Phytoremediation and Bioremediation of Pesticide-Contaminated Soil
Abstract
:1. Introduction
2. Types of Pesticides
3. Obsolete Pesticides
4. Analysis of Pesticides to Monitor Clean-Up
5. Soils Contaminated with Pesticides
6. Pesticides and Soil Ecology
7. Remediation of Pesticides
7.1. Composting
7.2. Land Farming
7.3. In Situ Bioremediation and Phytoremediation
7.3.1. Biodegradation of DDT
7.3.2. Plant Selection
7.3.3. Soil Amendments
7.3.4. Advantages and Disadvantages of Bioremediation and Phytoremediation
8. Implementing and Monitoring Phytoremediation
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abhilash, P.C.; Singh, N. Effect of growing Sesamum indicum L. on enhanced dissipation of lindane (1,2,3,4,5,6-Hexachlorhexane) from soil. Int. J. Phytorem. 2010, 12, 440–453. [Google Scholar] [CrossRef]
- Adeyemi, D.; Ukpo, G.; Anyakora, C.; Unyimadu, J.P. Organochlorine Pesticide Residues in Fish Samples from Lagos Lagoon, Nigeria. Am. J. Environ. Sci. 2008, 4, 649–653. [Google Scholar] [CrossRef]
- Ahmad, R.; Salem, N.M.; Estaitieh, H. Occurrence of organochlorine pesticides in eggs, chicken and meat in Jordan. Chemosphere 2010, 78, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Aislabie, J.M.; Richards, N.K.; Boul, H.L. Microbial degradation of DDT and its residues—A review. N. Z. J. Agric. Res. 1997, 40, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamdar, A.; Syed, J.H.; Malik, R.N.; Katsoyiannis, A.; Liu, J.; Li, J.; Zhang, G.; Jones, K.C. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: Contamination levels and their potential for air-soil exchange. Sci. Total Environ. 2014, 470–471, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M. Aging, bioavailability, and overestimation of risk from environmental pollutants. J. Environ. Sci. Technol. 2000, 34, 4259–4265. [Google Scholar] [CrossRef]
- Aliyu, H.G.; Adamu, H.M. The potential of maize as phytoremediation tool of heavy metals. Eur. Sci. J. 2014, 10, 32–37. [Google Scholar]
- Amato, C.D.; Torres, J.P.M.; Malm, O. DDT (Dichlorodiphenyltrichloroethane): Toxicity and environmental contamination—A review. Quim. Nova 2002, 15, 995–1002. [Google Scholar]
- Anderson-Teixeira, K.J.; Davis, S.C.; Masters, M.D.; Delucia, E.H. Changes in soil organic carbon under biofuel crops. GCB Bioenergy 2009, 1, 75–96. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC; Horwitz, W., Latimer, G.W., Eds.; AOAC International: Rockville, MD, USA, 2005; Available online: www.aoac.org (accessed on 3 February 2020).
- Aranda, E.; Scervino, J.M.; Godoy, P.; Reina, R.; Ocampo, J.A.; Wittich, R.M.; García-Romera, I. Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environ. Pollut. 2013, 181, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Aslund, M.W.; Zeeb, B.A.; Aslund, M.W.; Zeeb, B.A. A Review of Recent Research Developments into the Potential for Phytoextraction of Persistent Organic Pollutants (Pops) from Weathered, Contaminated Soil. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination; NATO Science for Peace and Security Series C: Environmental Security; Kulakow, P., Pidlisnyuk, V., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 35–59. [Google Scholar]
- ASP (Africa Stockpiles Programme). Obsolete Pesticide Stocks: An Issue of Poverty. Africa Stockpiles Programme. 2003. Available online: http://www.africastockpiles.org/pdf/ (accessed on 3 February 2020).
- Atkinson, C.; Fitzgerald, J.; Hipps, N. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Bajak, A. The Developing World is Awash in Pesticides. Does it Have to Be? 2012. Available online: https://ensia.com/features/developing-world-pesticides/ (accessed on 3 February 2020).
- Baleguel, N.P.; Dobson, H.M.; Matthews, G.A. Vector management is crucial for healthier farmers. Int. Pest Control 2007, 49, 70–71. [Google Scholar]
- Baleguel, N.P.; Ghogomu, T.R.; Baleguel, P.D. Spraying from a boat to control Simulium larvae along the Sanaga River, Cameroon. Int. Pest Control 2011, 53, 144–146. [Google Scholar]
- Basheer, C.; Alnedhary, A.A.; Rao, B.S.M.; Lee, H.K. Determination of carbamate pesticides using micro-solid-phase extraction combined with high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 211–216. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jimenez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Bisht, S.; Pandey, P.; Bhargava, B.; Sharma, S.; Kumar, V.; Sharma, K.D. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol. 2015, 46, 7–21. [Google Scholar] [CrossRef]
- Blackwell, P.; Reithmuller, G.; Collins, M. Biochar Application to Soil. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009. [Google Scholar]
- Blankespoor, B.; Dasgupta, S.; Dhouibi, W.; Lagnaoui, A.; Meisner, C.; Salah, H.B. Stockpiles of Obsolete Pesticides: Threats to Ecosystems and Biodiversity; Energy and Environment Research, Development Research Group, World Bank: Washington, DC, USA, 2009; Available online: http://econ.worldbank.org/research (accessed on 3 February 2020).
- Blaszak, M.; Pelech, R.; Graczyk, P. Screening of microorganisms for biodegradation of simazine pollution (obsolete pesticide Azotop 50 WP). Water Air Soil Pollut. 2011, 220, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, E.; Dequiedt, S.; Lelievre, M.; van Oort, F.; Lamy, I.; Maron, P.A.; Ranjard, L. Positive effect of the Miscanthus crop on microbial diversity in wastewater-contaminated soil. Environ. Chem. Lett. 2015, 13, 495–501. [Google Scholar] [CrossRef]
- Brändli, R.C.; Hartnik, T.; Henriksen, T.; Cornelissen, G. Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere 2008, 73, 1805–1810. [Google Scholar] [CrossRef] [PubMed]
- Briceno, G.; Palma, G.; Duran, N. Influence of organic amendment on the biodegradation and movement of pesticides. Crit. Reviews in Environ. Sci. Technol. 2007, 37, 233–271. [Google Scholar] [CrossRef]
- Brussaard, L. Biodiversity and ecosystem functioning in soil. AMBIO 1997, 26, 563–569. [Google Scholar]
- Buczynska, A.; Szadkowska-Stanczyk, I. Identification of health hazards to rural population living near pesticide dump sites in Poland. Int. J. Occup. Environ. Health 2005, 18, 331–339. [Google Scholar]
- Cai, X.; Zheng, X.; Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 2011, 45, 334–339. [Google Scholar] [CrossRef]
- California Integrated Waste Management Board. Organics: Persistence and Degradation of Pesticides in Composting. 2002. Available online: http://www.calrecycle.ca.gov/publications/Documents/Organics/44200015.pdf (accessed on 3 November 2016).
- Carson, R. Silent Spring; Riverside Press; Houghton Mifflin: Boston, MA, USA, 1962; pp. 20–27. [Google Scholar]
- Castelo-Grande, T.; Augusto, P.A.; Monteiro, P.; Estevez, A.M.; Barosa, D. Remediation of soils contaminated with pesticides: A review. Int. J. Environ. Analyt. Chem. 2010, 90, 438–467. [Google Scholar] [CrossRef]
- Centofanti, T.; McConnell, L.L.; Chaney, R.L.; Beyer, W.N.; Andrade, N.A.; Hapeman, C.J.; Torrents, A.; Nguyen, A.; Anderson, M.O.; Novak, J.M.; et al. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils. Environ. Pollut. 2016, 210, 182–191. [Google Scholar] [CrossRef]
- Chakraborty, P.; Zhang, G.; Li, J.; Xu, Y.; Liu, X.; Tanabe, S.; Jones, K.C. Selected organochlorine pesticides in the atmosphere of major Indian cities: Levels, regional versus local variations, and sources. Environ. Sci. Technol. 2010, 44, 8038–8043. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Chappell, J. Phytoremediation of TCE in Groundwater Using Populus Status Report Prepared for the USEPA Technology Innovation Office under a National Network of Environmental Management Studies Fellowship; U.S. Environmental Potection Agency: Washington, DC, USA, 1997; pp. 1–38.
