Experiments and Modeling for Investigation of Oily Sludge Biodegradation in a Wastewater Pond Environment
Abstract
:Potential Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Modeling Methods
3. Results
3.1. Experimental Results
3.1.1. Dispersant Effectiveness
3.1.2. Biodegradation
3.2. Modeling Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Rathi, V.; Yadav, V. Oil degradation taking microbial help and bioremediation: A review. J. Bioremediat. Biodegrad. 2019, 10, 460–465. [Google Scholar]
- Yateem, A.; Balba, M.T.; Al-Shayji, Y.; Al-Awadhi, N. Isolation and characterization of biosurfactant-producing bacteria from oil-contaminated soil. Soil Sediment Contam. 2002, 11, 41–55. [Google Scholar] [CrossRef]
- Rahsepar, S.; Smit, M.P.; Murk, A.J.; Rijnaarts, H.H.; Langenhoff, A.A. Chemical dispersants: A biodegradation friend or foe? Chemosphere 2016, 108, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Overholt, W.A.; Marks, K.P.; Romero, I.C.; Hollander, D.J.; Snell, T.W.; Kostka, J.E. Hydrocarbon degrading bacteria exhibit a species specific response to dispersed oil while moderating ecotoxicity. Appl. Environ. Microbiol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Z.; Zhao, L.; Boufadel, M.C.; King, T.; Robinson, B.; Conmy, R.; Lee, K. Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil. Chemosphere 2017, 166, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Office of the Federal Register. Title 40: Protection of Environment. In Code of Federal Regulations (CFR); Office of the Federal Register: Washington, DC, USA, 2010; pp. 300–399. [Google Scholar]
- Hinze, J. Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes; Royal Dutch Shell-Laboratory: Delft, The Netherlands, 1955. [Google Scholar]
- Calabrese, R.V.; Chang, T.P.K.; Dang, P.T. Drop Breakup in Turbulent Stirred-Tank Contactors. Part I: Effect of Dispersed-Phase Viscosity. AIChE J. 1986, 32, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.T.; Middleman, S. Drop Size Distribution in Agitated in Liquid-Liquid Systems. AIChE J. 1967, 13, 989–995. [Google Scholar] [CrossRef]
- Shinnar, R.; Church, J.M. Statistical Theories of Turbulence in Predicting Particle Size in Agitated Dispersions. Ind. Eng. Chem. 1960, 52, 253–256. [Google Scholar] [CrossRef]
- Wang, C.Y.; Calabrese, R.V. Drop Breakup in Turbulent Stirred-Tank Contactors. Part II: Relative Influence of Viscosity and Interfacial Tension. AIChE J. 1986, 32, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Kamei, N.; Hiraoka, S.; Kato, Y. Power correlation for paddle impellers in spherical and cylindrical agitated vessels. Kagaku Kogaku Ronbunshu 1995, 21, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Kamei, N.; Hiraoka, S.; Kato, Y. Effects of impeller and baffle dimensions on power consumption under turbulent flow in an agitated vessel with paddle impeller. Kagaku Kogaku Ronbunshu 1996, 22, 255–256. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, H.; Kato, Y.; Inoue, Y.; Kato, T.; Tada, Y.; Hashimoto, S. Correlation of power consumption for several kinds of mixing impellers. Int. J. Chem. Eng. 2012. [Google Scholar] [CrossRef] [Green Version]
- Howard, P.H.; Boethling, R.S.; Jarvis, W.F.; Meylan, W.M.; Michalenko, E.M. Handbook of Environmental Degradation Rates; Lewis Publishers: Chelsea, MI, USA, 1991. [Google Scholar]
- GSI Chemical Database. Available online: www.gsi-net.com/en/publications/gsi-chemical-database.html (accessed on 1 May 2019).
Parameter | Symbol | Value |
---|---|---|
Bulk phase density | ρc | 998 kg/m3 |
Disperse phase density | ρd | 821 kg/m3 |
Dispersed phase viscosity | μd | 0.005 Pa-sec |
Interfacial tension | σ | 0.03 N/meters |
Dispersant | Oil/Dispersant Ratio | % Oil Biodegraded at 21 Days |
---|---|---|
Petroclean | 10:1 | 85.4 |
Petroclean | 10:2 | 82.8 |
FFT 7% | 10:1 | 78.6 |
FFT 7% | 10:2 | 76.3 |
Orbital Shaking Speed 1 | % Oil Biodegraded at 21 Days |
---|---|
50 | 48 |
100 | 83 |
150 | 93 |
200 | 99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexander, M.; Alarwan, N.; Chandrasekaran, M.; Sundaram, A.; Milde, T.; Rasool, S. Experiments and Modeling for Investigation of Oily Sludge Biodegradation in a Wastewater Pond Environment. Appl. Sci. 2020, 10, 1659. https://doi.org/10.3390/app10051659
Alexander M, Alarwan N, Chandrasekaran M, Sundaram A, Milde T, Rasool S. Experiments and Modeling for Investigation of Oily Sludge Biodegradation in a Wastewater Pond Environment. Applied Sciences. 2020; 10(5):1659. https://doi.org/10.3390/app10051659
Chicago/Turabian StyleAlexander, Matthew, Najem Alarwan, Maheswari Chandrasekaran, Aishwarya Sundaram, Tonje Milde, and Saad Rasool. 2020. "Experiments and Modeling for Investigation of Oily Sludge Biodegradation in a Wastewater Pond Environment" Applied Sciences 10, no. 5: 1659. https://doi.org/10.3390/app10051659
APA StyleAlexander, M., Alarwan, N., Chandrasekaran, M., Sundaram, A., Milde, T., & Rasool, S. (2020). Experiments and Modeling for Investigation of Oily Sludge Biodegradation in a Wastewater Pond Environment. Applied Sciences, 10(5), 1659. https://doi.org/10.3390/app10051659