Comparing Innovative Versus Conventional Ham Processes via Environmental Life Cycle Assessment Supplemented with the Assessment of Nitrite Impacts on Human Health
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Sustainability Impact Assessment in the Agrifood Industry and Meat Sector
1.2. Human Health Footprint: The Case of Nitrosamines in Ham Production
1.3. High-Pressure Treatment: A Scenario to Reduce Nitrite Content
2. Methods
2.1. Environmental Life Cycle Footprint of Ham Production
2.2. Human Health Footprint of Ham Production
2.2.1. Fate and Exposure
2.2.2. Intake Fraction
2.2.3. Effect and Severity Factor
3. Results and Discussion: Environmental and Human Health Impact Assessment of Cooked Ham Production
3.1. Environmental Life Cycle Assessment of Cooked Ham Production
3.2. The Potential Impact of Nitrosamines on Human Health
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tukker, A. Identifying priorities for environmental product policy. J. Ind. Ecol. 2006, 10, 1–4. [Google Scholar] [CrossRef]
- Bruinsma, J. World Agriculture: Towards 2015/2030: An FAO Study; Routledge: Abingdon, UK, 2017; ISBN 1351536354. [Google Scholar]
- Legendre, V. Consommation et usage des produits de porc en France: Analyse au travers des données de l’enquête CCAF. Journées Rech. Porc. 2016, 48, 19–24. [Google Scholar]
- Weidema, B.P.; Wesnæs, M.; Hermansen, J.; Kristensen, T.; Halberg, N.; Eder, P.; Delgado, L. Environmental Improvement Potentials of Meat and Dairy Products; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Calderón, L.A.; Iglesias, L.; Laca, A.; Herrero, M.; Díaz, M. The utility of Life Cycle Assessment in the ready meal food industry. Resour. Conserv. Recycl. 2010, 54, 1196–1207. [Google Scholar] [CrossRef]
- Davis, J.; Sonesson, U. Life cycle assessment of integrated food chains—A Swedish case study of two chicken meals. Int. J. Life Cycle Assess. 2008, 13, 574–584. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Reckmann, K.; Traulsen, I.; Krieter, J. Environmental Impact Assessment–methodology with special emphasis on European pork production. J. Environ. Manag. 2012, 107, 102–109. [Google Scholar] [CrossRef]
- Carlsson-Kanyama, A. Climate change and dietary choices—How can emissions of greenhouse gases from food consumption be reduced? Food Policy 1998, 23, 277–293. [Google Scholar] [CrossRef]
- Håkansson, S.; Gavrilita, P.; Bengoa, X. Comparative Life Cycle Assessment Pork vs Tofu. In Life Cycle Assessment Course 1N1800; KTH Royal Institute of Technology Stockholm: Stockholm, Sweden, 2005. [Google Scholar]
- Katajajuuri, J.-M.; Grönroos, J.; Usva, K. Environmental impacts and related options for improving the chicken meat supply chain. In Proceedings of the 6th International Conference on LCA in the Agri-Food Sector, Zurich, Switzerland, 12–14 November 2008. [Google Scholar]
- Himeno, A.; Gustavus, L.; Teixeira, R. Environmental and nutritional assessment of Breton pâté production. In Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-food Sector (LCA Food 2012), Saint-Malo, France, 2–4 October 2012. [Google Scholar]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Usva, K.; Saarinen, M.; Katajajuuri, J.M. Supply chain integrated LCA approach to assess environmental impacts of food production in Finland. Agric. Food Sci. 2009, 18, 460–476. [Google Scholar] [CrossRef]
- Berlin, J.; Sund, V. Environmental Life Cycle Assessment (LCA) of Ready Meals. 2010. Available online: http://environmental-life-cycle-assessment-lca-of-ready-meals-sik-2010804.pdf (accessed on 26 March 2018).
