Ultrasound for Meat Processing: Effects of Salt Reduction and Storage on Meat Quality Parameters
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Brine Preparation
2.2. Bacterial Cultures and Meat Spiking
2.3. Ultrasound Treatment
2.4. Physicochemical Properties
2.5. Bacterial Enumeration
2.6. Scanning Electron Microscopy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sodium Uptake and Moisture
3.2. Formation of Secondary Lipid Oxidation Products
3.3. Colour Values
3.4. Shear Force Measurments
3.5. Bacterial Enumeration on Treated Pork
3.6. Bacterial Enumeration in Brine
3.7. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Ruusunen, M.; Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 2005, 70, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef]
- Terrell, R.N. Reducing the sodium content of processed meats. Food Technol. 1983, 37, 66–71. [Google Scholar]
- Taormina, P.J. Implications of Salt and Sodium Reduction on Microbial Food Safety. Crit. Rev. Food Sci. Nutr. 2011, 51, 477. [Google Scholar] [CrossRef] [PubMed]
- Israr, T.; Rakha, A.; Sohail, M.; Rashid, S.; Shehzad, A. Salt reduction in baked products: Strategies and constraints. Trends Food Sci. Technol. 2016, 51, 98–105. [Google Scholar] [CrossRef]
- Grummer, J.; Bobowski, N.; Karalus, M.; Vickers, Z.; Schoenfuss, T. Use of potassium chloride and flavor enhancers in low sodium Cheddar cheese. J. Dairy Sci. 2013, 96, 1401–1418. [Google Scholar] [CrossRef] [PubMed]
- Bidlas, E.; Lambert, R.J.W. Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement. Int. J. Food Microbiol. 2008, 124, 98–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baer, A.A.; Miller, M.J.; Dilger, A.C. Pathogens of interest to the pork industry: A review of Research on interventions to assure food safety. Compr. Rev. Food Sci. Food Saf. 2013, 12, 183–217. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.; Villagrana, R.A.R.; Huerta-Jimenez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Pinton, M.B.; Dos Santos, B.A.; Lorenzo, J.M.; Cichoski, A.J.; Boeira, C.P.; Campagnol, P.C.B. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Curr. Opin. Food Sci. 2020, 40, 1–5. [Google Scholar] [CrossRef]
- González-González, L.; Luna-Rodríguez, L.; Carrillo-Lopez, L.M.; Alarcón-Rojo, A.D.; García-Galicia, I.; Villagrana, R.A.R. Ultrasound as an alternative to conventional marination: Acceptability and mass transfer. J. Food Qual. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alarcon-Rojo, A.D.; Janacua, H.; Rodriguez, J.; Paniwnyk, L.; Mason, T.J. Power ultrasound in meat processing. Meat Sci. 2015, 107, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inguglia, E.S.; Zhang, Z.; Burgess, C.M.; Kerry, J.P.; Tiwari, B.K. Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing. Ultrasonics 2018, 83, 164–170. [Google Scholar] [CrossRef]
- Troy, D.J.; Ojha, K.S.; Kerry, J.P.; Tiwari, B.K. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An. overview. Meat Sci. 2016, 120, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hemar, Y.; AshokKumar, M.; Paturel, S.; Lewis, G.D. Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Res. 2014, 60, 93–104. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Effects of high intensity ultrasound on the inactivation profiles of Escherichia coli K12 and Listeria innocua with salt and salt replacers. Ultrason Sonochem. 2018, 48, 492–498. [Google Scholar] [CrossRef]