- Chaudhry, M.Q.; MacNicoll, A.D. Mechanisms of Insecticide Resistance. In Pesticide Outlook; Royal Society of Chemistry: London, UK, 1998; pp. 23–28. [Google Scholar]
- Chaudhry, Q.; Shroder, P.; Werck-Reihhart, D.; Grajek, W.; Marecik, R. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ. Sci. Pollut. Res. 2002, 9, 4–19. [Google Scholar] [CrossRef]
- Chen, S.; Edwards, C.; Subler, S. A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological process and plant growth. Appl. Soil Ecol. 2001, 18, 69–82. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, J.; Luo, Y. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions. J. Anal. Appl. Pyrolysis 2008, 83, 165–174. [Google Scholar] [CrossRef]
- Cho, Y.M.; Ghosh, U.; Kennedy, A.J.; Grossman, A.; Ray, G.; Tomaszewski, J.E.; Smithenry, D.W.; Bridges, T.S.; Luthy, R.G. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environ. Sci. Technol. 2009, 43, 3815–3823. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.K.; Wong, M.H.; Zhang, J. Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oriza sativa L: I. Whole plant study. Environ. Geochem. Health 2006, 28, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Coats, J.R. What happens to degradable pesticides? Chemtech 1993, 23, 25–29. [Google Scholar]
- Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007, 9, 1337–1348. [Google Scholar] [CrossRef]
- Coppella, S.J.; Cruz, N.D.; Payne, G.F.; Pogell, B.M.; Speedie, M.K.; Karns, J.S.; Sybert, E.M.; Connor, M.A. Genetic engineering approach to toxic waste management case study for organophosphate waste treatment. Biotechnol. Prog. 1990, 6, 76–81. [Google Scholar] [CrossRef]
- Crecchio, C.; Curci, M.; Pizzigallo, M.; Ricciuti, P.; Ruggiero, P. Molecular approaches to investigate herbicide-induced bacterial community changes in soil microcosms. Biol. Fertil. Soils 2001, 33, 460–466. [Google Scholar] [CrossRef]
- Culliney, T.W. Role of Arthropods in maintaining soil fertility. Agriculture 2013, 3, 629–659. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.D.; Shann, J.R.; Crowley, D.E.; Anderson, T.A. Phytoremediation of Contaminated Water and Soil. In Phytoremediation of Soil and Water Contaminants; Kruger, E.L., Anderson, T.A., Coats, J.R., Eds.; American Chemical Society Symposium Series: Washington, DC, USA, 1997; Volume 664, pp. 12–17. [Google Scholar]
- Darko, G.; Acquaah, S.O. Levels of Organochlorine Pesticides Residues in Meat. Int. J. Environ. Sci. Technol. 2007, 4, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Meisner, C.; Wheeler, D. Stockpiles of Obsolete Pesticides and Cleanup Priorities. In Policy Research Working Paper No 4893; The World Bank Development Research Group; Environment and Energy Team; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Davis, L.; Erickson, L.; Hattiarachchi, G.; Mengarelli, J.; Pidlisnyuk, V.; Roozeboom, K.; Stefanovska, T.; Tatarina, N. Phytoremediation with Miscanthus Produced for Bioenergy. In Proceedings of the 11th International Phytotechnologies Conference, Herklion, Greece, 30 September−3 October 2014; p. 313. [Google Scholar]
- Davis, L.C.; Castro-Diaz, S.; Zhang, Q.; Erickson, L.E. Benefits of vegetation for soils with organic contaminants. Crit. Rev. Plant Sci. 2002, 21, 457–491. [Google Scholar] [CrossRef]
- De Lurdes Dinis, M.; Fiuza, A. Exposure Assessment to Hazardous Pesticides-Strategies to Reduce Human and Environmental Risks. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe; Simeonov, L., Macaev, F., Simeonova, B., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherland, 2012; pp. 69–84. [Google Scholar]
- Dem, S.B.; Cobb, J.M.; Mullins, D.E. Pesticide Residues in Soil and Water from Four Cotton Growing Areas of Mali, West Africa. J. Agric. Food Environ. Sci. 2007, 1, 1–12. [Google Scholar]
- Dickinson, N.M.; Baker, A.J.M.; Doronila, A.; Laidlaw, S.; Reeves, R.D. Phytoremediation of inorganics: Realism and synergies. Int. J. Phytorem. 2009, 11, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Dimas, S. Danger of Obsolete Pesticides. In Caution! Dangerous Chemicals, Obsolete Pesticides; Wielsaw, S.K., Ed.; Centre for European Policy Studies: Brussels, Belgium, 2007; pp. 108–114. Available online: www.ceps.eu/ceps/dld/1663/pdf (accessed on 29 June 2012).
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Dory, S.L.; Shang, T.Q.; Wilson, A.M.; Tangen, J.; Westergreen, A.D.; Newman, L.A.; Strand, S.E.; Gordon, M.P. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P4s0 2E1. Proc. Natl. Acad. Sci. USA 2000, 97, 6287–6291. [Google Scholar]
- Drozda, V. The problem and obsolete pesticides disposal in Ukraine: Solution, Economy. In Proceedings of the 6th International HCH and Pesticide Forum, Poznan, Poland, 20–22 March 2001; pp. 143–147. [Google Scholar]
- Duiker, S.W.; Stehouwer, R. Earthworms, Penn State Extension. 2016. Available online: https://extension.psu.edu/ (accessed on 3 February 2020).
- Đurović, R.; Đorđević, T.; Radivojević, L.J.; Šantrić, L.J.; Gajić Umiljendić, J. Multiresidue Analysis of Pesticides in Soil by Liquid-Solid Extraction Procedure. Pestic. Phytomed. 2012, 27, 239–244. [Google Scholar] [CrossRef]
- Elad, Y.; David, D.R.; Harel, Y.M.; Borenshtein, M.; Ben Kalifa, H.; Silber, A.; Graber, E.R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 2010, 100, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Embassy of the Republic of Congo. About Congo: Congo Bassin; Embassy of the Republic of Congo: Washington, DC, USA, 2016; Available online: http://www.ambacongo-us.org/en-us/aboutcongo/congobasin.aspx (accessed on 30 November 2016).
- Environment Canada. Canada’s National Implementation Plan under the Stockholm Convention on Persistent Organic Pollutants; Environment and Climate Change Canada: Gatineau, QC, Canada, 2006; 159p, Available online: www.pops.int/documents/implementation/nips/submissions/default.htm (accessed on 16 January 2012).
- Eqani, S.A.; Malik, R.N.; Cincineli, A.; Zhang, G.; Mohammad, A.; Qadir, A.; Rashid, A.; Bokhari, H.; Jones, K.C.; Katsoyiannis, A. Uptake of organichlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) by river water fish: The case of River Chenab. Sci. Total Environ. 2013, 450–451, 83–91. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Pesticide Use. 2017. Available online: http://www.fao.org/faostat/en/#data/RP (accessed on 11 January 2017).
- FAO. Prevention and Disposal of Obsolete Pesticides: Inventory and Environmental Risk Assessment. 2014. Available online: http://www.fao.org/agriculture/crops/obsolete-pesticides/how-deal/inventory-risk/en/ (accessed on 15 September 2014).
- FAO. A New Deal to Rid Eastern Europe, the Caucasus and Central Asia of Obsolete Pesticides. 2012. Available online: http://www.fao.org/news/story/en/item/134629/icode/ (accessed on 25 October 2016).
- FAO. Pesticide Problem Solved in Paraguay. 2011. Available online: http://www.fao.org/agriculture/crops/news-events-bulletins/detail/en/item/55048/icode/2/?no_cache=1 (accessed on 3 February 2020).
- FAO. The Preparation of Inventories of Pesticides and Contaminated Materials; FAO Pesticide Disposal Series 1; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/docrep/013/i1724e/i1724e.pdf (accessed on 23 November 2016).
- FAO. Baseline Study on the Problem of Obsolete Pesticides Stocks. No. 9, Viale Delle Terme di Caracalla, Rome. 2001. Available online: http://www.fao.org/docrep/003/x8639e/x8639e00.htm#TopOfPage (accessed on 21 November 2016).
- FAO. Obsolete Pesticides: Problems, Prevention and Disposal. Plant Production and Protection Division; FAO: Rome, Italy, 1998. [Google Scholar]
- FAO. Disposal of Bulk Quantities of Obsolete Pesticides in Developing Countries. In Provisional Technical Guidelines No. 4; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996; Available online: http://www.fao.org/fileadmin/user_upload/obsolete_pesticides/docs/w1604e.pdf (accessed on 3 February 2020).