- Pardo, G.; Ciruelos, A.; Lopez, N.; Gonzalez, L.; Ramos, S.; Zufia, J. Environment improvement of a chicken product through life cycle assessment methodology. In Proceedings of the 8th Conference on LCA in the Agri-Food Sector, Saint-Malo, France, 2–4 October 2012; pp. 86–91. [Google Scholar]
- Rivera, X.C.S.; Orias, N.E.; Azapagic, A. Life cycle environmental impacts of convenience food: Comparison of ready and home-made meals. J. Clean. Prod. 2014, 73, 294–309. [Google Scholar] [CrossRef]
- Mieleitner, M.; Alig, M.; Grandl, F.; Nemecek, T.; Gaillard, G. Environmental impact of beef-role of slaughtering, meat processing and transport. In Proceedings of the Proceedings of the 8th Intrenational Conference on Life Cycle Assessment in the Agri-Food Sector (LCAFood 2012), Saint-Malo, France, 1–4 October 2012. [Google Scholar]
- Pardo, G.; Zufía, J. Life cycle assessment of food-preservation technologies. J. Clean. Prod. 2012, 28, 198–207. [Google Scholar] [CrossRef]
- Bengtsson, J.; Seddon, J. Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. J. Clean. Prod. 2013, 291–300. [Google Scholar] [CrossRef]
- Roy, P.; Orikasa, T.; Thammawong, M.; Nakamura, N. Life cycle of meats: An opportunity to abate the greenhouse gas emission from meat industry in Japan. J. Environ. Manag. 2012, 93, 218–224. [Google Scholar] [CrossRef]
- Pegg, R.B.; Shahidi, F. Nitrite Curing of Meat: The N-Nitrosamine Problem and Nitrite Alternatives; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 0470384867. [Google Scholar]
- Tricker, A.R. N-nitroso compounds and man: Sources of exposure, endogenous formation and occurrence in body fluids. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. (ECP) 1997, 6, 226–268. [Google Scholar] [CrossRef]
- Selin, N.E. Environmental Guidelines and Regulations for Nitrosamines: A Policy Summary; Massachusetts Institute of Technology: Cambridge, UK, 2011. [Google Scholar]
- Hsu, J.; Arcot, J.; Alice Lee, N. Nitrate and nitrite quantification from cured meat and vegetables and their estimated dietary intake in Australians. Food Chem. 2009, 115, 334–339. [Google Scholar] [CrossRef]
- European Parliament and Council. Directive 2006/52/EC of the European Parliament and of the Council of 5 July 2006 Amending Directive 95/2/EC on Food Additives Other than Colours and Sweeteners and Directive 94/35/EC on Sweeteners for Use in Foodstuffs; European Parliament and Council: Brussels, Belgium, 2006. [Google Scholar]
- Lyon, F. IARC monographs on the evaluation of carcinogenic risks to humans. Some Ind. Chem. 1994, 60, 389–433. [Google Scholar]
- IARC. IARC monographs on the evaluation of carcinogenic risks to humans. In Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins; Working Group on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2010; Volume 94. [Google Scholar]
- International Agency for Research on Cancer (IARC). Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins; IARC Press, International Agency for Research on Cancer: Lyon, France, 2010; Volune 94, ISBN 9283212940. [Google Scholar]
- Mirvish, S.S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995, 93, 17–48. [Google Scholar] [CrossRef]
- Jakszyn, P.; Gonzalez, C.-A. Nitrosamine and related food intake and gastric and oesophageal cancer risk: A systematic review of the epidemiological evidence. World J. Gastroenterol. 2006, 12, 4296–4303. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Jimenez-Colmenero, F. Biogenic amine content in Spanish retail market meat products treated with protective atmosphere and high pressure. Eur. Food Res. Technol. 2004, 218, 237–241. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Bacus, J.N. Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.; Cross, A.J.; Pollock, J.R.A.; Bingham, S. Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 2001, 22, 199–202. [Google Scholar] [CrossRef]
