Dental Images Recognition Technology and Applications: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Questions
2.2. Search Strategy
2.3. Study Selection
2.4. Inclusion and Exclusion Criteria
3. Results
3.1. Study Selection
3.2. Relevant Data of Included Studies
3.3. Tooth Detection
3.4. Caries Detection
3.5. Dental Implant and Filled Teeth Detection
3.6. Endodontic Treatment Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehtesham, H.; Safdari, R.; Mansourian, A.; Tahmasebian, S.; Mohammadzadeh, N.; Pourshahidi, S. Developing a new intelligent system for the diagnosis of oral medicine with case-based reasoning approach. Oral Dis. 2019, 25, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Tuzoff, D.V.; Tuzova, L.N.; Bornstein, M.M.; Krasnov, A.S.; Kharchenko, M.A.; Nikolenko, S.I.; Sveshnikov, M.M.; Bednenko, G.B. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiol. 2019, 48, 20180051. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Mendonça, E.A. Clinical decision support systems: Perspectives in dentistry. J. Dent. Educ. 2004, 68, 589–597. [Google Scholar]
- Hiraiwa, T.; Ariji, Y.; Fukuda, M.; Kise, Y.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiol. 2019, 48, 20180218. [Google Scholar] [CrossRef]
- Currie, G. Intelligent Imaging: Anatomy of Machine Learning and Deep Learning. J. Nucl. Med. Technol. 2019, 47, 273–281. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, R.; Deng, Y.; Chen, K.; Jiang, T. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS ONE 2017, 12, e0178992. [Google Scholar] [CrossRef] [Green Version]
- Sklan, J.E.S.; Plassard, A.J.; Fabbri, D.; Landman, B.A. Toward content-based image retrieval with deep convolutional neural networks. In Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9417. [Google Scholar]
- Schwendicke, F.; Elhennawy, K.; Paris, S.; Friebertshäuser, P.; Krois, J. Deep Learning for Caries Lesion Detection in Near-Infrared Light Transillumination Images: A Pilot Study. J. Dent. 2019, 103260. [Google Scholar] [CrossRef]
- Krois, J.; Ekert, T.; Meinhold, L.; Golla, T.; Kharbot, B.; Wittemeier, A.; Dörfer, C.; Schwendicke, F. Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Sci. Rep. 2019, 9, 8495. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Jeong, S.-N.; Choi, S.-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J. Periodontal Implant Sci. 2018, 48, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Kim, D.-H.; Jeong, S.-N.; Choi, S.-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Ekert, T.; Krois, J.; Meinhold, L.; Elhennawy, K.; Emara, R.; Golla, T.; Schwendicke, F. Deep Learning for the Radiographic Detection of Apical Lesions. J. Endod. 2019, 45, 917–922.e5. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Golla, T.; Dreher, M.; Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. J. Dent. 2019, 91, 103226. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, K.; Lyu, P.; Li, H.; Zhang, L.; Wu, J.; Lee, C.-H. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci. Rep. 2019, 9, 3840. [Google Scholar] [CrossRef] [Green Version]
- Mahoor, M.H.; Abdel-Mottaleb, M. Classification and numbering of teeth in dental bitewing images. Pattern Recognit. 2005, 38, 577–586. [Google Scholar] [CrossRef]
- Nardi, C.; Calistri, L.; Grazzini, G.; Desideri, I.; Lorini, C.; Occhipinti, M.; Mungai, F.; Colagrande, S. Is Panoramic Radiography an Accurate Imaging Technique for the Detection of Endodontically Treated Asymptomatic Apical Periodontitis? J. Endod. 2018, 44, 1500–1508. [Google Scholar] [CrossRef]