- Fagervold, S.K.; Chai, Y.; Davis, J.W.; Wilken, M.; Cornelissen, G.; Ghosh, U. Bioaccumulation of polychlorinated dibenzo-p-dioxins/dibenzofurans in Eisenia fetida from floodplain soils and the effect of activated carbon amendment. Environ. Sci. Technol. 2010, 44, 5546–5552. [Google Scholar] [CrossRef]
- Fenoll, J.; Hellín, P.; Marín, C.; Martínez, C.M.; Flores, P. Multiresidue Analysis of Pesticides in Soil by Gas Chromatography with Nitrogen−Phosphorus Detection and Gas Chromatography Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 7661–7666. [Google Scholar] [CrossRef]
- Figala, J.; Vranova, V.; Rejsek, K.; Formanek, P. Giant miscanthus (Miscanthus x giganteus greef et deu.)—A promising plant for soil remediation: A mini review. Acta Universitatis Agriculturae et Silviculturea Mendalianae Brunensis 2015, 63, 224102246. [Google Scholar] [CrossRef]
- Fisko, S.; Rutter, A.; Zeeb, B. Potential phytoextraction of PCB from contaminated soil using weed. J. Sci. Total Environ. 2010, 408, 3469–3476. [Google Scholar]
- Fogg, P.; Boxall, A.B.A.; Walker, A. Degradation of pesticides in biobeds: The effect of concentration and pesticide mixtures. J. Agric. Food Chem. 2003, 51, 5344–5349. [Google Scholar] [CrossRef] [PubMed]
- Fogg, P.; Boxall, A.B.A.; Walker, A.; Jukes, A. Degradation and leaching potential of pesticides in biobed systems. Pest Manag. Sci. 2004, 60, 645–654. [Google Scholar] [CrossRef]
- Fontem, D.A.; Gumedzoe, M.Y.D.; Nono-Womdim, R. Biological constraints in tomato production in the western highlands of Cameroon. Tropicultura 1998, 16, 89–92. [Google Scholar]
- Fruhwirth, P.; Liebhard, P. Miscanthus sinensis Giganteus. Produktion, Inhaltsstoffe und Verwertung. In Miscanthus sinensis Giganteus. Chinaachilf als nachwachsender Rohstoff; Landliches Forbildingsinstitut und Landwirtschaftskammer Osterreich: Wien, Austria, 2004; pp. 34–38. (In German) [Google Scholar]
- Galuszka, A.; Migaszewski, Z.M.; Manecki, P. Pesticide burial grounds in Poland: A review. Environ. Int. 2011, 37, 1265–1272. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Q.; Ling, W.; Zhu, X. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J. Hazard. Mater. 2011, 185, 703–709. [Google Scholar] [CrossRef]
- Garbisu, C. Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Rev. Environ. Health 2002, 17, 63–68. [Google Scholar] [CrossRef]
- Gianfreda, L.; Bollag, J.-M. Isolated Enzymes for the Transformation and Detoxification of Organic Pollutants. In Enzymes in the Environment: Activity, Ecology and Applications; Burns, R.G., Dick, R., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 491–538. [Google Scholar]
- Golubev, I.A. Handbook of Phytoremediation; Nova Science Publishers: Hauppauge, NY, USA, 2011. [Google Scholar]
- Gomez-Eyles, J.L.; Sizmur, T.; Collins, C.D.; Hodson, M.E. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ. Pollut. 2011, 159, 616–622. [Google Scholar] [CrossRef]
- Government of Canada. Canada’s National Implementation Plan under the Stockholm Convention on Persistent Organic Pollutants; Government of Canada: Ottawa, ON, Canada, 2006. Available online: www.pops.int/documents/implementation/nips.pdf (accessed on 12 July 2012).
- Grama, M.; Pinzaru, I.; Mirza, C.; Tertea, V. Initiatives and Actions on the Elimination of Obsolete Pesticides Risks/Hazards in the Republic of Moldova. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe; Simeonov, L., Macaev, F., Simeonova, B., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2012; pp. 433–448. [Google Scholar]
- Guyot, C.; Chenivesse, D. A Simple and Affordable System to Prevent Water Contamination. ICMEDITION; Bayer Crop Science: Monheim am Rhein, Germany, 2006; pp. 31–33. [Google Scholar]
- Hagerbaumer, A.; Hoss, S.; Heininger, P.; Traunspurger, W. Experimental studies with nematodes in ecotoxicology: An overview. J. Nematol. 2015, 47, 11–27. [Google Scholar]
- Hajjar, M.J. Obsolete pesticides in Saudi Arabia: Problems, prevention and disposal. MOJ Toxicol. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Hajjar, M.J. The persistent organic pollutants (POPs) in the Middle East Arab Countries. Int. J. Agron. Plant Prod. 2012, 3, 11. [Google Scholar]
- Hamada, M.; Wintersteiger, R. Determination of phenylurea herbicides in drinking water. J. Planar Chromatogr.-Mod. TLC 2002, 15, 11–18. [Google Scholar] [CrossRef]
- Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive priming of black carbon and glucose mineralization. Org. Geochem. 2004, 35, 823–830. [Google Scholar] [CrossRef]
- Harmsen, J. An African Approach for Risk Reduction of Soil Contamination by Pesticides; Alterra Report 1742; Alterra: Wageningen, The Netherlands, 2009. [Google Scholar]
- Harmsen, J.; Ammati, M.; Davis, M.; Sylla, C.H.; Sidibe, T.; Kone, T.H.; Diallo, A.; Demba, A.S.Y. An African Approach for Risk Reduction of soil Contaminated by Obsolete Pesticides. In Proceedings of the 10th International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, 5–9 May 2009. [Google Scholar]
- Harris, J.A. Measurements of the soil microbial community for estimating the success of restoration. Eur. J. Soil Sci. 2003, 54, 801–808. [Google Scholar] [CrossRef]
- Haylamicheal, I.D.; Dalvie, M.A. Disposal of obsolete pesticides, the case of Ethiopia. Environ. Int. 2009, 35, 667–673. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 97th ed.; Haynes, W.M., Ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hazardous Waste and Information Center. Use of Landfarming to Remediate Soils Contaminated with Pesticide Waste; Waste Management and Research Center, University of Illinois. 1994. Available online: http://www.istc.illinois.edu/info/library_docs/tr/tr19.pdf (accessed on 21 October 2016).
- Hemen, P. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. J. Environ. Sci. Technol. 2011, 4, 118–138. [Google Scholar]
- Henriques, W.; Jeffers, R.D.; Lacher, T.E.; Kandell, R.J. Agrochemical use on banana plantations in Latin America: Perspectives on ecological risk. Environ. Tox. Chem. 1997, 16, 91–99. [Google Scholar] [CrossRef]
- Hippelein, M.; McLachlan, M.S. Soil/Air Partitioning of Semivolatile Organic Compounds. 1. Method Development and Influence of Physical−Chemical Properties. Environ. Sci. Technol. 1998, 32, 310–316. [Google Scholar] [CrossRef]
- Hladik, M.L.; Smalling, K.L.; Kuivila, K.M. Methods of Analysis—Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry; U.S. Geological Survey Techniques and Methods: Reston, VA, USA, 2009; 18p.
- Hogendoorn, E.A.; Huls, R.; Dijkman, E.; Hoogerbrugge, R. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils. J. Chromatogr. A 2001, 938, 23–33. [Google Scholar] [CrossRef]
- Holland, N.T.; Duramad, P.; Rothman, N.; Figgs, L.W.; Blair, A.; Hubbard, A.; Smith, M.T. Micronucleus frequency and proliferation in human lymphocytes after exposure to herbicide 2,4-dichlorophenoxyacetic acid in vitro and in vivo. J. Mutation Res. Gen. Toxic Environ. Mutagen. 2002, 521, 165–178. [Google Scholar] [CrossRef]
- Huang, J.W.; Cunningham, S.D. Lead Phytoextraction: Species Variation in Lead Uptake and Translocation. New Phytol. 1996, 134, 75–84. [Google Scholar] [CrossRef]
- Hussain, S.; Siddique, T.; Arshad, M.; Saleem, M. Bioremediation and phytoremediation of pesticides: Recent advances. Crit. Rev. Environ. Sci. Technol. 2009, 39, 843–907. [Google Scholar] [CrossRef]
- ITRC (Interstate Technology and Regulatory Cooperation). Phytotechnology Technical and Regulatory Guidance Document. 2001. Available online: http://www.itrcweb.org/Guidance/GetDocument?documentID=64 (accessed on 25 November 2016).
- ITRC. Emerging Technologies for the Remediation of Metals in Soils-Phytoremediation. 1997. Available online: www.itrcweb.org (accessed on 10 December 2014).
- Javaid, M.K.; Ashiq, M.; Tahir, M. Review article: Potential of biological agents in decontamination of agricultural soil. Scientifica 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnan, K.; Barea, J.M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 2003, 37, 1–16. [Google Scholar] [CrossRef]
- Joner, E.J.; Leyval, C. Phytoremediation of organic pollutants using mycorrhizal plants: A new aspect of rhizosphere interactions. Agronomie 2003, 23, 495–502. [Google Scholar] [CrossRef]
- Vijgen, J.; Egenhofer, C. Obsolete Pesticides: A Ticking Time Bomb Why We Have to Act Now. CEPS Special Report. 2009. Available online: http://aei.pitt.edu/10965/1/1841[1].pdf (accessed on 25 October 2016).
