Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications
Abstract
:1. Introduction
2. The Proposed Device Structure
2.1. Proposed Heavily Doped n+ Pocket AJ DG MOSFET
Performance Analysis of Heavily Doped n+ Pocket AJ DG MOSFET
2.2. Proposed Heavily Doped n+ Pocket AJ DG MOSFET with a Nanogap-Cavity Region
3. Investigation Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colinge, J.P.; Lee, C.W.; Afzalian, A.; Akhavan, N.D.; Yan, R.; Ferain, I.; Razavi, P.; Neill, B.O.; Blake, A.; White, M.; et al. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Baller, M.K.; Lang, H.P.; Rothuizen, H.; Vettiger, P.; Meyer, E.; Guntherodt, H.J.; Gerber, C.; Gimzewski, J.K. Translating biomolecular recognition into nano-mechanics. Science 2000, 288, 316–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maji, M.; Saini, G. Modeling of dual material surrounding split gate junctionless transistor as biosensor. Superlattices Microstruct. 2019, 135, 106–290. [Google Scholar] [CrossRef]
- Buvaneswari, B.; Balamurugan, N.B. 2D analytical modeling and simulation of dual material DG MOSFET for biosensing application. Int. J. Electron. Commun. 2019, 99, 193–200. [Google Scholar] [CrossRef]
- Chanda, M.; Dey, P.S.; De Sarkar, C.K. Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection. Superlattice Microstruct. 2015, 86, 446–455. [Google Scholar] [CrossRef]
- Singh, S.; Raj, B.; Vishvakarma, S.K. Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens. Bio Sens. Res. 2018, 18, 31–36. [Google Scholar] [CrossRef]
- Narang, N.; Saxena, M.; Gupta, M. Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattice Microstruct. 2015, 85, 557–572. [Google Scholar]
- Ghosh, B.; Akram, M.W. Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 2013, 34, 584–586. [Google Scholar] [CrossRef]
- Kumar, M.J.; Reddy, G.V. Analytical model for the threshold voltage of dual material gate (DMG) partially depleted SOI MOSFET and evidence for reduced short-channel effects. Solid State Integr. Circuits Technol. Proc. 7th Int. Conf. IEEE 2004, 2, 1204–1207. [Google Scholar]
- Narang, R.; Saxena, M.; Gupta, M. Comparative analysis of dielectric-modulated FET and TFET-based biosensor. IEEE Trans. Nanotechnol. 2015, 143, 427–435. [Google Scholar] [CrossRef]
- Narang, R.; Saxena, M.; Gupta, M. Analysis of gate underlap channel double gate MOS transistor for electrical detection of bio-molecules. Superlattice Microstruct. 2015, 88, 225–243. [Google Scholar]
- Kim, C.; Ahn, J.; Lee, K.; Jung, C.; Park, H.G.; Choi, Y. A new sensing metric to reduce data fluctuations in a nanogap-embedded field-effect transistor biosensor. IEEE Trans. Electron. Devices 2012, 59, 2825–2831. [Google Scholar] [CrossRef]
- Im, H.; Huang, X.J.; Gu, B.; Choi, Y.K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2007, 2, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Baek, D.; Kim, J.Y.; Choi, S.J.; Seol, M.L.; Choi, Y.K. A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 2012, 101, 073703. [Google Scholar] [CrossRef] [Green Version]
- Ajay, R.; Narang, M.; Saxena, M. Modeling of gate underlapjunctionless double gate MOSFET as bio-sensor. Mater. Sci. Semicond. Process. 2017, 71, 240–251. [Google Scholar] [CrossRef]
- Lee, C.W.; Afzalian, A.; Akhavan, N.D.; Yan, R.; Ferain, I.; Colinge, J.P. Junctionlessmultigate field-effect transistor. Appl. Phys. Lett. 2009, 94, 13–15. [Google Scholar]
- Chakraborty, A.; Sarkar, A. Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J. Comput. Electron. 2017, 16, 556–567. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Sun, L.; Cao, F. High performance of junctionlessMOSFETwith asymmetric gate. Superlattices Microstruct. 2016, 97, 8–14. [Google Scholar] [CrossRef]
- Yeo, Y.C. Metal gate technology for nanoscale transistors—Material selection and process integration issues. Thin Solid Film. 2004, 462, 34–41. [Google Scholar] [CrossRef]
- Kumari, V.; Saxena, M.; Gupta, R.S.; Gupta, M. Two dimensional analytical Drain current model for Double Gate MOSFET incorporating Dielectric Pocket. IEEE Trans. Electron Devices 2012, 59, 2567–2574. [Google Scholar] [CrossRef]
- Taur, Y. Analytic Solutions of Charge and Capacitance in Symmetric and Asymmetric Double-Gate MOSFETs. IEEE Trans. Electron Devices 2001, 48, 2861–2869. [Google Scholar] [CrossRef]
Region | Dimension |
---|---|
Gate length (Lgate) | 20 nm |
Length of the overlap region (Loverlap) | 10 nm |
The thickness of silicon (TSilicon) | 6 nm |
Length of the pocket region | 10 nm |
Length of source/drain | 8 nm |
Gate oxide thickness (Toxide, Hf as Dielectric material) | 1 nm |
Doping Concentration of pocket region | 1 × |
The doping concentration of channel region II | 1 × |
Device Structure | (A/μm) | (A/μm) | (mV/dec) | (mV/V) | Channel Length (nm) | |
---|---|---|---|---|---|---|
AJ DG MOSFET, (2016) | 127 × | 0.001 | 1.27 × | 68 | 65 | 20 |
DG MOSFET | -- | -- | 4.03 × | 63.34 | 79.58 | 20 |
n+ Pocket AJ DG MOSFET (proposed work) | 1.88 × | 9.7 × | ~1013 | 59 | 13.4 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendiratta, N.; Tripathi, S.L.; Padmanaban, S.; Hossain, E. Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications. Appl. Sci. 2020, 10, 2499. https://doi.org/10.3390/app10072499
Mendiratta N, Tripathi SL, Padmanaban S, Hossain E. Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications. Applied Sciences. 2020; 10(7):2499. https://doi.org/10.3390/app10072499
Chicago/Turabian StyleMendiratta, Namrata, Suman Lata Tripathi, Sanjeevikumar Padmanaban, and Eklas Hossain. 2020. "Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications" Applied Sciences 10, no. 7: 2499. https://doi.org/10.3390/app10072499
APA StyleMendiratta, N., Tripathi, S. L., Padmanaban, S., & Hossain, E. (2020). Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications. Applied Sciences, 10(7), 2499. https://doi.org/10.3390/app10072499