- Cross, A.J.; Leitzmann, M.F.; Gail, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R. A Prospective Study of Red and Processed Meat Intake in Relation to Cancer Risk. PLoS Med. 2007, 4, e325. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S.; Holick, C.N.; Batchelor, T.T.; Giovannucci, E.; Hunter, D.J. Prospective study of meat intake and dietary nitrates, nitrites, and nitrosamines and risk of adult glioma. Am. J. Clin. Nutr. 2009, 90, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Catsburg, C.E.; Gago-Dominguez, M.; Yuan, J.-M.; Castelao, J.E.; Cortessis, V.K.; Pike, M.C.; Stern, M.C. Dietary sources of N-nitroso compounds and bladder cancer risk: Findings from the Los Angeles bladder cancer study. Int. J. Cancer 2014, 134, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Linton, M.; Patterson, M.F.; Patterson, M.F. High pressure processing of foods for microbiological safety and quality. Acta Microbiol. Immunol. Hung. 2000, 47, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Caballero, M.E.; PÉREZ-MATEOS, M.; Montero, P.; Borderías, A.J. Oyster preservation by high-pressure treatment. J. Food Prot. 2000, 63, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Ghoul, M.; de Lamballerie-Anton, M. Influence of high pressure on the color and microbial quality of beef meat. LWT Food Sci. Technol. 2003, 36, 625–631. [Google Scholar] [CrossRef]
- Rubio, B.; Martinez, B.; Garcia-Cachan, M.D.; Rovira, J.; Jaime, I. Effect of high pressure preservation on the quality of dry cured beef “Cecina de Leon”. Innov. Food Sci. Emerg. Technol. 2007, 8, 102–110. [Google Scholar] [CrossRef]
- Marcos, B.; Aymerich, T.; Monfort, J.; Garriga, M. High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiol. 2008, 25, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Marcos, B.; Jofré, A.; Aymerich, T.; Monfort, J.; Garriga, M. Combined effect of natural antimicrobials and high pressure processing to prevent Listeria monocytogenes growth after a cold chain break during storage of cooked ham. Food Control 2008, 19, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Mújica-Paz, H.; Valdez-Fragoso, A.; Samson, C.T.; Welti-Chanes, J.; Torres, J.A. High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol. 2011, 4, 969. [Google Scholar] [CrossRef]
- Tonello, C. Case studies on high-pressure processing of foods. Nonthermal Process. Technol. Food 2011, 36–50. [Google Scholar] [CrossRef]
- Cacace, F.; Bottani, E.; Rizzi, A.; Vignali, G. Evaluation of the economic and environmental sustainability of high pressure processing of foods. Innov. Food Sci. Emerg. Technol. 2020, 60, 102281. [Google Scholar] [CrossRef]
- Simonin, H.; André, S.; Chaillou, S.; Jury, V.; de Lamballerie, M.; Martin, J.-L.; Modugno, C.; Petit, G.; Pilet, M.-F.; Pottier, L. Biopréservation et hautes pressions: Des outils pour la maîtrise des dangers microbiologiques dans les aliments. Ind. Aliment. Agric. 2019, 61, 34–38. [Google Scholar]
- Rakotondramavo, A.; Ribourg, L.; Meynier, A.; Guyon, C.; de Lamballerie, M.; Pottier, L. Monitoring oxidation during the storage of pressure-treated cooked ham and impact on technological attributes. Heliyon 2019, 5, e02285. [Google Scholar] [CrossRef] [Green Version]
- Hospido, A.; Davis, J.; Berlin, J.; Sonesson, U. A review of methodological issues affecting LCA of novel food products. Int. J. Life Cycle Assess. 2010, 15, 44–52. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Nielsen, A.M.; Weidema, B.P.; Dalgaard, R.; Halberg, N. LCA Food Database. 2003. Available online: http://www.lcafood.dk/ (accessed on 22 December 2020).
- Villamonte, G. Applications des Hautes Pressions aux Produits Carnes: De la Modification des Proteines a L’analyse du Cycle de Vie. Ph.D. Thesis, Oniris, Nantes, France, 2014. [Google Scholar]
- Ramaroson, M.; Guillou, S.; Rossero, A.; Rezé, S.; Anthoine, V.; Moriceau, N.; Martin, J.-L.; Duranton, F.; Zagorec, M. Selection procedure of bioprotective cultures for their combined use with high pressure processing to control spore-forming bacteria in cooked ham. Int. J. Food Microbiol. 2018, 276, 28–38. [Google Scholar] [CrossRef]
- Rakotondramavo, A.; Rabesona, H.; Brou, C.; de Lamballerie, M.; Pottier, L. Ham processing: Effects of tumbling, cooking and high pressure on proteins. Eur. Food Res. Technol. 2019, 245, 273–284. [Google Scholar] [CrossRef]
- Brunel University. Greenhouse Gas Impacts of Food Retailing; Report F0405 for Defra; Brunel University: London, UK, 2008. [Google Scholar]
- Rizet, C.; Browne, M.; Léonardi, J.; Allen, J.; Piotrowska, M.; Cornélis, E.; Descamps, J. Chaînes Logistiques et Consommation d’énergie: Cas des Meubles et des Fruits et Légumes; University of Westminster: London, UK, 2008. [Google Scholar]
- Garrot, G.; Ministrère de l’agriculture et de l’alimentation. Lutte Contre le Gaspillage Alimentaire: Propositions Pour Une Politique Publique. Available online: http://agriculture.gouv.fr/file/rapport-gaspillage-alimentairecle0ea927pdf (accessed on 13 June 2018).