- Jorgensen, R.P.; Spliid, N.H. Accumulation of pesticides in anaerobic clayey till-controls and implications for groundwater. Groundw. Monit. Remed. 2016, 36, 43–53. [Google Scholar] [CrossRef]
- Kannan, K.; Battula, S.; Loganathan, B.G.; Hong, C.S.; Lam, W.H.; Villeneuve, D.L.; Sajwan, K.; Giesy, J.P.; Aldons, K.M. Geographical Distribution and Accumulation Features of Organochlorine Residues in Fish in Tropical Asia and Oceania. Environ. Sci. Technol. 1995, 29, 2673–2683. [Google Scholar] [CrossRef]
- Kapoor, J.; Rao, A.L.J. Spectrophotometric determination of ziram and zineb using 4-(2-pyridylazo) resorcinol. Pestic. Manag. Sci. 1994, 42, 109–112. [Google Scholar] [CrossRef]
- Karanasios, E.; Tsiropoulos, N.G.; Karpouzas, D.G.; Ehaliotis, C. Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in southern Europe. J. Agric. Food Chem. 2010, 58, 9147–9156. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Davis, L.C.; Erickson, L.E.; Al-Khatib, K.; Kulakow, P.A.; Barnes, P.L.; Hutchinson, S.L.; Nurzhanova, A.A. Potential for plant-based remediation of pesticide-contaminated soil and water using nontarget plants such as trees, shrubs and grasses. Crit. Rev. Plant Sci. 2004, 23, 91–101. [Google Scholar] [CrossRef]
- Keller-Byrne, J.E.; Khuder, S.A.; Schaub, E.A.; O’Neal, M. A Meta-analysis of Non-Hodgkin’s Lymphoma among Farmers in the Central United States. Am. J. Ind. Med. 1997, 31, 442–444. [Google Scholar] [CrossRef]
- Kiflom, W.; Wandiga, G.S.O.; Nganga, P.K.; Kamau, G.N. Variation of plant p,p’-DDT uptake with age and soil type and dependence of dissipation on temperature. J. Environ. Int. 1999, 25, 479–487. [Google Scholar] [CrossRef]
- Kihampa, C.; Mato, R.R.; Mohamed, H. Residues of organochlorinated pesticides in soil from tomato fields, Ngarenanyuki, Tanzania. J. Appl. Sci. Environ. Manag. 2010, 14, 37–40. [Google Scholar] [CrossRef]
- Kishimba, M.A.; Mihale, M.J. Levels of pesticide residues and metabolites in soil at Vikuge Farm, Kibaha District, Tanzania—A classic case of soil contamination by obsolete pesticides. Tanzan. J. Sci. 2004, 30, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Koc, F.; Yigit, Y.; Das, Y.K.; Gurel, Y.; Yarali, C. Determinati on of aldicarb, propoxur, carbofuran, carbaryl and methiocarb residues in honey by HPLC with post-column derivatization and fl uorescence detecti on aft er elution from a florisil column. J. Food Drug Anal. 2008, 16, 39–45. [Google Scholar]
- Kolb, S.; Fermanich, K.; Dornbush, M. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2009, 73, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Kole, R.K.; Banerjee, H.; Bhattacharyya, A. Monitoring of pesticide residues in farm gate vegetable samples in west Bengal. Pest. Res. J. 2002, 14, 77–82. [Google Scholar]
- Kookana, R.S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review. Aust. J. Soil Res. 2010, 48, 627–637. [Google Scholar] [CrossRef]
- Kostov, D. Atypical grown, abnormal mitosis, polyploidy and chromosome fragmentation induced by hexachlorocyclohexane. Nature 1948, 142, 1111–1116. [Google Scholar]
- Krieger, R. Handbook of Pesticide Toxicology: Principles and Agents, 2nd ed.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Krutz, L.J.; Shaner, D.L.; Accinelli, C.; Zablotowicz, R.M.; Henry, W.H. Atrazine dissipation in s-triazine-adapted and nonadapted soil from Colorado and Mississippi: Implications of enhanced degradation on atrazine fate and transport parameters. J. Environ. Qual. 2008, 37, 848–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulakow, P.A.; Pidlisnyuk, V.V. NATO Science for Peace and Security Series—C: Environmental Security. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural and Wastewater Contamination; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Laird, B.D.; Goncharov, A.B.; Chan, H.M. Body burden of metals and persistent organic pollutants among Inuit in the Canadian Artic. Environ. Int. 2013, 59, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lasat, M.M. Phytoextraction of metals from contaminated soil: A review of Plant/Metal interaction and assessment of pertinent agronomic issues. J. Hazard. Subs. Res. 2000, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Lei, M.; Chen, T.; Yang, J.; Wan, X.; Yang, S. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil. J. Environ. Sci. 2014, 26, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, R.; Breivik, K.; Dachs, J.; Muire, D. Global fate of POPs: Current and future research directions. Environ. Pollut. 2007, 150, 150–165. [Google Scholar] [CrossRef]
- Lunney, A.I.; Zeeb, B.A.; Reimer, K.J. Uptake of weathered DDT invascular plants: Potential for phytoremediation. Environ Sci. Technol. 2004, 38, 6147–6154. [Google Scholar] [CrossRef]
- Lysychenko, G.; Weber, R.; Kovach, V.; Gertsuik, M.; Watson, A.; Krasnova, I. Threats to water resources from hexachlorobenzene waste at Kalush City (Ukraine)—A review of the risks and the remediation options. Environ. Sci. Pollut. Res. Int. 2015, 22, 14391–14404. [Google Scholar] [CrossRef]
- Mackay, D.; Shiu, W.Y.; Ma, K.C.; Lee, S.C. Handbook of Physical-Chemical Properties and Environmental Fate of Organic Compounds, 2nd ed.; Taylor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Maini, P.; Boni, R. Gas chromatographic determination of dithiocarbamate fungicides in workroom air. Bull. Environ. Contam. Toxicol. 1986, 37, 931–937. [Google Scholar] [CrossRef]
- Mamedov, K.; Shamaeva, N.; Rustamova, B. Mutagenic Activity of Pesticides and the Environment; Ylim: Ashgabat, Turkmenistan, 1991; 176p. (In Russian) [Google Scholar]
- Manahan, S.E. Fundamentals of Environmental Chemistry, 2nd ed.; CRC Press: Boca Rotan, FL, USA, 2001. [Google Scholar]
- Manfo, F.P.T.; Moundipa, P.F.; Dechaud, H.; Tchana, A.N.; Nantia, E.A.; Zabot, M.-T.; Pugeat, M. Effect of agropesticides use on male reproductive function: A study on farmers in Djutitsa (Cameroon). Environ. Toxicol. 2010, 27, 423–432. [Google Scholar] [CrossRef]
- Mansour, S.A. Persistent organic pollutants (POPs) in Africa: Egyptian scenario. Hum. Exp. Toxicol. 2009, 28, 531–566. [Google Scholar] [CrossRef]
- Marmiroli, N.; Marmiroli, M.; Maestri, E. Phytoremediation and Phytotechnologies: A Review for the Present and the Future. In Soil and Water Pollution Monitoring, Protection and Remediation, Proceedings of the NATO Advanced Workshop, Primosten, Croatia, 9–13 May 2006; Twardowska, I., Allen, H.E., Häggblom, M.H., Stefaniak, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 403–416. [Google Scholar]
- Marmiroli, N.; McCutcheon, S.C. Making Phytoremediation a Successful Technology. In Phytoremediation: Transformation and Control of Contaminants; McCutcheon, S.C., Schnoor, J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; Chapter 3; pp. 85–119. [Google Scholar]
- Matthews, G.A. Misery in the Rain Forest. Int. Pest Control 2005, 47, 140–141. [Google Scholar]
- Mattina, M.J.I.; Iannucci-Berger, W.; Dykas, L. Chlordane uptake and its translocation in food crops. J. Agric. Food Chem. 2000, 48, 1909–1915. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, S.C.; Schnoor, J.L. Chapter 1: Overview of Phytotransformation and Control of Wastes. In Phytoremediation: Transformation and Control of Contaminants; McCutcheon, S.C., Schnoor, J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 3–58. [Google Scholar]
- McGuinness, M.; Dowling, D. Plant-associated bacterial degradation of toxic compounds in soil. Int. J. Environ. Res. Public Health 2009, 6, 2226–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medvedeva, G.B. The action of insecticide benzenehexochloride on germinating seeds. J. Agrobiol. 1947, 4, 34–39. (In Russian) [Google Scholar]
- Meredith, M.L.; Hites, R.A. Polychlorinated biphenyl accumulation in tree bark and wood growth rings. J. Environ. Sci. Technol. 1987, 21, 709–712. [Google Scholar] [CrossRef]
- Mitra, J.; Raghu, K. Effects of DDT on the growth of crop plants. J. Environ. Pol. 1989, 61, 157–170. [Google Scholar] [CrossRef]
- Moklyachuk, L.; Drebot, O.; Moklyachuk, O.; Moklyachuk, T.; Monarh, V. Ecological Risks from Contamination of Ukrainian Soils by Persistent Organic Pollutants. Environ. Ecol. Res. 2014, 2, 27–34. [Google Scholar]
- Moklyachuk, L.; Gorodiska, I.; Slobodenyuk, O.; Petryshyna, V. Phytoremediation of Soil Polluted with Obsolete Pesticides in Ukraine. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination; Kulakow, P.A., Pidlisnyuk, V.V., Eds.; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2010; pp. 113–124. [Google Scholar]
- Moorman, T.B.; Cowan, J.K.; Arthur, E.L.; Coats, J.R. Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol. Fertil. Soils 2001, 33, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, S.G.; Seghatoleslami, M.J. Phytoremediation: A review. Adv. Agric. Biol. 2013, 1, 5–11. [Google Scholar]
- Morikawa, H.; Erkin, O.C. Basic principles in phytoremediation and some application to air pollution control. Chemosphere 2003, 52, 1553–1558. [Google Scholar] [CrossRef]
- Mrema, E.J.; Rubino, F.M.; Colosio, C. Chapter 1: Obsolete Pesticides—A Threat to Environment, Biodiversity and Human Health. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe; Simeonov, L.I., Macaev, F.Z., Simeonova, B.G., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer Science + Business Media: Dordrecht, The Netherlands, 2013; pp. 1–21. [Google Scholar]
- Chen, Z.; Huang, L.; Song, S.; Zhang, Y.; Li, Y.; Tan, H.; Li, X. Enhanced disappearance of mesotrione and fomesafen by water hyacinth in water. Int. J. Phytoremed. 2019, 21, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Murtaza, B.; Niazi, N.K.; Sabir, M. Soil Contaminants: Sources, Effects, and Approaches for Remediation. In Improvement of Crops in the Era of Climatic Changes Volume 2; Ahmad, P., Wani, M.R., Azooz, M.M., Tran, L.-S.P., Eds.; Springer Science + Business Media: New York, NY, USA, 2014; pp. 171–197. [Google Scholar]