- Kang, D.; Jiang, Y.; Xing, L.; Zhou, G.; Zhang, W. Inactivation of Escherichia coli O157:H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef. Food Res. Int. 2017, 102, 717–727. [Google Scholar] [CrossRef]
- Awad, T.; Moharram, H.; E Shaltout, O.; Asker, D.; Youssef, M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Hu, M.; Gurtler, J.B. Selection of surrogate bacteria for use in food safety challenge studies: A review. J. Food Prot. 2017, 80, 1506–1536. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Stanley, R.E.; Bower, C.G.; Sullivan, G.A. Influence of sodium chloride reduction and replacement with potassium chloride based salts on the sensory and physico-chemical characteristics of pork sausage patties. Meat Sci. 2017, 133, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Got, F.; Culioli, J.; Berge, P.; Vignon, X.; Astruc, T.; Quideau, J.; Lethiecq, M. Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef. Meat Sci. 1999, 51, 35–42. [Google Scholar] [CrossRef]
- Stadnik, J.; Dolatowski, Z.J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). Eur. Food Res. Technol. 2011, 233, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Stadnik, J.; Dolatowski, Z.J.; Baranowska, H.M. Effect of ultrasound treatment on water holding properties and microstructure of beef (m. semimembranosus) during ageing. LWT Food Sci. Tehnol. 2008, 41, 2151–2158. [Google Scholar] [CrossRef]
- Pérez-Andrés, J.M.; Charoux, C.M.G.; Cullen, P.; Tiwari, B.K.; Pérez, J. Chemical Modifications of Lipids and Proteins by Nonthermal Food Processing Technologies. J. Agric. Food Chem. 2018, 66, 5041–5054. [Google Scholar] [CrossRef]
- Pingret, D.; Tixier, A.-S.; Chemat, F. Degradation during application of ultrasound in food processing: A review. Food Control. 2013, 31, 593–606. [Google Scholar] [CrossRef]
- Kang, D.-C.; Zou, Y.-H.; Cheng, Y.-P.; Xing, L.-J.; Zhou, G.; Zhang, W. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrason Sonochem. 2016, 33, 47–53. [Google Scholar] [CrossRef]
- Chang, H.C.; Wong, R.X. Textural and biochemical properties of cobia (Rachycentron canadum) sashimi tenderised with the ultrasonic water bath. Food Chem. 2012, 132, 1340–1345. [Google Scholar] [CrossRef]
- Pinton, M.B.; Correa, L.P.; Facchi, M.M.X.; Heck, R.T.; Leães, Y.S.V.; Cichoski, A.J.; Lorenzo, J.M.; Dos Santos, M.; Pollonio, M.A.R.; Campagnol, P.C.B.; et al. Ultrasound: A new approach to reduce phosphate content of meat emulsions. Meat Sci. 2019, 152, 88–95. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, C.K.; Lyng, J.G.; Allen, P. The use of power ultrasound for accelerating the curing of pork. Meat Sci. 2014, 98, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Wang, S.T.; Ockerman, H.W. Lipid oxidation and color change of salted pork patties. Meat Sci. 2007, 75, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Pohlman, F.; Dikeman, M.; Kropf, D. Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle. Meat Sci. 1997, 46, 89–100. [Google Scholar] [CrossRef]
- Sikes, A.L.; Mawson, R.; Stark, J.; Warner, R. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound. Ultrason Sonochem. 2014, 21, 2138–2143. [Google Scholar] [CrossRef]
- Carrillo-Lopez, L.M.; Huerta-Jimenez, M.; Garcia-Galicia, I.A.; Alarcon-Rojo, A.D. Bacterial control and structural and physicochemical modification of bovine Longissimus dorsi by ultrasound. Ultrason Sonochem. 2019, 58, 104608. [Google Scholar] [CrossRef]
