Prediction of Mechanical Performance of Acetylated MDF at Different Humid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. MDF Panels
2.2. Experimental
2.2.1. Dimensional Changes
2.2.2. Thickness Swelling
2.2.3. Accelerated Aging Test
2.2.4. Non-Destructive Testing
2.2.5. Static Bending Test
2.2.6. Internal Bond Test
2.2.7. Finite Element Analysis
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Finite Element Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bianchi, S.; Thömen, H.; Junginger, S.; Pichelin, F. Medium density boards made of groundwood fibres: An analysis of their mechanical and physical properties. Eur. J. Wood Wood Prod. 2018, 77, 71–77. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Winandy, J.E. Effects of Post Heat-Treatment on Surface Characteristics and Adhesive Bonding Performance of Medium Density Fiberboard. Mater. Manuf. Process. 2009, 24, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Palardy, R.D.; Haataja, B.A.; Shaler, S.M.; Williams, A.D.; Laufenberg, T.L. Pressing of wood composite panels at moderate temperature and high moisture content. For. Prod. J. 1989, 39, 27–32. [Google Scholar]
- Li, X.; Li, Y.; Zhong, Z.; Wang, D.; Ratto, J.A.; Sheng, K.; Sun, X.S. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Bioresour. Technol. 2009, 100, 3556–3562. [Google Scholar] [CrossRef] [PubMed]
- Mohebby, B.; Gorbani-Kokandeh, M.; Soltani, M. Springback in acetylated wood based composites. Constr. Build. Mater. 2009, 23, 3103–3106. [Google Scholar] [CrossRef]
- Findley, W.N.; Lai, J.S.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials; North-Holland Publishing Company: New York, NY, USA, 1976. [Google Scholar]
- Ji, X.; Li, B.; Yuan, B.; Guo, M. Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohydr. Polym. 2017, 176, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, Y.; Wang, C.; Chu, F.; Xu, F.; Zhang, D. Synthesis of Lignin-Based Polyacid Catalyst and Its Utilization to Improve Water Resistance of Urea-formaldehyde Resins. Polymers 2020, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Mamiński, M.Ł.; Trzepałka, A.; Auriga, R.; H’Ng, P.S.; Chin, K.L. Physical and mechanical properties of thin high density fiberboard bonded with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). J. Adhes. 2020, 96, 679–690. [Google Scholar] [CrossRef]
- Oliveira, S.L.; Freire, T.P.; Mendes, R.F. The Effect of Post-Heat Treatment in MDF Panels. Mater. Res. 2017, 20, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.A.; Cloutier, A.; Riedl, B. Dimensional stability of MDF panels produced from heat-treated fibres. Holzforschung 2006, 60, 278–284. [Google Scholar] [CrossRef]
- Lee, T.C.; Mohd Pu’ad, N.A.S.; Selimin, M.A.; Manap, N.; Abdullah, H.Z.; Idris, M.I. An overview on development of environmental friendly medium density fibreboard. Mater. Today Proc. 2020, 29, 52–57. [Google Scholar] [CrossRef]
- Dazmiri, M.K.; Kiamahalleh, M.V.; Kaiamahalleh, M.V.; Mansouri, H.R.; Moazami, V. Revealing the impacts of recycled urea-formaldehyde wastes on the physical-mechanical properties of MDF. Eur. J. Wood Wood Prod. 2018, 77, 293–299. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Gkaraveli, A. Dimensional stabilization and strength of particleboard by chemical modification with propionic anhydride. Holz Roh Werkst. 2003, 61, 142–144. [Google Scholar] [CrossRef]
- Kajita, H.; Imamura, Y. Improvement of physical and biological properties of particleboards by impregnation with phenolic resin. Wood Sci. Technol. 1991, 26, 63–70. [Google Scholar] [CrossRef]