- SimaPro, L.C.A. Software, PRé Sustainability, Amersfoort, The Netherlands, 2005.
- Jolliet, O.; Soucy, G.; Houillon, G. Life Cycle Analysis: Understanding and Realizing a Life Cycle Assessment; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 2010; ISBN 2880748860. (In French) [Google Scholar]
- Rosenbaum, R.K.; Huijbregts, M.A.J.; Henderson, A.D.; Margni, M.; McKone, T.E.; van de Meent, D.; Hauschild, M.Z.; Shaked, S.; Li, D.S.; Gold, L.S.; et al. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int. J. Life Cycle Assess. 2011, 16, 710–727. [Google Scholar] [CrossRef]
- Udo de Haes, H.A. Life Cycle Impact Assessment: Striving towards best practice. In SETAC Press Proceedings; SETAC Press: Pensacola, FL, USA, 2002. [Google Scholar]
- Rywotycki, R. The effect of selected functional additives and heat treatment on nitrosamine content in pasteurized pork ham. Meat Sci. 2002, 60, 335–339. [Google Scholar] [CrossRef]
- Stuff, J.E.; Goh, E.T.; Barrera, S.L.; Bondy, M.L.; Forman, M.R. Construction of an N-nitroso database for assessing dietary intake. J. Food Compos. Anal. 2009, 22, S42–S47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campillo, N.; Viñas, P.; Martínez-Castillo, N. Determination of volatile nitrosamines in meat products by microwave-assisted extraction and dispersive liquid–liquid microextraction coupled to gas. J. Chromatogr. A 2011, 14, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, S.; Mölder, U. The occurrence of volatile N-nitrosamines in Estonian meat products. Food Chem. 2007, 100, 1713–1721. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Duedahl-Olesen, L.; Granby, K. Occurrence of volatile and non-volatile N-nitrosamines in processed meat products and the role of heat treatment. Food Control 2015, 48, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef] [Green Version]
- Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Macleod, M.; Margni, M.; van de Meent, D.; Rosenbaum, R.K.; McKone, T.E. Building a Model Based on Scientific Consensus for Life Cycle Impact Assessment of Chemicals: The Search for Harmony and Parsimony. Environ. Sci. Technol. 2008, 42, 7032–7037. [Google Scholar] [CrossRef] [Green Version]
- Laurent, A.; Lautier, A.; Rosenbaum, R.K.; Olsen, S.I.; Hauschild, M.Z. Normalization references for Europe and North America for application with USEtoxTM characterization factors. Int. J. Life Cycle Assess. 2011, 16, 728. [Google Scholar] [CrossRef]
- Westh, T.B.; Hauschild, M.Z.; Birkved, M.; Jørgensen, M.S.; Rosenbaum, R.K.; Fantke, P. The USEtox story: A survey of model developer visions and user requirements. Int. J. Life Cycle Assess. 2015, 20, 299–310. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Rombouts, L.J.A.; Ragas, A.M.J.; van de Meent, D. Human-Toxicological Effect and Damage Factors of Carcinogenic and Noncarcinogenic Chemicals for Life Cycle Impact Assessment. Integr. Environ. Assess. Manag. 2005, 1, 181. [Google Scholar] [CrossRef]
- Reckmann, K.; Traulsen, I.; Krieter, J. Life Cycle Assessment of pork production: A data inventory for the case of Germany. Livest. Sci. 2013, 157, 586–596. [Google Scholar] [CrossRef]
- Floros, J.D.; Newsome, R.; Fisher, W.; Barbosa-Cánovas, G.V.; Chen, H.; Dunne, C.P.; German, J.B.; Hall, R.L.; Heldman, D.R.; Karwe, M. V Feeding the world today and tomorrow: The importance of food science and technology. Compr. Rev. Food Sci. Food Saf. 2010, 9, 572–599. [Google Scholar] [CrossRef]
- Bio Intelligence Service S.A.S. Eco-Emballages Analyses de Cycle de Vie de Produits Vendus à la Coupe, Pré-Emballé et en Libre-Service Etude de cas: Jambon Rapport final Novembre 2008. Available online: http://www.ecoemballages.fr (accessed on 22 December 2020).
