Effectiveness of the displacement-based seismic performance assessment for continuous RC bridges and proposed extensions. Eng. Struct. 2020, 221, 110910. [Google Scholar] [CrossRef]
- Gou, H.; Zhou, W.; Yang, C.; Bao, Y.; Pu, Q. Dynamic response of a long-span concrete-filled steel tube tied arch bridge and the riding comfort of monorail trains. Appl. Sci. 2018, 8, 650. [Google Scholar] [CrossRef] [Green Version]
- Manterola-Armisén, J. Puentes (Bridge Engineering); Colegio de Ingenieros de Caminos, Canales y Puertos: Madrid, Spain, 2006; pp. 897–988. ISBN 9788438003220. (In Spanish) [Google Scholar]
- Palkowski, S. Buckling of parabolic arches with hangers and tie. Eng. Struct. 2012, 44, 128–132. [Google Scholar] [CrossRef]
- Tzonis, A. Santiago Calatrava: Obra Completa; Ediciones Polígrafa: Barcelona, Spain, 2007; ISBN 8434311518. [Google Scholar]
- Jorquera-Lucerga, J.J. Understanding Calatrava’s bridges: A conceptual approach to the ‘La Devesa-type’ footbridges. Eng. Struct. 2013, 56, 2083–2097. [Google Scholar] [CrossRef]
- García-Guerrero, J.M.; Jorquera-Lucerga, J.J. Effect of stiff hangers on the longitudinal structural behavior of tied-arch bridges. Appl. Sci. 2018, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- García-Guerrero, J.M.; Jorquera-Lucerga, J.J. Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges. Steel Compos. Struct. 2019, 32, 479–495. [Google Scholar] [CrossRef]
- Leonhardt, F. Bridges, Brücken; The Architectural Press: London, UK, 1982; pp. 38–43. [Google Scholar]
- Lebet, J.P.; Hirt, M.A. Steel Bridges; EPFL Press: Lausanne, Switzerland, 2013; pp. 461–488. ISBN 9781466572973. [Google Scholar]
- European Committee for Standardization (CEN). Eurocode 3: Design of Steel Structures—Part 2: Steel Bridges; CEN: Brussels, Belgium, 2006. [Google Scholar]
- European Committee for Standardization (CEN). Eurocode 1: Actions on Structures—Part 2: Traffic Loads on Bridges; CEN: Brussels, Belgium, 2003. [Google Scholar]
- Computers and Structures, Inc. Analysis Reference Manual for SAP2000® v 16; CSI: Berkeley, CA, USA, 2013. [Google Scholar]
- Menn, C. Prestressed Concrete Bridges; Birkhäuser Verlag: Vienna, Austria, 1989; pp. 382–394. ISBN 9783034899208. [Google Scholar]
- Jorquera-Lucerga, J.J. A Study on Structural Behaviour of Spatial Arch Bridges (Estudio del Comportamiento Resistente de los Puentes Arco Espaciales). Ph.D. Thesis, Technical University of Madrid, Madrid, Spain, 2007. (In Spanish). [Google Scholar]
- Ortiz Berrocal, L. Resistencia de Materiales; McGraw-Hill: Madrid, Spain, 1990; pp. 81–99. ISBN 8476155123. [Google Scholar]
- Oudin-Hograindleur, H.; Fontaine, J.-F.; Virlogeux, M. La passerelle de Montigny-lès-Cormeilles. Bull. Ouvrages Métalliques 2001, 1, 78–93. [Google Scholar]
- Sacristán, M.; Capellán, G.; Merino, E.; Martínez, J. Architectural engineering applied to the design of urban bridges. New paradigms for the use of classic typologies in urban areas. In Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, Proceedings of the 34th IABSE Symposium, Venice, Italy, 22–24 September 2010; IABSE: Zurich, Switzerland, 2010; Volume 97, pp. 25–32. [Google Scholar]
- Arenas de Pablo, J.J.; Pantaleón, M.J. Barqueta Bridge, Sevilla, Spain. Struct. Eng. Int. 1992, 2, 251–252. [Google Scholar] [CrossRef]
- Ministerio de Fomento. Instrucción de Acero Estructural, (EAE); Ministerio de Fomento: Madrid, Spain, 2011. [Google Scholar]
- The MathWorks Inc. Matlab R2014, 2014.
Structural Element | Cross-Sections | Size 1 | Young’s Modulus (N/mm2) |
---|---|---|---|
Arch | Square hollow-box | 1250 × 1250 mm, tf = tw = 30 mm | 2.0 × 105 |
Hangers | Solid circular | Ø 80 mm | 1.6 × 105 |
Deck | Rectangular hollow-box | 5000 × 1000 mm, tf = tw = 20 mm | 2.0 × 105 |
Model | λu |
---|---|
V1 | 11.2 |
N1 | 11.2 |
V2 | 24.1 |
N2 | 28.0 |
FV2 | 37.5 |
FN2 | 42.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Guerrero, J.M.; Jorquera-Lucerga, J.J. Improving the Structural Behavior of Tied-Arch Bridges by Doubling the Set of Hangers. Appl. Sci. 2020, 10, 8711. https://doi.org/10.3390/app10238711
García-Guerrero JM, Jorquera-Lucerga JJ. Improving the Structural Behavior of Tied-Arch Bridges by Doubling the Set of Hangers. Applied Sciences. 2020; 10(23):8711. https://doi.org/10.3390/app10238711
Chicago/Turabian StyleGarcía-Guerrero, Juan Manuel, and Juan José Jorquera-Lucerga. 2020. "Improving the Structural Behavior of Tied-Arch Bridges by Doubling the Set of Hangers" Applied Sciences 10, no. 23: 8711. https://doi.org/10.3390/app10238711
APA StyleGarcía-Guerrero, J. M., & Jorquera-Lucerga, J. J. (2020). Improving the Structural Behavior of Tied-Arch Bridges by Doubling the Set of Hangers. Applied Sciences, 10(23), 8711. https://doi.org/10.3390/app10238711