- Nasir, M.; Gupta, A.; Beg, M.D.H.; Chua, G.K.; Asim, M. Laccase application in medium density fibreboard to prepare a bio-composite. RSC Adv. 2014, 4, 11520–11527. [Google Scholar] [CrossRef] [Green Version]
- Rowell, R.M.; Youngquist, J.A.; Rowell, J.S.; Hyatt, J.A. Dimensional stability of aspen fiberboard made from acetylated fiber. Wood Fiber Sci. 1991, 23, 558–566. [Google Scholar]
- Mai, C.; Direske, M.; Varel, D.; Weber, A. Light medium-density fibreboards (MDFs): Does acetylation improve the physico-mechanical properties? Eur. J. Wood Wood Prod. 2016, 75, 739–745. [Google Scholar] [CrossRef]
- Gomez-Bueso, J.; Westin, M.; Torgilsson, R.; Olesen, P.O.; Simonson, R. Composites made from acetylated lignocellulosic fibers of different origin—Part I. Properties of dry-formed fiberboards. Holz Roh Werkst. 2000, 58, 9–14. [Google Scholar] [CrossRef]
- Mahlberg, R.; Paajanen, L.; Nurmi, A.; Kivisto, A.; Koskela, K.; Rowell, R.M. Effect of chemical modification of wood on the mechanical and adhesion properties of wood fiber/polypropylene fiber and polypropylene/veneer composites. Eur. J. Wood Wood Prod. 2001, 59, 319–326. [Google Scholar] [CrossRef]
- Vick, C.B.; Krzysik, A.; Wood, J.E., Jr. Acetylated, isocyanate-bonded flakeboards after accelerated aging: Dimensional stability and mechanical properties. Holz Roh Werkst. 1991, 49, 221–228. [Google Scholar] [CrossRef]
- Korai, H. Effects of low bondability of acetylated fibers on mechanical properties and dimensional stability of fiberboard. J. Wood Sci. 2001, 47, 430–436. [Google Scholar] [CrossRef]
- Ghorbani, M.; Bavaneghi, F. Effect of Press Cycle Time on Application Behavior of Board Made from Chemically Modified Particles. Drv. Ind. 2016, 67, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Legg, M.; Bradley, S. Measurement of stiffness of standing trees and felled logs using acoustics: A review. J. Acoust. Soc. Am. 2016, 139, 588–604. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Acoustic measurements on trees and logs: A review and analysis. Wood Sci. Technol. 2013, 47, 965–975. [Google Scholar] [CrossRef]
- Han, G.; Wu, Q.; Wang, X. Stress-wave velocity of wood-based panels: Effect of moisture, product type, and material direction. For. Prod. J. 2006, 56, 28–33. [Google Scholar]
- Guan, C.; Guan, C.; Zhou, L.; Wang, X. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method. Constr. Build. Mater. 2015, 100, 201–206. [Google Scholar] [CrossRef]
- Dassault Systèmes. SIMULIA User Assistance/Analysis Procedure; Dassault Systèmes: Vélizy-Villacoublay, France, 2019. [Google Scholar]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Barbero, E. Finite Element Analysis of Composite Materials Using Abaqus™; CRC Press: Boca Raton, FL, USA, 2013; p. 444. [Google Scholar]
- Barbero, E. Introduction to Composite Materials Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 534. [Google Scholar]
- Aboudi, J.; Arnold, S.M.; Bednarcyk, B.A. Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, 1st ed.; Butterworth-Heinemann Ltd.: Oxford, UK, 2013. [Google Scholar]
- European Committee for Standardization. Wood-Based Panels—Determination of Moisture Content; EN 322; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- European Committee for Standardization. Wood-Based Panels—Determination of Density; EN 323; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- European Committee for Standardization. Wood-Based Panels—Determination of Dimensional Changes Associated with Changes in Relative Humidity; EN 318; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- European Committee for Standardization. Particleboards and Fiberboards—Determination of Swelling in Thickness after Immersion in Water; EN 317; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- European Committee for Standardization. Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board; EN 319; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- European Committee for Standardization. Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength; EN 310; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- Ahmed, S.A.; Adamopoulos, S. Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments. Appl. Acoust. 2018, 140, 92–99. [Google Scholar] [CrossRef]