- United Nations Environment Program (UNEP). Enviornmental Risks and Chammenges of Anthropologic Metals Flows and Cycles, a Report of the Working Group ont he Global MetalFlows to the International Resources Panel; UNEP: Nairobi, Kenya, 2013. [Google Scholar]
- Basset-Mens, C.; Van der Werf, H.M.G. Scenario-based environmental assessment of farming systems: The case of pig production in France. Agric. Ecosyst. Environ. 2005, 105, 127–144. [Google Scholar] [CrossRef]
- Da Silva, V.P.; van der Werf, H.M.G.; Soares, S.R. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. J. Environ. Manag. 2014, 133, 222–231. [Google Scholar] [CrossRef]
- FranceAgriMer. Données et Bilans Consommation des Produits Carnés en 2014; French National Report on Food Markets; FranceAgriMer: Montreuil, France, 2015. [Google Scholar]
- European Food Safety Authority (EFSA). L’évaluation des Risques Expliquée par l’EFSA. Nitrites et Nitrates Ajoutés Aux Aliments; EFSA: Parma, Italy, 2017.
- Loh, Y.H.; Jakszyn, P.; Luben, R.N.; Mulligan, A.A.; Mitrou, P.N.; Khaw, K.-T. N-nitroso compounds and cancer incidence: The European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk Study. Am. J. Clin. Nutr. 2011, 93, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Jakszyn, P.; Agudo, A.; Berenguer, A.; Ibáñez, R.; Amiano, P.; Pera, G.; Ardanaz, E.; Barricarte, A.; Chirlaque, M.D.; Dorronsoro, M.; et al. Intake and food sources of nitrites and N-nitrosodimethylamine in Spain. Public Health Nutr. 2006, 9, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Jakszyn, P.; Bingham, S.; Pera, G.; Agudo, A.; Luben, R.; Welch, A.; Boeing, H.; del Giudice, G.; Palli, D.; Saieva, C.; et al. Endogenous versus exogenous exposure to N-nitroso compounds and gastric cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study. Carcinogenesis 2006, 27, 1497–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biaudet, H.; Mavelle, T.; Debry, G. Mean daily intake of N-nitrosodimethylamine from foods and beverages in France in 1987–1992. Food Chem. Toxicol. 1994, 32, 417–421. [Google Scholar] [CrossRef]
- Cornee, J.; Lairon, D.; Velema, J.; Guyader, M.; Berthezene, P. An estimate of nitrate, nitrite, and N-nitrosodimethylamine concentrations in French food products or food groups. Sci. Des Aliment. 1992, 12, 155–197. [Google Scholar]
- Demeyer, D.; Honikel, K.; De Smet, S. The World Cancer Research Fund report 2007: A challenge for the meat processing industry. Meat Sci. 2008, 80, 953–959. [Google Scholar] [CrossRef]
- Oostindjer, M.; Alexander, J.; Amdam, G.V.; Andersen, G.; Bryan, N.S.; Chen, D.; Corpet, D.E.; De Smet, S.; Dragsted, L.O.; Haug, A. The role of red and processed meat in colorectal cancer development: A perspective. Meat Sci. 2014, 97, 583–596. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, T.L.C.; de Carvalho, S.M.; de Araújo Soares, R.; Andrade, M.A.; das Graças Cardoso, M.; Ramos, E.M.; Piccoli, R.H. Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT Food Sci. Technol. 2012, 45, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Gobert, M.; Gruffat, D.; Habeanu, M.; Parafita, E.; Bauchart, D.; Durand, D. Plant extracts combined with vitamin E in PUFA-rich diets of cull cows protect processed beef against lipid oxidation. Meat Sci. 2010, 85, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Meineri, G.; Medana, C.; Giancotti, V.; Visentin, S.; Peiretti, P.G. Effect of dietary supplementation of vitamin E in pigs to prevent the formation of carcinogenic substances in meat products. J. Food Compos. Anal. 2013, 30, 67–72. [Google Scholar] [CrossRef]