- Cserhalmi, Z.; Sass-Kiss, Á.; Tóth-Markus, M.; Lechner, N. Study of pulsed electric field treated citrus juices. Innov. Food Sci. Emerg. Technol. 2006, 7, 49–54. [Google Scholar] [CrossRef]
- Jayasooriya, S.D.; Bhandari, B.R.; Torley, P.; D’Arcy, B.R. Effect of high power ultrasound waves on properties of meat: A review. Int. J. Food Prop. 2004, 7, 301–319. [Google Scholar] [CrossRef]
- Peña-Gonzalez, E.; Alarcón-Rojo, A.D.; Rentería, A.; García, I.; Santellano, E.; Quintero, A.; Luna, L. Quality and sensory profile of ultrasound-treated beef. Ital. J. Food Sci. 2017, 29. [Google Scholar] [CrossRef]
- Alves, L.D.L.; Da Silva, M.S.; Flores, D.R.M.; Athayde, D.R.; Ruviaro, A.R.; Brum, D.D.S.; Batista, V.S.F.; Mello, R.D.O.; De Menezes, C.R.; Campagnol, P.C.B.; et al. Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Res. Int. 2018, 106, 363–373. [Google Scholar] [CrossRef]
- Lyng, J.G.; Allen, P.; McKenna, B. The influence of high intensity ultrasound baths on aspects of beef tenderness. J. Muscle Foods 1997, 8, 237–249. [Google Scholar] [CrossRef]
- Kang, D.C.; Gao, X.Q.; Ge, Q.; Zhou, G.; Zhang, W. Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. Ultrason Sonochem. 2017, 38, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Ojha, K.S.; Kerry, J.P.; Alvarez, C.; Walsh, D.; Tiwari, B.K. Effect of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system. Ultrason Sonochem. 2016, 31, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.M.P.; Lee, Y.K.; Zhou, W. Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chem. 2012, 130, 866–874. [Google Scholar] [CrossRef]
- Piyasena, P.; Mohareb, E.; McKellar, R. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Pohlman, F.; Dikeman, M.; Zayas, J. The effect of low-intensity ultrasound treatment on shear properties, color stability and shelf-life of vacuum-packaged beef semitendinosus and biceps femoris muscles. Meat Sci. 1997, 45, 329–337. [Google Scholar] [CrossRef]
- Boziaris, I.; Skandamis, P.; Anastasiadi, M.; Nychas, G.-J.E. Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different pH and nisin concentrations. J. Appl. Microbiol. 2007, 102, 796–805. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards. Growth of spoilage bacteria during storage and transport of meat. EFSA J. 2016, 14, 04523.
- Pitt, W.G.; Ross, S.A. Ultrasound Increases the rate of bacterial cell growth. Biotechnol. Prog. 2003, 19, 1038–1044. [Google Scholar] [CrossRef]
- Diaz-Almanza, S.; Reyes-Villagrana, R.; Alarcon-Rojo, A.D.; Huerta-Jimenez, M.; Carrillo-Lopez, L.M.; Estepp, C.; Urbina-Perez, J.; Garcia-Galicia, I.A. Time matters when ultrasonicating beef: The best time for tenderness is not the best for reducing microbial counts. J. Food Process. Eng. 2019, 42, 13210. [Google Scholar] [CrossRef]
- Greer, G.G.; Nattress, F.; Dilts, B.; Baker, L. Bacterial Contamination of recirculating brine used in the commercial production of moisture-enhanced pork. J. Food Prot. 2004, 67, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Jambrak, A.R.; Herceg, Z. Application of ultrasonics in food preservation and processing. In Conventional and Advanced Food Processing Technologies; Bhattacharya, S., Ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 515–536. [Google Scholar]