- Mwegoha, W.J.S. The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: Opportunities and challenges. J. Sustain. Dev. Afr. 2008, 10, 140–156. [Google Scholar]
- Mwegoha, W.; Mbuya, O.S.; Ugochukwu, N.H.; Abazinge, M. Use of chicken manure for biostimulation and enhancement for perchlorate rhizodegradation in soil and water media. Bioremed. J. 2007, 11, 61–70. [Google Scholar] [CrossRef]
- Namgay, T.; Singh, B.; Singh, B.P. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Aust. J. Soil Res. 2010, 48, 638–647. [Google Scholar] [CrossRef]
- Nhan, D.D.; Carvalho, F.P.; Am, N.M.; Tuan, N.Q.; Yen, N.T.; Villeneuve, J.P.; Cattini, C. Chlorinated pesticides and PCBs in sediments and molluscs from freshwater canals in the Hanoi region. Environ. Pollut. 2001, 112, 311–320. [Google Scholar] [CrossRef]
- Nollet, L.M.L.; Rathore, H.S. Handbook of Pesticides: Methods of Pesticide Residue Analysis; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Nurzhanova, A.; Kalugin, S.; Zhambakin, K. Obsolete Pesticides and Application of Colonizing Plant Species for Remediation of Contaminated Soil in Kazakhstan. In Proceedings of the 11th Forum of the International HCH and Pesticide Association. Environ. Sci. Pollut. Res. 2013, 20, 2054–2063. [Google Scholar] [CrossRef]
- Nurzhanova, A.; Kulakow, P.A.; Rubin, E.; Rakhimbayev, I.; Sedlovshik, A.; Zhambakin, K.; Kalugin, S.; Kolysheva, E.; Erickson, L.E. Obsolete Pesticide Pollution and Phytoremediation of Contaminated Soil in Kazakhstan. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination; Kulakow, P.A., Pidlisnyuk, V.V., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 87–112. [Google Scholar]
- Nurzhanova, A.; Pidlisnyuk, V.; Kalugin, S.; Stefanovska, T.; Drimal, M. Miscanthus × giganteus as a new highly efficient phytoremediation agent for improving soils contaminated by pesticide residues and supplemented contaminants. Commun. Appl. Biol. Sci. 2015, 80, 361–366. [Google Scholar]
- Nurzhanova, A.; Pidlisnyuk, V.; Sailaukhanuly, Y.; Kenessov, B.; Trogl, J.; Aligulova, R.; Kalugin, S.; Nurmagambetova, A.; Abit, K.; Stefanovska, T.; et al. Phytoremediation of military soil contaminated by metals and organochlorine pesticides using miscanthus. Commun. Agric. Appl. Biol. Sci. 2017, 82, 61–68. [Google Scholar]
- Nurzhanova, A.; Rakhimbaev, I.; Zhambakin, K.; Sedlovskiy, A. The problem of obsolete pesticides pollution for the Kazakhstan environment and soil remediation by wild plants. Asian Australas. J. Plant Sci. Biotechnol 2010, 4, 98–103. [Google Scholar]
- Nurzhanova, A.; Zhambakin, K.; Rarkhimbayev, I.; Sedlovskiy, A.; Kalugin, S. Obsolete pesicides and phytoremediation of polluted soil in Kazakhstan. J. Life Sci. 2011, 5, 524–535. [Google Scholar]
- Nwoko, C.O. Trends in phytoremediation of toxic elemental and organic pollutants. Afr. J. Biotechnol. 2010, 9, 6010–6016. [Google Scholar]
- Nzengung, V.A.; Jeffers, P. Sequestration, Phytoreduction, and Phytooxidation of Halogenated Organic Chemicals by Aquatic and Terrestrial Plants. Int. J. Phytorem. 2001, 3, 13–40. [Google Scholar] [CrossRef]
- OECD-FAO-UNEP. Report of the OECD-FAO-UNEP Workshop on Obsolete Pesticides Alexandria, Virginia, 13–15 September 2000. Available online: http://www.oecd.org/chemicalsafety/pesticides-biocides/2076941.pdf (accessed on 18 November 2013).
- Ogbonnaya, U.; Semple, K.T. Impact of biochar on organic contaminants in soil. Agronomy 2013, 3, 349–375. [Google Scholar] [CrossRef]
- Ortiz-Hernandez, L.; Sanchez-Salinas, E.; Dantan-Gonzalez, E.; Castrejon-Godinez, M.L. Pesticide Biodegradation: Mecahnisms, Genetics, and Strategies to Enhance the Process. In Biodegradation-Life of Science; Intech: Rijeka, Croatia, 2013; Chapter 10; pp. 251–287. [Google Scholar]
- Pascal-Lorber, S.; Laurent, F. Phytoremediation techniques for pesticide contaminations. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilization; Lichtfouse, E., Ed.; Springer Science and Business Media: Dordrecht, The Netherlands, 2011; pp. 77–105. [Google Scholar]
- Santos, E.; Pires, F.R.; Ferreira, A.D.; Egreja Filho, F.B.; Madalão, J.C.; Bonomo, R.; Rocha Junior, P.R.D. Phytoremediation and natural attenuation of sulfentrazone; mineralogy influence of three highly weathered soils. Int. J. Phytoremed. 2019, 21, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Paz-Alberto, A.M.; Sigua, G.C. Phytoremediation: A green technology to remove environmental pollutants. Am. J. Clim. Chang. 2013, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Peltz, C.; Nydick, K.; Fitzgerald, G.; Zillich, C. Biochar for Soil Remediation on Abandoned Mine Lands. In Geological Society of America Abstracts with Programs; Denver Annual Meeting Geological Society of America: Denver, CO, USA, 2010. [Google Scholar]
- Pepper, L.A.; Gerba, C.P.; Brusseau, M.L. Pollution Science; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Pereira, R.C.; Camps-Arbestain, M.; Garrido, B.R.; Macías, F.; Monterroso, C. Behaviour of alpha-, beta-, gamma-, and delta-hexachlorocyclohexane in the soil-plant system of a contaminated site. Environ. Pollut. 2006, 144, 210–217. [Google Scholar] [CrossRef]
- Pham, T.L.; Phan, T.H.; Nguyen, T.D. Analysis of Pesticides in Soil Using Dispersive Solid Phase Extraction Coupled to GC-MS. Soil Sediment Contam. Int. J. 2014, 23, 339–352. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Stefanovska, T. Sustainable agriculture: A New Gender Approach and Challenges for Education. Econ. Environ. Stud. 2004, 6, 311–320. [Google Scholar]
- Pidlisnyuk, V.; Stefanovska, T.; Lewis, E.E.; Erickson, L.E.; Davis, C.D. Miscanthus as a Productive Biofuel Crop for Phytoremediation. Crit. Rev. Plant Sci. 2014, 33, 1–19. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Trogl, J.; Stefanovska, T.; Shapoval, P.; Erickson, L. Preliminary results on growing second generation biofuel crop Miscanthus x giganteus at the polluted military site in Ukraine. Nova Biotechnol. Chim. 2016, 15, 2016. [Google Scholar] [CrossRef] [Green Version]
- Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 2000, 89, 231–242. [Google Scholar] [CrossRef]
- Pilinskaya, M.A. Evaluation of Mutagenic Potential of Pesticides Taking into Account their Metabolic Transformations. In Modern Issues of Toxicology and Hygiene of the Use of Pesticides and Polymeric Materials; Naukova Dumka: Kiev, Ukraine, 1985; 110p. (In Ukrainian) [Google Scholar]
- Pilon-Smits, E.A.H. Phytoremediation. Ann. Rev. Plant Biol. 2005, 56, 15. [Google Scholar] [CrossRef] [PubMed]
- Plumer, B. We’ve covered the world in pesticides. Is that a problem? The Washington Post, 18 August 2013. [Google Scholar]
- Prasad, M.N.V.; Freitas, H. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 2003, 6, 285–321. [Google Scholar] [CrossRef]
- Prasad, K.V.S.K.; Saradhi, P.P.; Sharmila, P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ. Exp. Bot. 1999, 42, 1–10. [Google Scholar] [CrossRef]
- Prieto-Hontoria, P.L.; Perez-Matute, P.; Fernandez-Galilea, M.; Bustos, M.; Martinez, J.A.; Moreno-Aliaga, M.J. Role of obesity-associated dysfunctional adipose tissue in cancer: A molecular nutrition approach. Biochim. Biophys. Acta 2011, 1807, 664–678. [Google Scholar] [CrossRef] [Green Version]
- Purnomo, P.A.S.; Mori, T.; Kamei, I.; Nishii, T.; Kondo, R. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int. Biodeterior. Biodegrad. 2010, 64, 397–402. [Google Scholar] [CrossRef]
- Raina, V.; Suar, M.; Singh, A.; Prakash, O.; Dadhwal, M.; Gupta, S.K.; Dogra, C.; Lawlor, K.; Lal, S.; van der Meer, J.R.; et al. Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 2008, 19, 27–40. [Google Scholar] [CrossRef]
- Rani, K.; Dhania, G. Review article: Bioremediation and biodegradation of pesticide from contaminated soil and water—A novel approach. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 23–33. [Google Scholar]
- Rao, M.A.; Scelza, R.; Scotti, R.; Gianfreda, L. Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr. 2010, 10, 333–353. [Google Scholar] [CrossRef]
- Rhodes, A.H.; McAllister, L.E.; Chen, R.; Semple, K.T. Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils. Chemosphere 2010, 79, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Rissato, S.R.; Galhiane, M.S.; Apon, B.M.; Arruda, M.S. Multiresidue Analysis of Pesticides in Soil by Supercritical Fluid Extraction/Gas Chromatography with Electron-Capture Detection and Confirmation by Gas Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Rissato, S.R.; Galhiane, M.S.; Fernandes, J.R.; Gerenutti, M.; Gomes, H.M.; Ribeiro, R.; de Almeida, M.V. Evaluation of Ricinus communis L. for the Phytoremediation of Polluted Soil with Organochlorine Pesticides. BioMed Res. Int. 2015, 1, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roe, R.M.; Hodgson, E.; Rose, R.L.; Thompson, D.M.; Devorshak, C.; Anspaugh, D.D.; Linderman, R.J.; Harris, S.V.; Tomalski, M.D. Basic Principles and Rationale for the Use of Insect Genes in Bioremediation: Esterase Phosphotriesterase Cytochrome P450 and Epoxide Hydrolase. In Pesticides and the Future: Minimizing Chronic Exposure of Humans and the Environment; Kuhr, R.J., Motoyama, N., Eds.; IOS Press: Amsterdam, The Netherlands, 1998; pp. 169–178. [Google Scholar]
- Rohrbacher, F.; St Arnaud, M. Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy 2016, 6, 19. [Google Scholar] [CrossRef]
- Ruiz, M.J.; Marzin, D. Genotoxicity of six pesticides by Salmonella mutagenicity test and SOS chromotest. J. Mutat. Res. Gen. Toxic. Environ. Mutat. 1997, 390, 245–255. [Google Scholar] [CrossRef]
- Rupp, E.B.; Zuman, P.; Sestakova, I.; Horak, V. Polarographic determination of some pesticides. Application to a study of their adsorption on lignin. J. Agric. Food Chem. 1992, 40, 2016–2021. [Google Scholar] [CrossRef]
- Rwazo, A. Dumped pesticides persist in Tanzania. Pestic. News 1997, 37, 6–7. [Google Scholar]
- Sadowsky, M.J. Phytoremediation: Past Promises and Future Practices. Plant Micro Interact. 2016. Available online: http://socrates.acadiau.ca/isme/Symposium26/SADOWSKYrev.PDF (accessed on 24 November 2016).