- Santarelli, R.L.; Vendeuvre, J.-L.; Naud, N.; Taché, S.; Guéraud, F.; Viau, M.; Genot, C.; Corpet, D.E.; Pierre, F.H.F. Meat processing and colon carcinogenesis: Cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats. Cancer Prev. Res. 2010, 3, 852–864. [Google Scholar] [CrossRef] [Green Version]
- Karłowski, K.; Windyga, B.; Fonberg-Broczek, M.; Ścieżyńska, H.; Grochowska, A.; Górecka, K.; Mroczek, J.; Grochalska, D.; Barabasz, A.; Arabas, J. Effects of high pressure treatment on the microbiological quality, texture and colour of vacuum packed pork meat products. Int. J. High Press. Res. 2002, 22, 725–732. [Google Scholar] [CrossRef]
- Pietrzak, D.; Fonberg-Broczek, M.; Mucka, A.; Windyga, B. Effects of high pressure treatment on the quality of cooked pork ham prepared with different levels of curing ingredients. High Press. Res. 2007, 27, 27–31. [Google Scholar] [CrossRef]
- Myers, K.; Montoya, D.; Cannon, J.; Dickson, J.; Sebranek, J. The effect of high hydrostatic pressure, sodium nitrite and salt concentration on the growth of Listeria monocytogenes on RTE ham and turkey. Meat Sci. 2013, 93, 263–268. [Google Scholar] [CrossRef]
- Myers, K.; Cannon, J.; Montoya, D.; Dickson, J.; Lonergan, S. Effects of high hydrostatic pressure and varying concentrations of sodium nitrite from traditional and vegetable-based sources on the growth of Listeria. Meat Sci. 2013, 94, 69–76. [Google Scholar] [CrossRef]
- Sebranek, J.; Bacus, J. Natural and organic cured meat products: Regulatory, manufacturing, marketing, quality and safety issues. Am. Meat Sci. Assoc. White Pap. Ser. 2007, 1, 115. [Google Scholar]
- Balasubramaniam, V.M.; Farkas, D.; Turek, E.J. Preserving foods through high-pressure processing. Food Technol. 2008, 62, 32–38. [Google Scholar]
- Duranton, F.; Guillou, S.; Simonin, H.; Chéret, R.; de Lamballerie, M. Combined use of high pressure and salt or sodium nitrite to control the growth of endogenous microflora in raw pork meat. Innov. Food Sci. Emerg. Technol. 2012, 16, 373–380. [Google Scholar] [CrossRef]
- Cucurachi, S.; Heijungs, R.; Peijnenburg, W.; Bolte, J.F.B.; De Snoo, G.R. A framework for deciding on the inclusion of emerging impacts in life cycle impact assessment. J. Clean. Prod. 2014, 78, 152–163. [Google Scholar] [CrossRef]
- Olsen, S.I.; DTU M. Modelling, Human Effects USEToxTM. Available online: https://www.usetox.org/sites/default/files/support.../effects_1.pdf (accessed on 26 March 2018).
Nitrosamines (μg.kg−1) | Reference | Nitrosamines (μg.kg−1) | Reference |
---|---|---|---|
NDMA: 5.09 ± 1.01 NDEA: 4.85 ± 0.54 | [63] (reference scenario) | NDMA: 4.9 NDEA: 1.49 NPYR: 5.34 NPIP: 0.04 | [28] |
NDMA: 11.05 ± 1.2 NDEA: 10.4 ± 0.96 | [63] (scenario with polyphosphates) | NDMA: 2 ± 0.3 NDEA: 2.9 ± 0.3 NPYR: 1.8 ± 0.3 | [64] |
NDMA: 1 NDEA: 0.37 NPYR: 3.73 NPIP: 1.79 | [65] | NDMA: 2.18 ± 0.62 NDEA: 0.2 NPYR: 1.75 ± 0.49 NPIP: 0.05 ± 0.02 | [66] |
CASE | Nitrosamines | Carcinogenic Effect Factor (μg.kg−1 Intake) |
---|---|---|
62-75-9 | N-nitrosodimethylamine | 11.95 |
55-18-5 | N-nitrosodiethylamine | 43.25 |
930-55-2 | N-nitrosopiperidine | 3.01 |
