New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Standing, R.; Nicholas, M. The wetting of alumina and vitreous carbon by copper-tin-titanium alloys. J. Mater. Sci. 1978, 13, 1509. [Google Scholar] [CrossRef]
- Hsieh, Y.Z.; Chen, J.F.; Lin, S.T. Pressureless sintering of metal-bonded diamond particle composite blocks. J. Mater. Sci. 2000, 35, 5383. [Google Scholar] [CrossRef]
- Dezellus, O.; Hoda, F.J.; Andreas, M.; Nicolas, E. Diffusion-limited reactive wetting: Spreading of Cu-Sn-Ti alloys on vitreous carbon. Scr. Mater. 2001, 44, 2543. [Google Scholar] [CrossRef] [Green Version]
- Li, W.C.; Lin, S.T.; Liang, C. Interfacial segregation of Ti in the brazing of diamond grits onto a steel substrate using a Cu-Sn-Ti brazing alloy. Metall. Mater. Trans. A 2002, 33, 2163. [Google Scholar] [CrossRef]
- Li, W.C.; Liang, C.; Lin, S.T. Epitaxial interface of nanocrystalline TiC formed between Cu-10Sn-15Ti alloy and diamond. Diam. Relat. Mater. 2002, 11, 1336. [Google Scholar] [CrossRef]
- Gummeson, D.A.; Gustafson, P.U. Modern Developments in Powder Metallurgy; Metal Powder Industries Federation Press: Princeton, NJ, USA, 1988; Volume 3, p. 443. [Google Scholar]
- Villars, P.; Prince, A.; Okamoto, H. Handbook of Ternary Alloy Phase Diagrams; ASM International, Metals Park Press: Novelty, OH, USA, 1995; Volume 8, p. 10083. [Google Scholar]
- Weitzer, F.; Perring, L.; Shibayanagi, T.; Naka, M.; Schuster, J.C. Determination of the crystal structure of CuSnTi by full profile Rietveld analysis. Powder Diffr. 2000, 15, 91–93. [Google Scholar] [CrossRef]
- Hamar-Thibault, S.; Allibert, C.H. New phases in the ternary Cu–Ti–Sn system. J. Alloy. Compd. 2001, 363, 317. [Google Scholar] [CrossRef]
- Schuster, J.C.; Naka, M.; Shibayanagi, T. Crystal structure of CuSn3Ti5 and related phases. J. Alloy. Compd. 2000, 305, L1. [Google Scholar] [CrossRef]
- Naka, M.; Schuster, J.C.; Nakade, I.; Urai, S. Determination of the Liquidus of the Ternary System Cu-Sn-Ti. J. Phase Equilibria 2001, 22, 352–356. [Google Scholar] [CrossRef]
- Huang, S.F.; Tsai, H.L.; Lin, S.T. Crystal structure and X-ray diffraction pattern of CuSnTi3 intermetallic phase. Intermetallic 2005, 13, 87–92. [Google Scholar] [CrossRef]
- Zhou, G.-J.; Zhou, Y.; Luo, Y. Phase equilibria of the Cu-Sn-Ti ternary system at 823K. AIP Adv. 2017, 7, 025118. [Google Scholar] [CrossRef]
- Sdobnyakov, N.; Khort, A.; Myasnichenko, V.; Podbolotov, K.; Romanovskaia, E.; Kolosov, A.; Sokolov, D.; Romanovski, V. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles. Comput. Mater. Sci. 2020, 184, 109936. [Google Scholar] [CrossRef]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Kacprzak, L. Binary Alloy Phase Diagram, 2nd ed.; ASM International, Metals Park Press: Novelty, OH, USA, 1990; pp. 1482, 1495, 3406. [Google Scholar]
- Joint Committee on Powder Diraction Standards (JCPDS). Powder Diffraction Files V.2.3; International Centre for Diffraction Data (ICDD): Newton Square, PA, USA, 2002. [Google Scholar]