- Saito, T.; Otani, T.; Seike, N.; Murano, H.; Okazaki, M. Suppressive effect of soil application of carbonaceous adsorbents on dieldrin uptake by cucumber fruits. Soil Sci. Plant Nutr. 2011, 57, 157–166. [Google Scholar] [CrossRef]
- Sama, D.A. The constraints in managing the pathways of persistent organic pollutants into the large marine ecosystem of the Gulf of Guinea—The case in Cameroon. In Proceedings of the Intergovernmental Forum on Chemical Safety Experts Meeting on Persistent Organic Pollutants, Manila, Philippines, 17–19 June 1996. [Google Scholar]
- Sapahin, H.A.; Makahleh, A.; Saad, B. Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector. Arabian J. Chem. 2015. [Google Scholar] [CrossRef] [Green Version]
- Sasi, K. Phytoremediation: Applications, advantages and Limitations. 2011. Available online: http://www.biotecharticles.com/Applications-Article/Phytoremediation-Applications-Advantages-and-Limitations-785.html (accessed on 24 October 2016).
- Scoles, M.E. The effect hexachlorocyclohexane on mitosis in root of the onion (Allium cepa) and strawberry (Fragaria vesca). J. Agric. Sci. 1953, 28, 40–45. [Google Scholar]
- Semple, K.T.; Reid, B.J.; Fermor, T.R. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 2001, 112, 269–283. [Google Scholar] [CrossRef]
- Semple, K.T.; Riding, M.J.; McAllister, L.E.; Sopena-Vasquuez, F. Impact of carbon on the bioavailability of organic contaminants in soil. J. Hazard. Mater. 2013, 261, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Shaker-Koohi, S. Role of arbuscular mycorrhizal (AM) fungi in phytoremediation of soils contaminated: A review. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 1854–1864. [Google Scholar]
- Shimabukuro, R.H.; Lamoureux, G.L.; Frear, D.S. Pesticide Metabolism in Plants. In Bioremediation of Pesticides; Matsumura, F., Krishna-Murti, C.R., Eds.; Plenum Press: New York, NY, USA, 1982; pp. 21–66. [Google Scholar]
- Singh, N.; Abhilash, P.C. Pesticide use and application: An Indian scenario. J. Hazard. Mater 2009, 165, 1–12. [Google Scholar]
- Sinha, R.K.; Valani, D.; Sinha, S.; Singh, S.; Heart, S. Bioremediation of Contaminated sites: A Low-Cost Nature’s Biotechnology for Environmental Cleanup by Versatile Microbes, Plants & Earthworms. In Solid Waste Management and Environmental Remediation; Faerber, T., Herzog, J., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 1–72. [Google Scholar]
- Sohi, S.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Spain, J.C.; Hughes, J.B.; Knackmuss, H.J. Biodegradation of Nitroaromatic Compounds and Explosives; Lewis Publishers: Boca Raton, FL, USA, 2000. [Google Scholar]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Garcia, M.; Förster, B.; Zech, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol. Pedobiologia 2008, 51, 359–366. [Google Scholar] [CrossRef]
- Sutherland, T.; Russel, R.; Selleck, M. Using enzymes to clean pesticide residues. Pestic. Outlook 2002, 13, 149–151. [Google Scholar] [CrossRef]
- Sykes, M.Y.; Vina, B.J.; Abubakr, S. Biotechnology: Working with Nature to Improve Forest Resources and Products. In Proceedings of the International Vetiver Conference, Chiang Rai, Thailand, 4 February 1999; pp. 631–637. [Google Scholar]
- Tanga, M.G.; Telefo, P.B.; Tarla, D.N. Alterations in renal functions of market gardeners occupationally exposed to pesticides in West Cameroon. Int. J. Trop. Dis. Health 2016, 20, 1–10. [Google Scholar] [CrossRef]
- Tarla, D.N.; Manu, I.N.; Tamedjouong, Z.T.; Kamga, A.; Fontem, D.A. Plight of pesticide applicators in Cameroon: Case of tomato (Lycopersicon esculentum Mill.) farmers in Foumbot. J. Agric. Environ. Sci. 2015, 4, 87–98. [Google Scholar]
- Tarla, D.N.; Tchamba, N.M.; Baleguel, N.P.; Baleguel, P.D.; Dobson, H. Inventory of obsolete pesticide stockpiles in Cameroon. Sch. J. Agric. Sci. 2014, 4, 43–50. [Google Scholar]
- Tetard-Jones, C.; Edwards, R. Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Manag. Sci. 2016, 72, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaszewski, J.E.; Werner, D.; Luthy, R.G. Activated carbon amendment as a treatment for residual DDT in sediment from a superfund site in San Francisco Bay, Richmond, California, USA. Environ. Toxicol. Chem. 2007, 26, 2143–2150. [Google Scholar] [CrossRef]
- Tomlin, C.D.S. The Pesticide Manual: A World Compendium; British Crop Production Council: Alton, UK, 2009. [Google Scholar]
- Torres, J.P.; Froes-Asmus, C.I.R.; Weber, R.; Vijgen, J.M.H. HCH contamination from former pesticide production in Brazil—A challenege for the Stockholm Convention implementation. Environ. Sci. Pollut. Res. Int. 2013, 20, 1951–1957. [Google Scholar] [CrossRef]
- Truu, J.; Truu, M.; Espenberg, M.; Nolvak, H.; Juhanson, J. Phytoremediation and plant assisted bioremediation in soil and treatment wetlands: A review. Open Biotechnol. J. 2015, 9, 85–92. [Google Scholar] [CrossRef]
- Uchimiya, M.; Lima, I.M.; Klasson, T.; Wartelle, L.H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 2010, 80, 935–940. [Google Scholar] [CrossRef]
- UNEP. The Hazardous Chemicals and Waste Conventions; WHO: Rome, Italy; UNEP: Nairobi, Kenya; FAO: Geneva, Switzerland, 2013; 4p, Available online: http://www.pops.int/documents/background/hcwc.pdf (accessed on 5 March 2013).
- UNEP. Riding the World of POPs: A guide on the Stockholm Convention on Persistent Organic Pollutants. 2005. Available online: http://www.pops.int/documents/guidance/beg_guide.pdf (accessed on 20 September 2016).
- United Chem, LLC. Using QuEChERS Approach for the Determination of Pesticide Residues in Soil. 2014. Available online: http://www.spexsampleprep.com/knowledge-base/resources/application_notes/0714-162825-4106-03%20Pesticides%20in%20soil%20by%20QuEChERS.pdf (accessed on 7 November 2016).
- U.S. EPA. Environmental Chemistry Methods; U.S. Environmental Protection Agency: Washington, DC, USA, 2016. Available online: www.epa.gov (accessed on 3 February 2020).
- U.S. EPA. EPA Methods 8081B, 508.1, 525.2, 508, 505, 625, 527, 507, 8151A; Environmental Applications, Pesticides and Herbicides, Application Note Agilent GC and GC/MS; EPA: Washington, DC, USA, 2012; pp. 429–457.