- Fukuda, M.; Inamoto, K.; Shibata, N.; Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2019. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, J.; Chen, H.; Lyu, P. An effective teeth recognition method using label tree with cascade network structure. Comput. Med. Imaging Graph. 2018, 68, 61–70. [Google Scholar] [CrossRef]
- Raith, S.; Vogel, E.P.; Anees, N.; Keul, C.; Güth, J.-F.; Edelhoff, D.; Fischer, H. Artificial Neural Networks as a powerful numerical tool to classify specific features of a tooth based on 3D scan data. Comput. Biol. Med. 2017, 80, 65–76. [Google Scholar] [CrossRef]
- Srivastava, M.M.; Kumar, P.; Pradhan, L.; Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. In Proceedings of the Thirty-first Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 4. [Google Scholar]
- Jader, G.; Fontineli, J.; Ruiz, M.; Abdalla, K.; Pithon, M.; Oliveira, L. Deep Instance Segmentation of Teeth in Panoramic X-Ray Images. In Proceedings of the 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Parana, Brazil, 29 October–1 November 2018; pp. 400–407. [Google Scholar]
- Miki, Y.; Muramatsu, C.; Hayashi, T.; Zhou, X.; Hara, T.; Katsumata, A.; Fujita, H. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput. Biol. Med. 2017, 80, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Velemínská, J.; Pílný, A.; Čepek, M.; Kot’ová, M.; Kubelková, R. Dental age estimation and different predictive ability of various tooth types in the Czech population: Data mining methods. Anthropol. Anzeiger 2013, 70, 331–345. [Google Scholar] [CrossRef]
- Casalegno, F.; Newton, T.; Daher, R.; Abdelaziz, M.; Lodi-Rizzini, A.; Schürmann, F.; Krejci, I.; Markram, H. Caries Detection with Near-Infrared Transillumination Using Deep Learning. J. Dent. Res. 2019, 98, 1227–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanella-Calzada, L.; Galván-Tejada, C.; Chávez-Lamas, N.; Rivas-Gutierrez, J.; Magallanes-Quintanar, R.; Celaya-Padilla, J.; Galván-Tejada, J.; Gamboa-Rosales, H. Deep Artificial Neural Networks for the Diagnostic of Caries Using Socioeconomic and Nutritional Features as Determinants: Data from NHANES 2013–2014. Bioengineering 2018, 5, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muramatsu, C.; Morishita, T.; Takahashi, R.; Hayashi, T.; Nishiyama, W.; Ariji, Y.; Zhou, X.; Hara, T.; Katsumata, A.; Ariji, E.; et al. Tooth detection and classification on panoramic radiographs for automatic dental chart filing: Improved classification by multi-sized input data. Oral Radiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, S.A.; Nagaraj, R.; Mitra, S. Classification of dental diseases using CNN and transfer learning. In Proceedings of the 2017 5th International Symposium on Computational and Business Intelligence (ISCBI), Dubai, United Arab Emirates, 11–14 August 2017; pp. 70–74. [Google Scholar]
- Betul Oktay, A. Tooth detection with Convolutional Neural Networks. In Proceedings of the 2017 Medical Technologies National Congress (TIPTEKNO), Trabzon, Turkey, 12–14 October 2017; pp. 1–4. [Google Scholar]
- Geetha, V.; Aprameya, K.S.; Hinduja, D.M. Dental caries diagnosis in digital radiographs using back-propagation neural network. Heal. Inf. Sci. Syst. 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Shahid, N.; Rappon, T.; Berta, W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS ONE 2019, 14, e0212356. [Google Scholar] [CrossRef]
- Da Silva, I.; Hernane Spatti, S.; Andrade Flauzino, R. Artificial Neural Network Architectures and Training Processes. In Artificial Neural Networks: A Practical Course; Springer International Publishing: Berlin, Germany, 2017; pp. 21–28. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Kim, D.-H.; Jeong, S.-N. Diagnosis of Cystic Lesions Using Panoramic and Cone Beam Computed Tomographic Images Based on Deep Learning Neural Network. Oral Dis. 2020, 26, 152–158. [Google Scholar] [CrossRef]