- Rowell, R.M.; Ibach, R.E.; McSweeny, J.; Nilsson, T. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mater. Sci. Eng. 2009, 4, 14–22. [Google Scholar] [CrossRef]
- Ayrilmis, N. Effect of panel density on dimensional stability of medium and high density fiberboards. J. Mater. Sci. 2007, 42, 8551–8557. [Google Scholar] [CrossRef]
- Ganev, S. Modeling of the Hygromechanical Warping of Medium Density Fiberboard. Ph.D. Thesis, Forestry Faculty, University of Laval, Québec, QC, Canada, 2002. [Google Scholar]
- Bekhta, P.; Niemz, P. Effect of relative humidity on some physical and mechanical properties of different types of fibreboard. Eur. J. Wood Wood Prod. 2009, 67, 339–342. [Google Scholar] [CrossRef]
- Pritchard, J.; Ansell, M.P.; Thompson, R.J.H.; Bonfield, P.W. Effect of two relative humidity environments on the performance properties of MDF, OSB and chipboard. Wood Sci. Technol. 2001, 35, 395–403. [Google Scholar] [CrossRef]
- McNatt, J.D.; Wellwood, R.W.; Bach, L. Relationships between small-specimen and large panel bending tests on structural wood-based panels. For. Prod. J. 1990, 40, 10–16. [Google Scholar]
- Wu, Q.; Suchsland, O. Effect of moisture on the flexural properties of commercial oriented strandboards. Wood Fiber Sci. 1997, 29, 47–57. [Google Scholar]
- Halligan, A.F.; Schniewind, P. Prediction of particleboard mechanical properties at various moisture contents. Wood Sci. Technol. 1974, 8, 68–78. [Google Scholar]
- Feist, W.C.; Rowell, R.M.; Ellis, W.D. Moisture sorption and accelerated weathering of acetylated and methacrylated aspen. Wood Fiber Sci. 1991, 23, 128–136. [Google Scholar]
- Kojima, Y.; Suzuki, S. Evaluating the durability of wood-based panels using internal bond strength results from accelerated aging treatments. J. Wood Sci. 2011, 57, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Nocetti, M.; Brancheriau, L.; Bacher, M.; Brunetti, M.; Crivellaro, A. Relationship between local and global modulus of elasticity in bending and its consequence on structural timber grading. Eur. J. Wood Wood Prod. 2013, 71, 297–308. [Google Scholar] [CrossRef]
- Akitsu, H.; Norimoto, M.; Morooka, T.; Rowell, R.M. Effect of humidity on vibrational properties of chemically modified wood. Wood Fiber Sci. 1993, 25, 250–260. [Google Scholar]
- Bos, F.; Casagrande, S. On-line non-destructive evaluation and control of wood-based panels by vibration analysis. J. Sound Vib. 2003, 268, 403–412. [Google Scholar] [CrossRef]
- Guan, C.; Liu, J.; Zhang, H.; Wang, X.; Zhou, L. Evaluation of modulus of elasticity and modulus of rupture of full-size wood composite panels supported on two nodal-lines using a vibration technique. Constr. Build. Mater. 2019, 218, 64–72. [Google Scholar] [CrossRef]
- Souza, F.V.; Castro, L.S.; Camara, S.L.; Allen, D.H. Finite-element modeling of damage evolution in heterogeneous viscoelastic composites with evolving cracks by using a two-way coupled multiscale model. Mech. Compos. Mater. 2011, 47, 95–108. [Google Scholar] [CrossRef]