100-75-4 | N-nitrosopyrrolidine | 1.57 |
Impact Category | Units | Conventional Ham | Innovative Ham |
---|---|---|---|
Nonrenewable | MJ-Eq | 103.003 | 104.472 |
Renewable | MJ-Eq | 72.429 | 72.429 |
Climate change | kg CO2 eq | 13.422 | 13.439 |
Water depletion | m3 | 10.958 | 11.465 |
Metal depletion | kg Fe eq | 0.276 | 0.277 |
Terrestrial acidification | kg SO2 eq | 0.084 | 0.086 |
Freshwater eutrophication | kg P eq | 0.001 | 0.001 |
Marine eutrophication | kg N eq | 0.021 | 0.021 |
Agricultural land occupation | m2 | 5.437 | 5.438 |
Human toxicity | kg 1,4-DB eq | 0.111 | 0.112 |
Nitrosamines toxicity | DALY | 2.20x10−6 | 4.54x10−7 |
Impact Category | Unity | Raw Material Production | Production of Cooked Ham | Distribution | Use Phase | |
---|---|---|---|---|---|---|
Conventional | Innovative | |||||
Nonrenewable Energy | MJ-Eq | 2.81x10+1 | 7.08x10+1 | 7.24x10+1 | 1.98x10−1 | 3.85x10 |
Renewable energy | MJ-Eq | 7.12x10+1 | 1.21x10 | 1.23x10 | 0.00x10 | 8.18x10−3 |
Climate change | kg CO2 eq | 6.22x10 | 6.86x10 | 6.89x10 | 1.36x10−1 | 2.02x10−1 |
Water depletion | m3 | 1.50x10 | 8.71x10 | 9.22x10 | 1.57x10−2 | 7.29x10−1 |
Metal depletion | kg Fe eq | 1.32x10−1 | 1.24x10−1 | 1.26x10−1 | 4.28x10−4 | 1.93x10−2 |
Terrestrial acidification | kg SO2 eq | 6.90x10−2 | 1.46x10−2 | 1.69x10−2 | 3.04x10−5 | 4.61x10−4 |
Freshwater eutrophication | kg P eq | 4.42x10−4 | 9.32x10−4 | 9.36x10−4 | 6.95x10−7 | 3.29x10−5 |
Marine eutrophication | kg N eq | 2.00x10−2 | 8.24x10−4 | 9.35x10−4 | 1.73x10−6 | 3.28x10−5 |
Agricultural land occupation | m2 | 5.15x10 | 2.86x10−1 | 2.91x10−1 | 1.33x10−4 | 3.17x10−3 |
Impact Category | Units | Conventional Ham | Innovative Ham |
---|---|---|---|
Photochemical oxidant formation | DALY | 8.27x10−10 | 8.29x10−10 |
Ozone depletion | DALY | 2.52x10−8 | 2.52x10−8 |
Ionizing radiation | DALY | 3.77x10−8 | 3.91x10−8 |
Human toxicity | DALY | 7.79x10−8 | 7.82x10−8 |
Nitrosamine toxicity | DALY | 2.20x10−6 | 4.54x10−7 |
Particulate matter formation | DALY | 4.98x10−6 | 5.08x10−6 |
Climate change | DALY | 1.60x10−5 | 1.60x10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petit, G.; Villamonte, G.; de Lamballerie, M.; Jury, V. Comparing Innovative Versus Conventional Ham Processes via Environmental Life Cycle Assessment Supplemented with the Assessment of Nitrite Impacts on Human Health. Appl. Sci. 2021, 11, 451. https://doi.org/10.3390/app11010451
Petit G, Villamonte G, de Lamballerie M, Jury V. Comparing Innovative Versus Conventional Ham Processes via Environmental Life Cycle Assessment Supplemented with the Assessment of Nitrite Impacts on Human Health. Applied Sciences. 2021; 11(1):451. https://doi.org/10.3390/app11010451
Chicago/Turabian StylePetit, Gaëlle, Gina Villamonte, Marie de Lamballerie, and Vanessa Jury. 2021. "Comparing Innovative Versus Conventional Ham Processes via Environmental Life Cycle Assessment Supplemented with the Assessment of Nitrite Impacts on Human Health" Applied Sciences 11, no. 1: 451. https://doi.org/10.3390/app11010451
APA StylePetit, G., Villamonte, G., de Lamballerie, M., & Jury, V. (2021). Comparing Innovative Versus Conventional Ham Processes via Environmental Life Cycle Assessment Supplemented with the Assessment of Nitrite Impacts on Human Health. Applied Sciences, 11(1), 451. https://doi.org/10.3390/app11010451