- U.S. EPA. An Analysis of composting as an Environmental Remediation Technology; 530-R-98-008; U.S. EPA Report; EPA: Washington, DC, USA, 1998.
- Van der Lelie, D.; Schwitzguebel, J.P.; Glass, D.J.; Vangronsveld, J.; Baker, A.J.M. Assessing phytoremediation’s progress in the United States and Europe. Environ. Sci. Technol. 2001, 35, 446A–452A. [Google Scholar] [CrossRef] [Green Version]
- Vijgen, J.; Abhilash, P.C.; Li, Y.-F.; Lal, R.; Forter, M.; Torres, J.; Singh, N.; Yunus, M.; Tian, C.; Schäffer, A.; et al. HCH as new Stockholm Convention POPs—A global perspective on the management of Lindane and its waste isomers. Environ. Sci. Pollut. Res. Int. 2011, 18, 152–162. [Google Scholar] [CrossRef]
- Vijgen, J.; Egenhofer, C. Obsolete (Lethal) Pesticides, a Ticking Time Bomb and Why We Have to Act Now; Tauw Group BV: Deventer, The Netherlands, 2009; 28p, Available online: http://www.ihpa.info/docs/library/reports/timeBomb_Obsolete_Pesticides.pdf (accessed on 8 January 2012).
- Wandiga, S.O. Use and distribution of organochlorine pesticides. The future in Africa. Pure Appl. Chem. 2001, 73, 1147–1155. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, X.; Bian, Y.R.; Yao, F.X.; Gao, H.J.; Yu, G.F.; Munch, J.C.; Schroll, R. Organochlorine pesticides in soils under different land usage in the Taihu Lake region. China J. Environ. Sci. 2007, 19, 584–590. [Google Scholar] [CrossRef]
- Wang, H.L.; Lin, K.D.; Hou, Z.N.; Richardson, B.; Gan, J. Sorption of the herbicide terbuthylazine in two N. Z. forest soils amended with biosolids and biochars. J. Soils Sedim. 2010, 10, 283–289. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Liu, X.; Li, Y.; Fu, L.; Hu, J.; Huana, C. Homogeneous liquid-liquid extraction combined with gas chromatography-electron capture detector for the determination of three pesticide residues in soils. Anal. Chim. Acta 2008, 620, 162–169. [Google Scholar] [CrossRef]
- Wardle, W.A.; Zackrisson, O.; Nilsson, M.C. The charcoal effect in boreal forests: Mechanisms and ecological consequences. Oecologia 1998, 115, 419–426. [Google Scholar] [CrossRef]
- Weber, R.; Schlumpf, M.; Nakano, T.; Vijgen, J. The need for better management and control of POPs stockpiles. Environ. Sci. Pollut. Res. 2015, 22, 14385–14390. [Google Scholar] [CrossRef] [Green Version]
- White, J.C. Phytoremediation of Weathered p,p’-DDE Residues in Soil. Int. J. Phytorem. 2000, 2, 133–144. [Google Scholar] [CrossRef]
- White, J.C.; Kottler, B.D. Citrate-mediated increase in the uptake of weathered p,p-DDE residues by plants. Environ. Toxicol. Chem. 2002, 21, 550–556. [Google Scholar] [CrossRef]
- White, J.C.; Mattina, M.I.; Lee, W.; Eitzer, B.D.; Iannucci-Berger, W. Role of organic acids in enhancing the desorption and uptake of weathered p,p’-DDE by Cucurbita pepo. Environ. Pollut. 2003, 124, 71–80. [Google Scholar] [CrossRef]
- White, J.; Zeeb, B. Plant Phylogeny and the Remediation of Persistent Organic Pollutants. In Phytoremediation: Methods in Biotechnology; Humana Press: Totowa, NJ, USA, 2007; pp. 71–87. [Google Scholar]
- WHO (World Health Organization). WHO Position Statement on Integrated Vector Management; WHO: Geneva, Switzerland, 2013; 4p, Available online: http://whqlibdoc.who.int/hq/2008/WHO_HTM_NTD_VEM_2008.2_eng.pdf?ua=1 (accessed on 15 January 2013).
- WHO. Global Insecticide Use for Vector-Borne Disease Control, 4th ed.; WHO: Geneva, Switzerland, 2009; Available online: http://whqlibdoc.who.int/publications/2009/9789241598781_eng.pdf (accessed on 3 February 2020).
- Wilkins, C. The uptake of copper, arsenic and zinc by miscanthus-environmental implications for use as an energy crop. Asp. Appl. Biol. 1997, 49, 335–340. [Google Scholar]
- Wong, F.; Alegria, H.; Jantunen, L.M.; Bidleman, T.F.; Salvador-Figueroa, M.; Gold-Bouchot, G.; Ceja-Moreno, V.; Waliszewski, S.M.; Infanzón, R. Organochlorine pesticides in soil and air of southern Mexico: Chemical profiles and potential for soil emissions. Atmos. Environ 2008, 42, 7737–7745. [Google Scholar] [CrossRef]
- WorldBank Group. Project Assessment Report. Ethiopia, Mali, Morocco, South Africa, Tanzania, Tunisia. Africa Stockpiles Program. 2016. Available online: http://documents.worldbank.org/curated/en/168841477341223021/pdf/108524-PPAR-PUBLIC.pdf (accessed on 24 November 2016).
- Writer, S. Nanoparticles and Bioremediation can Decontaminate Polluted Soils. Space Daily, 17 June 2016. Available online: http://go.galegroup.com/ps/i.do?&id=GALE|A455371910&v=2.1&u=ksu&it=r&p=ITOF&sw=w&authCount=1(accessed on 14 January 2017).
- Xue, N.; Zhang, D.; Xu, X. Organochlorinated Pesticide Multiresidues in Surface Sediments from Beijing, Guanting Reservoir. Water Res. 2006, 40, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Yanez-Ocampo, G.; Wong-Villarreal, A.; Del Aguila-Juarez, P.; Lugo-de la Fuente, J.; Vaca-Paulin, R. Composting of soils polluted with pesticides: A microbial approach and methods for monitoring. JSM Environ. Sci. Ecol. 2016, 4, 1032. [Google Scholar]
- Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J. Effect of activated carbon on microbial bioavailability of phenanthrene in soils. Environ. Toxicol. Chem. 2009, 28, 2283–2288. [Google Scholar] [CrossRef]
- Yu, X.Y.; Ying, G.G.; Kookana, R.S. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 2009, 76, 665–671. [Google Scholar] [CrossRef]
- Yu, X.Y.; Ying, G.G.; Kookana, R.S. Sorption and desorption behaviors of diuron in soils amended with charcoal. J. Agric. Food Chem. 2006, 54, 8545–8550. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, K.; Wang, H.; Gan, J. Effect of Pinus radiata derived biochars on oil sorption and desorption of phenanthrene. Environ. Pollut. 2010, 158, 2821–2825. [Google Scholar] [CrossRef]
- Zhang, G.; Chakraborty, P.; Li, J.; Sampathkumar, P.; Balasubramanian, T.; Kathiresan, K.; Takahashi, S.; Subramanian, A.; Tanabe, S.; Jones, K.C. Passive Atmospheric Sampling of Organochlorine Pesticides, Polychlorinated Biphenyls, and Polybrominated Diphenyl Ethers in Urban, Rural, and Wetland Sites along the Coastal Length of India. Environ. Sci. Technol. 2008, 42, 8218–8223. [Google Scholar] [CrossRef]
- VandenBerg, H.; Manuweera, G.; Konradsen, F. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malaria J. 2017, 16, 1–8. [Google Scholar]
- Minigh, H. Obsolete and Unwanted Pesticide Stocks: Practical Guidance on Safeguarding, disposal, and Prevention; CropLife International: Brussels, Belgium, 2017. [Google Scholar]
- Mulu Loha, K.; Lamoree, M.; Weiss, J.M.; de Boer, J. Import disposal, and health impacts of pesticides in the East Africa Rift (EAR) zone: A review of management and policy analysis. Crop Prot. 2018, 112, 322–331. [Google Scholar] [CrossRef]
- Karstensen, K.H.; Kinh, N.K.; Viet, P.H.; Tuan, N.D.; Toi, D.T.; Hung, N.H.; Quan, T.M.; Hanh, L.D.; Thang, D.H. Environmentally sound destruction of obsolete pesticides in developing countries in cement kilns. Environ. Sci. Policy 2006, 9, 577–586. [Google Scholar] [CrossRef]
- Singh, A.; Ward, O.P. Applied Bioremediation and Phytoremediation; Singh, A., Ward, O.P., Eds.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Baldissarelli, D.P.; Vargas, G.D.L.P.; Korf, E.P.; Galon, L.; Kaufmann, C.; Santos, J.B. Remediation of Soils Contaminated by Pesticides Using Physicochemical Processes: A Brief Review. Planta Daninha 2019, 37, 1–12. [Google Scholar] [CrossRef]
- Kearney, P.C.; Roberts, T. Pesticide Remediation in Soils and Water; Kearney, P.C., Roberts, T., Eds.; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Cycon, M.; Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 2017, 172, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.A.; Oturan, N.; Oturan, M.A. Electrochemically assisted remediation of pesticides in soils and water: A review. Chem. Rev. 2014, 114, 8720–8745. [Google Scholar] [CrossRef]
- Uqab, B.; Mudasir, S.; Nazir, R. Review on Bioremediation of Pesticides. J. Biorem. Biodegrad. 2016, 7, 1–5. [Google Scholar]
- Frazar, C.D. The Bioremediation and Phytoremediation of Pesticide-Contaminated Sites; US Environmental Protection Agency: Washington, DC, USA, 2000. Available online: www.clu-in.org/ (accessed on 3 February 2020).