- Farman, A.G. There are good reasons for selecting panoramic radiography to replace the intraoral full-mouth series. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology 2002, 94, 653–654. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.-S.; Song, I.-S.; Jung, K.-H. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Sci. Rep. 2019, 9, 17615. [Google Scholar] [CrossRef]
- Moll, M.A.; Seuthe, M.; von See, C.; Zapf, A.; Hornecker, E.; Mausberg, R.F.; Ziebolz, D. Comparison of clinical and dental panoramic findings: A practice-based crossover study. BMC Oral Health 2013, 13, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.J.; Gao, S.S.; Duangthip, D.; Lo, E.C.M.; Chu, C.H. Prevalence of early childhood caries among 5-year-old children: A systematic review. J. Investig. Clin. Dent. 2019, 10, e12376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, A. Dental caries. In Oral radiology. Principles and Interpretation.; Elsevier Mosby: St. Louis, MO, USA, 2014; pp. 285–298. [Google Scholar]
- Pakbaznejad Esmaeili, E.; Pakkala, T.; Haukka, J.; Siukosaari, P. Low reproducibility between oral radiologists and general dentists with regards to radiographic diagnosis of caries. Acta Odontol. Scand. 2018, 76, 346–350. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Comput. Vis. Pattern Recognit. 2015, 39, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Networks Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [Green Version]
- Schaul, T.; Bayer, J.; Wierstra, D.; Sun, Y.; Felder, M.; Sehnke, F.; Rückstieß, T.; Schmidhuber, J. PyBrain. J. Mach. Learn. Res. 2010, 11, 743–746. [Google Scholar]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1097–1105. [Google Scholar] [CrossRef]
- Johari, M.; Esmaeili, F.; Andalib, A.; Garjani, S.; Saberkari, H. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: An ex vivo study. Dentomaxillofacial Radiol. 2017, 46, 20160107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Database | Search Strategy | Search Data |
---|---|---|
MEDLINE/PubMed | (deep learning OR artificial intelligence OR neural network *) AND (dentistry OR dental) AND (teeth OR tooth OR caries OR filling OR dental implant OR endodontic OR root treatment) AND detect NOT (review) | 17 March, 2020 |
IEEE Xplore | (((((((((“Full Text Only”: deep learning) OR “Full Text Only”: artificial intelligence) OR “Full Text Only”: neural network) AND “Full Text Only”: teeth) OR “Full Text Only”: endodontic) OR “Full Text Only”: caries) OR “Full Text Only”: filling) OR “Full Text Only”: dental implant) AND “Document Title”: detect) | 17 March, 2020 |
arXiv.org | (deep learning OR artificial intelligence OR neural network *) AND (dentistry OR dental) AND (teeth OR tooth OR caries OR filling OR dental implant OR endodontic OR root treatment) AND detect | 17 March, 2020 |
Authors | Journal | Country, Year | Variable Detected | Image | Total Image Database | Neural Network | Outcome Metrics | Outcome Metrics Values |
---|---|---|---|---|---|---|---|---|
Schwendicke et al. [10] | Journal of Dentistry | England, 2019 | Caries | Near-infrared light transillumination | 226 | Resnet18 Resnext50 | AUC/Sensitivity/Specificity | 0.74/0.59/0.76 |
Fukuda et al. [19] | Oral Radiology | Japan, 2019 | Vertical root fracture (endodontic) | Panoramic radiography | 300 | DetectNet | Recall/Precision/F measure | 0.75/0.93/0.83. |