- Monsen, T.; Lövgren, E.; Widerström, M.; Wallinder, L. In vitro effect of ultrasound on bacteria and suggested protocol for sonication and diagnosis of prosthetic infections. J. Clin. Microbiol. 2009, 47, 2496–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faleiro, M.L.; Andrew, P.W.; Power, D.M. Stress response of Listeria monocytogenes isolated from cheese and other foods. Int. J. Food Microbiol. 2003, 84, 207–216. [Google Scholar] [CrossRef]
- Pennisi, L.; Di Clerico, D.; Costantini, L.; Festino, A.R.; Vergara, A. Ultrasonic decontamination in smoked salmon experimentally contaminated with Listeria monocytogenes: Preliminary results. Ital. J. Food Saf. 2020, 9, 8398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, A.R.; Martin, S.E.; Feng, H. Power ultrasound treatment of Listeria monocytogenes in apple cider. J. Food Prot. 2005, 68, 2333–2340. [Google Scholar] [CrossRef]
- Dolan, H.L.; Bastarrachea, L.J.; Tikekar, R.V. Inactivation of Listeria innocua by a combined treatment of low-frequency ultrasound and zinc oxide. LWT 2018, 88, 146–151. [Google Scholar] [CrossRef]
Brine | NS | RS | ||
---|---|---|---|---|
Processing | Control | US | Control | US |
Time (h) | 4 | 1 | 4 | 1 |
Sodium | 0.90 ± 0.04 a | 0.88 ± 0.08 a | 0.65 ± 0.03 b | 0.62 ± 0.02 b |
Moisture (%) | 72.02 ± 1.06 a | 71.47 ± 0.68 a | 71.53 ± 0.12 a | 72.87 ± 0.02 a |
Aw | 0.934 ± 0.001 a | 0.933 ± 0.001 a | 0.936 ± 0.001 a | 0.932 ± 0.001 a |
pH | 6.01 ± 0.10 a | 6.00 ± 0.20 a | 6.10 ± 0.21 a | 6.10 ± 0.11 a |
Storage Day | Temp (°C) | Sodium | Processing | L* | a* | b* | TCD (ΔΕ) |
---|---|---|---|---|---|---|---|
0 | - | NS | Control | 49.97 ± 3.65 a | −0.49 ± 1.84 a | 4.45 ± 1.08 bc | - |
US | 47.99 ± 2.95 a | −0.60 ± 0.93 a | 3.95 ± 1.55 c | 2.04 | |||
RS | Control | 49.25 ± 2.79 a | −0.57 ± 1.75 a | 4.04 ± 0.62 c | 0.83 | ||
US | 50.61 ± 5.25 a | 0.88 ± 1.41 a | 6.09 ± 1.39 abc | 2.23 | |||
60 | 4 | NS | Control | 50.32 ± 1.88 a | 0.75 ± 0.78 a | 8.34 ± 0.56 a | 4.10 |
US | 55.39 ± 1.76 a | −1.93 ± 1.26 a | 7.18 ± 0.97 abc | 6.24 | |||
RS | Control | 51.56 ± 0.56 a | −1.37 ± 1.30 a | 7.14 ± 1.73 abc | 3.25 | ||
US | 53.59 ± 2.12 a | −1.59 ± 0.76 a | 7.88 ± 0.95 ab | 5.11 | |||
10 | NS | Control | 51.53 ± 2.49 a | 0.41 ± 2.26 a | 8.30 ± 1.8 a | 4.25 | |
US | 55.68 ± 2.92 a | −1.77 ± 1.34 a | 6.81 ± 1.42 abc | 6.31 | |||
RS | Control | 52.82 ± 2.06 a | −0.96 ± 2.42 a | 7.34 ± 0.62 abc | 4.09 | ||
US | 55.32 ± 5.22 a | −1.44 ± 1.04 a | 7.78 ± 1.05 ab | 6.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inguglia, E.S.; Granato, D.; Kerry, J.P.; Tiwari, B.K.; Burgess, C.M. Ultrasound for Meat Processing: Effects of Salt Reduction and Storage on Meat Quality Parameters. Appl. Sci. 2021, 11, 117. https://doi.org/10.3390/app11010117
Inguglia ES, Granato D, Kerry JP, Tiwari BK, Burgess CM. Ultrasound for Meat Processing: Effects of Salt Reduction and Storage on Meat Quality Parameters. Applied Sciences. 2021; 11(1):117. https://doi.org/10.3390/app11010117
Chicago/Turabian StyleInguglia, Elena S., Daniel Granato, Joseph P. Kerry, Brijesh K. Tiwari, and Catherine M. Burgess. 2021. "Ultrasound for Meat Processing: Effects of Salt Reduction and Storage on Meat Quality Parameters" Applied Sciences 11, no. 1: 117. https://doi.org/10.3390/app11010117
APA StyleInguglia, E. S., Granato, D., Kerry, J. P., Tiwari, B. K., & Burgess, C. M. (2021). Ultrasound for Meat Processing: Effects of Salt Reduction and Storage on Meat Quality Parameters. Applied Sciences, 11(1), 117. https://doi.org/10.3390/app11010117