- Šliseris, J.; Andrä, H.; Kabel, M.; Dix, B.; Plinke, B.; Wirjadi, O.; Frolovs, G. Numerical prediction of the stiffness and strength of medium density fiberboards. Mech. Mater. 2014, 79, 73–84. [Google Scholar] [CrossRef]
- Huč, S.; Hozjan, T.; Svensson, S. Rheological behavior of wood in stress relaxation under compression. Wood Sci. Technol. 2018, 52, 793–808. [Google Scholar] [CrossRef] [Green Version]
Type | Properties Measured | Dimensions [mm3] | Sample Number | Standard Followed |
---|---|---|---|---|
Physical properties | Moisture content | 50 × 50 × 18 | 15 | EN 322 [33] |
Density | 50 × 50 × 18 | 15 | EN 323 [34] | |
Dimensional changes | 300 × 50 × 18 | 10 | EN 318 [35] | |
Thickness swelling | 50 × 50 × 18 | 5 | EN 317 [36] | |
Accelerated aging | 300 × 70 × 18 | 5 | ||
Mechanical properties | Internal bonding | 50 × 50 × 18 | 15 | EN 319 [37] |
Three-point bending | 300 × 36 × 18 | 15 | EN 310 [38] |
Properties | 35% RH | 65% RH | 85% RH |
---|---|---|---|
EMC (%) | 4.6 (0.14) | 7.6 (0.14) | 7.9 (0.12) |
Density (kg/m3) | 729.2 (9.59) | 739.6 (1.37) | 742.3 (7.51) |
Thickness swelling (%) * | 7.1 (0.36) |
Properties | Direction | Relative Change | |
---|---|---|---|
δ65,35 | δ65,85 | ||
Thickness (%) | // | −1.12 (0.08) | 1.44 (0.07) |
⊥ | −1.17 (0.07) | 1.36 (0.03) | |
t-value | −0.905 NS | −2.140 NS | |
Length (mm/m) | // | −0.34 (0.03) | 0.58 (0.08) |
⊥ | −0.44 (0.09) | 0.68 (0.03) | |
t-value | −1.819 NS | 3.624 * |
Direction | Dry, 35% RH | Standard, 65% RH | Wet, 85% RH | ||||||
---|---|---|---|---|---|---|---|---|---|
IB Strength [MPa] | MOEstat [MPa] | MORstat [MPa] | IB Strength [MPa] | MOEstat [MPa] | MORstat [MPa] | IB Strength [MPa] | MOEstat [MPa] | MORstat [MPa] | |
// | 0.99 (±0.08) | 2938 (±43.38) | 38.64 (±0.65) | 0.79 (±0.10) | 2670 (±61.28) | 33.95 (±0.81) | 0.57 (±0.07) | 1656 (±46.94) | 26.80 (±0.97) |
⊥ | 2759 (±66.47) | 35.73 (±0.99) | 2557 (±76.30) | 33.25 (±0.49) | 1628 (±46.40) | 26.77 (±0.63) | |||
t-value | 4.516 * | 4.906 * | 2.306 * | 1.460 NS | 0.841 NS | 0.044 NS |
Parameter | MOEstat | MORstat | ||
---|---|---|---|---|
Parallel | Perpendicular | Parallel | Perpendicular | |
R2 | 0.987 | 0.969 | 0.966 | 0.925 |
Adjusted R2 | 0.970 | 0.964 | 0.960 | 0.913 |
Standard error | 99.484 | 97.717 | 1.020 | 1.175 |
Intercept | −412.519 | 883.65 | 26.822 | 28.071 |
RH coefficient | −5.101 | −11.624 | −0.140 | −0.120 |
MOEdyn coefficient | 0.784 | 0.573 | 0.004 | 0.003 |
F | 227.009 | 187.664 | 169.889 | 74.404 |
Significance F * | 0.000 | 0.000 | 0.000 | 0.000 |
Procedure | Displacement [mm] | Reaction Force [N] | Maximal Principal Stress [MPa] |
---|---|---|---|
T1-quasi- static stress /displacement | 8.3 | 599 | 30.98 |
T2-extended finite element method | 8.9 | 641 | 35.60 |
Experimental value | 7.6 | 563 | 35.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.A.; Adamopoulos, S.; Li, J.; Kovacikova, J. Prediction of Mechanical Performance of Acetylated MDF at Different Humid Conditions. Appl. Sci. 2020, 10, 8712. https://doi.org/10.3390/app10238712
Ahmed SA, Adamopoulos S, Li J, Kovacikova J. Prediction of Mechanical Performance of Acetylated MDF at Different Humid Conditions. Applied Sciences. 2020; 10(23):8712. https://doi.org/10.3390/app10238712
Chicago/Turabian StyleAhmed, Sheikh Ali, Stergios Adamopoulos, Junqiu Li, and Janka Kovacikova. 2020. "Prediction of Mechanical Performance of Acetylated MDF at Different Humid Conditions" Applied Sciences 10, no. 23: 8712. https://doi.org/10.3390/app10238712
APA StyleAhmed, S. A., Adamopoulos, S., Li, J., & Kovacikova, J. (2020). Prediction of Mechanical Performance of Acetylated MDF at Different Humid Conditions. Applied Sciences, 10(23), 8712. https://doi.org/10.3390/app10238712