- Oturan, N.; Sires, I.; Oturan, M.A.; Brillas, E. Degradation of pesticides in aqueous medium by electro-Fenton and related methods. A review. J. Environ. Eng. Manag. 2009, 19, 235–255. [Google Scholar]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils: A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Eevers, N.; White, J.C.; Vongronsveld, J.; Weyens, N. Chapter 7. Bio and phytoremediation of pesticide-contaminated environments: A review. Adv. Bot. Res. 2017, 83, 277–318. [Google Scholar]
- Dhankher, O.P.; Doty, S.L.; Meagher, R.B.; Pilon-Smits, E. Biotechnological Approaches for Phytoremediation. In Plant Biotechnology and Agriculture; Altman, A., Hasegawa, P.M., Eds.; Academic Press: New York, NY, USA, 2011; pp. 309–328. [Google Scholar]
- Huang, Y.; Xiao, L.; Li, F.; Xiao, D.; Lin, D.; Long, X.; Wu, Z. Microbial degradation of pesticide residues and an emphasis on the degradation of Cypermethrin and 3-phenoxy benzoic acid: A review. Molecules 2018, 23, 2313. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Bilal, M.; Duan, X.; Iqbal, H.M.N. Mitigation of Environ. Pollut. by genetically engineered bacteria: Current challenges and future prospects. Sci. Total Environ. 2019, 667, 444–454. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, D.; Zhou, X.; Du, J.; Zhang, S.; Liu, Y. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S. Sci. Rep. 2018, 8, 7384. [Google Scholar] [CrossRef] [Green Version]
- Behera, K.K. Phytoremediation: Transgenic plants and microbes. Sustain. Agric. Rev. 2014, 13, 65–85. [Google Scholar]
- Pan, X.; Lin, D.; Zheng, Y.; Zhang, Q.; Yin, Y.; Cai, L.; Fang, H.; Yu, Y. Biodegradation of DDT by Stenotroophomonas sp. DDT-1: Characterization and genome functional analysis. Sci. Rep. 2016, 6, 21332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.W.; Bose, P. Degradation of soil-adsorbed DDT and it residues by NZVI addition. RSC Adv. 2015, 5, 94418–94425. [Google Scholar] [CrossRef]
- Paschke, A.; Neitzel, P.L.; Walther, W.; Schuurmann, G. Octanol/water partition coefficient for selected herbicides: Determination using shake-flask method and reversed phase high performance liquid chromatography. J. Chem. Eng. Data 2004, 49, 1639–1642. [Google Scholar] [CrossRef]
- Toft, P. DDT and Its Derivatives in Drinking Water; WHO/SDE/WSH/03.04/89; World Health Organization: Geneva, Switzerland, 2004; Retrieved December. [Google Scholar]
- Yadav, I.C.; Devi, N.L.; Li, J.; Zhang, G.; Shakya, P.J. Occurrence, profile, and spatial distribution of organochlorine pesticides in soil of Nepal: Implication for source apportionment and health risk assessment. Sci. Total Environ. 2016, 573, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Jiang, F.B.; Ou, J.F. Global Pesticide Consumption and Pollution: With China as a Focus. Proc. Acad. Ecol. Environ. Sci. 2011, 1, 125–144. [Google Scholar]
- Ipsilantis, I.; Karamesouti, M.; Gasparatos, D. Beneficial Organisms for the Management of Soil Phosphorus. In Sustainable Agriculture Reviews 32; Lichtfouse, E., Ed.; Springer: New York, NY, USA, 2018; pp. 53–75. [Google Scholar]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbucke, F. Pesticides and earthworms: A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Sahni, D. Pesticides effect on soil microbial ecology and enzyme activity—An overview. J. Appl. Nat. Sci. 2016, 8, 1126–1132. [Google Scholar] [CrossRef] [Green Version]
- Lo, C.C. Effect of pesticides on soil microbial community. J. Environ. Sci. Health 2010, 45, 348–359. [Google Scholar] [CrossRef]
- Zaller, J.G.; Bruhl, C.A. Editorial: Non-target effects of pesticides on organisms inhabiting agroecosystems. Front. Environ. Sci. 2019, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- EU. 2009. No. 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives (EC) No. 79/117 and (EC) No. 91/414. Off. J. Eur. Union 2019, 50, 1–49. [Google Scholar]
- Puglisi, E. Response of microbia Zl organisms (aquatic and terrestrial) to pesticides. Supporting Publications. EFSA Support. Publ. 2012, 9, 359E. [Google Scholar]
- Romano-Armada, N.; Amoroso, M.J.; Rajal, V.B. Construction of a combined soil quality indicator to assess the effect of glyphosate application. Sci. Total Environ. 2019, 684, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Thiour-Mauprivez, C.; Martin-Laurent, F.; Calvayrac, C.; Barthelmebs, L. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? Sci. Total Environ. 2019, 684, 314–325. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Pesticide Registration: about Pesticide Registration. 2019. Available online: https://www.epa.gov/pesticide-registration/about-pesticide-registration (accessed on 2 January 2020).
- Anderson, J.A.; Kruger, E.L.; Coats, J.R. Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 1994, 28, 1551–1557. [Google Scholar] [CrossRef]
Samples | Soil or Vegetation | Mass. kg | Concentration. μg kg−1 | Total Extraction μg | ||
---|---|---|---|---|---|---|
4,4′-DDE | 2,4′-DDD | 4,4′-DDT | ||||
M. giganteus | ||||||
2MAC | Soil | 3 | 146 ± 22 | 3 ± 1 | 92 ± 21 | 723 |
Above ground | 0.031 | 0.2 ± 0.1 | 18.3 ± 6.1 | 98.4 ± 27.1 | 3.6 | |
Root | 0.035 | 35.2 ± 6.5 | 352.3 ± 32.2 | 1810.4 ± 126.3 | 76.9 | |
Soil | 3 | 105 ± 18 | 2 ± 1 | 83 ± 12 | 572 | |
Dying sprouts of M. giganteus | ||||||
6 MAC | Above ground | 0.015 | 50.2 ± 14.2 | 15.3 ± 6.2 | 36.3 ± 12.5 | 1.5 |
Root | 0.026 | 158.1 ± 87.5 | 134.3 ± 25.1 | 139.8 ± 23.6 | 11.2 | |
13 MAC | Above ground | 0.010 | 41.4 ± 21.2 | 17.3 ± 11.5 | 36.7 ± 15.7 | 0.9 |
Root | 0.022 | 246.3 ± 123.3 | 135.5 ± 27.1 | 191.1 ± 55.1 | 8.8 | |
33 MAC | Above ground | 0.008 | 22.2 ± 9.2 | 36.1 ± 18.2 | 32.0 ± 16.0 | 7.2 |
Root | 0.020 | 267.4 ± 42.1 | 60.4 ± 19.1 | 212.6 ± 27.1 | 10.8 | |
45 MAC | Above ground | 0.007 | 36.1 ± 27.2 | 112.3 ± 20.5 | 27.9 ± 9.9 | 1.2 |
Root | 0.021 | 453.3 ± 30.1 | 113.4 ± 15.2 | 52.1 ± 11.1 | 13.0 | |
62 MAC | Above ground | Died | ||||
Root | ||||||
M. sinensis | ||||||
62 MAC | Soil | 3 | 2750 ± 88 | 933 ± 48 | 2498 ± 45 | 18,543 |
Above ground | 0.014 | 151.2 ± 45.3 | 78.4 ± 29.3 | 12.4 ± 7.0 | 3.4 | |
Root | 0.009 | 570.5 ± 53.3 | 45.1 ± 22.0 | 247.2 ± 76.4 | 7.8 | |
Soil | 3 | 1230 ± 49 | 888 ± 79 | 1991 ± 221 | 12,327 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarla, D.N.; Erickson, L.E.; Hettiarachchi, G.M.; Amadi, S.I.; Galkaduwa, M.; Davis, L.C.; Nurzhanova, A.; Pidlisnyuk, V. Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. Appl. Sci. 2020, 10, 1217. https://doi.org/10.3390/app10041217
Tarla DN, Erickson LE, Hettiarachchi GM, Amadi SI, Galkaduwa M, Davis LC, Nurzhanova A, Pidlisnyuk V. Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. Applied Sciences. 2020; 10(4):1217. https://doi.org/10.3390/app10041217
Chicago/Turabian StyleTarla, Divine N., Larry E. Erickson, Ganga M. Hettiarachchi, Sixtus I. Amadi, Madhubhashini Galkaduwa, Lawrence C. Davis, Asil Nurzhanova, and Valentina Pidlisnyuk. 2020. "Phytoremediation and Bioremediation of Pesticide-Contaminated Soil" Applied Sciences 10, no. 4: 1217. https://doi.org/10.3390/app10041217
APA StyleTarla, D. N., Erickson, L. E., Hettiarachchi, G. M., Amadi, S. I., Galkaduwa, M., Davis, L. C., Nurzhanova, A., & Pidlisnyuk, V. (2020). Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. Applied Sciences, 10(4), 1217. https://doi.org/10.3390/app10041217