Ekert et al. [14] | Journal of Endodontics | USA, 2019 | Endodontic | Panoramic radiography | 85 | CNN | AUC/Sensitivity | Molar: 0.89/0.74 Other teeth: 0.85/0.65 |
Chen et al. [16] | Scientific Reports | England, 2019 | Teeth | Periapical images | 1250 | Faster R-CNN | Recall/Precision | 0.728/0.771 |
Tuzoff [3] | Dentomaxillofacial Radiology | England, 2019 | Teeth | Panoramic radiography | 1352 | Faster R-CNN | Sensitivity/Precision | 0.9941/0.9945 |
Zhang et al. [20] | Computerized Medical Imaging and Graphics | USA, 2018 | Teeth | Periapical images | 700 | Faster-RCNN/region-based fully convolutional networks (R-FCN). | Precision/Recall | 0.958/0.961 |
Raith et al. [21] | Computers in Biology and Medicine | England, 2017 | Teeth | - | - | ANN | Performance | 0.93 |
Srivastava et al. [22] | NIPS 2017 workshop on Machine Learning for Health (NIPS 2017 ML4H) | USA, 2017 | Caries | Bitewing | 3000 | FCNN (deep fully convolutional neural network) | Recall/Precision/F1-Score | 0.805/0.615/0.7 |
Jader et al. [23] | IEEE | Brazil, 2018 | Teeth | Panoramic radiography | 1500 | Mask R-CNN | Accuracy/F1-score/Precision/Recall/Specificity | 0.98/0.88/0.94/0.84/0.99 |
Miki et al. [24] | Computers in Biology and Medicine | USA, 2017 | Teeth | Cone-beam computed tomography (CT) | 52 | AlexNet | Accuracy | 0.88 |
Velemínská et al. [25] | Anthropologischer Anzeiger | Germany, 2013 | Teeth | Panoramic radiography | 1393 | RBFNN GAME | Accuracy | - |
Casalengo et al. [26] | Journal of Dental Research | USA, 2019 | Caries | Near-infrared transillumination | 217 | CNNs for semantic segmentation | AUC | 0.836 and 0.856 for occlusal and proximal lesions, respectively |
Lee et al. [13] | Journal of Dentistry | England, 2018 | Caries | Periapical | 3000 | Deep CNN algorithm weight factors | Accuracy/AUC | premolar, molar, and both premolar and molar: 0.89, 0.88, and 0.82/0.917, 0.89, 0.845 |
Zanella-Calzada et al. [27] | Bioengineering | Switzerland, 2018 | Caries | - | 9812 | ANN | Accuracy/AUC | 0.69/0.75 |
Muramatsu et al. [28] | Oral Radiology | Japan, 2020 | Teeth | Panoramic radiographs | 100 | Object detection network using fourfold cross-validation method | Sensitivity/Accuracy | 0.964/0.932 |
Prajapati et al. [29] | 5th International Symposium on Computational and Business Intelligence | United Arab Emirates, 2017 | Caries | Radiovisiography images | 251 | CNN | Accuracy | 0.875 |
Oktay, A. [30] | IEEE | Turkey, 2017 | Teeth | Panoramic radiographs | 100 | AlexNet | Accuracy | >0.92 |
Geetha et al. [31] | Health Information Science and Systems | Switzerland, 2020 | Caries | Intraoral radiographs | 105 | Back-propagation neural network | Accuracy/ Precision recall | 0.971/0.987 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prados-Privado, M.; Villalón, J.G.; Martínez-Martínez, C.H.; Ivorra, C. Dental Images Recognition Technology and Applications: A Literature Review. Appl. Sci. 2020, 10, 2856. https://doi.org/10.3390/app10082856
Prados-Privado M, Villalón JG, Martínez-Martínez CH, Ivorra C. Dental Images Recognition Technology and Applications: A Literature Review. Applied Sciences. 2020; 10(8):2856. https://doi.org/10.3390/app10082856
Chicago/Turabian StylePrados-Privado, María, Javier García Villalón, Carlos Hugo Martínez-Martínez, and Carlos Ivorra. 2020. "Dental Images Recognition Technology and Applications: A Literature Review" Applied Sciences 10, no. 8: 2856. https://doi.org/10.3390/app10082856
APA StylePrados-Privado, M., Villalón, J. G., Martínez-Martínez, C. H., & Ivorra, C. (2020). Dental Images Recognition Technology and Applications: A Literature Review. Applied Sciences, 10(8), 2856. https://doi.org/10.3390/app10082856