- Kresse, G.; Furthmuller, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter. 1994, 6, 8245. [Google Scholar] [CrossRef]
Phase | Chemical Formula | Composition (at. %) | Average Atomic Mass | ||
---|---|---|---|---|---|
Cu | Sn | Ti | |||
A | Cu2SnTi3 | 32.92 | 15.95 | 51.13 | 64.34 |
B | CuSn3Ti5 | 12.15 | 32.25 | 55.60 | 72.63 |
C | Cu-9 at. %Sn | 90.95 | 8.84 | 0.21 | 68.39 |
D | Cu41Sn11 | 79.68 | 20.02 | 0.30 | 74.54 |
M | Cu-14 at. %Sn | 85.35 | 14.38 | 0.27 | 71.10 |
Diffraction Angles 2θ (deg.) | h k l | Intensity I/I0 (%) | ||
---|---|---|---|---|
Measured | Regressive | Error (%) | ||
21.80 | 21.78 | 0.1 | 1 0 0 | 12 |
25.18 | 25.50 | 1.2 | 1 0 1 | 16 |
27.08 | 26.36 | 2.7 | 0 0 2 | 36 |
33.86 | 34.45 | 1.9 | 1 0 2 | 20 |
38.20 | 38.21 | 0 | 1 1 0 | 45 |
40.52 | 40.55 | 0.1 | 1 1 1 | 100 |
44.34 | 44.41 | 0.2 | 2 0 0 | 50 |
46.44 | 46.50 | 0.1 | 2 0 1 | 25 |
47.02 | 47.02 | 0.0 | 1 1 2 | 18 |
52.44 | 52.38 | 0.1 | 2 0 2 | 27 |
54.90 | 54.27 | 1.2 | 0 0 4 | 21 |
56.70 | 56.51 | 0.3 | 1 1 3 | 10 |
59.34 | 59.16 | 0.3 | 1 0 4 | 10 |
61.48 | 61.29 | 0.3 | 2 0 3 | 13 |
66.10 | 66.66 | 0.8 | 2 1 2 | 12 |
68.90 | 69.06 | 0.2 | 3 0 0 | 35 |
70.44 | 70.65 | 0.3 | 3 0 1 | 21 |
72.80 | 72.64 | 0.2 | 2 0 4 | 17 |
73.12 | 73.82 | 1.0 | 1 0 5 | 18 |
74.60 | 74.56 | 0.1 | 2 1 3 | 18 |
75.20 | 75.32 | 0.2 | 3 0 2 | 16 |
82.96 | 82.91 | 0.1 | 3 0 3 | 13 |
85.28 | 85.17 | 0.1 | 2 1 4 | 11 |
87.56 | 87.75 | 0.2 | 2 2 2 | 14 |
Model | Space Group | Lattice Constants (Å) | Angle (˚) | Total Energy (eV) | ||||
---|---|---|---|---|---|---|---|---|
a | b | c | α | β | γ | |||
Model 1 | P6/mmm | 5.110 | 5.110 | 4.523 | 90.00 | 90.00 | 120.05 | −33.094 |
Model 2 | Cmmm | 5.134 | 4.980 | 4.650 | 90.00 | 90.00 | 119.01 | −33.926 |
Model 3 | Cmmm | 5.113 | 5.113 | 4.728 | 90.00 | 90.00 | 123.22 | −33.909 |
Model 4 | P-3m1 | 4.419 | 4.419 | 5.636 | 90.00 | 90.00 | 120.00 | −35.232 |
Model 5 | P3m1 | 4.520 | 4.520 | 5.445 | 90.00 | 90.00 | 120.00 | −34.730 |
Model 6 | P-3m1 | 4.425 | 4.425 | 5.665 | 90.00 | 90.00 | 120.00 | −35.239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-F.; Chang, Y.-C.; Liu, P.-L. New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures. Appl. Sci. 2020, 10, 8776. https://doi.org/10.3390/app10248776
Huang S-F, Chang Y-C, Liu P-L. New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures. Applied Sciences. 2020; 10(24):8776. https://doi.org/10.3390/app10248776
Chicago/Turabian StyleHuang, Sheng-Fang, Yen-Cheng Chang, and Po-Liang Liu. 2020. "New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures" Applied Sciences 10, no. 24: 8776. https://doi.org/10.3390/app10248776
APA StyleHuang, S. -F., Chang, Y. -C., & Liu, P. -L. (2020). New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures. Applied Sciences, 10(24), 8776. https://doi.org/10.3390/app10248776