Evaluation of ECG Features for the Classification of Post-Stroke Survivors with a Diagnostic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. Data Analysis
2.3. ECG Signal Denoising Based on Discrete Wavelet Transform Method
2.4. Feature Extraction
2.4.1. Statistical Time-Domain Features
- Kurtosis—Calculates whether the data is heavy-tailed or light-tailed relative to a normal distribution.
- Skewness—Computes the asymmetry of the data. When the data points are skewed to the left, it is called a negative skew, and data points skewed to the right are called a positive skew.
- Peak value—Gives the maximum absolute value of the signal.
- Impulse factor—Compares the height of a peak to the mean level of the signal.
- Crest factor—Defined as the peak value divided by the root mean square value.
2.4.2. Time Domain Variables of Heart Rate Variability (HRV)
2.4.3. Frequency Domain Variables of HRV
2.4.4. Fiducial Features
2.5. Feature Selection and Ranking
2.6. Machine-Learning Classification Approach
3. Results
3.1. Baseline Clinical Characteristics
3.2. HRV Analysis of Stroke and Control Group
3.3. Analysis of Higher Order Statistics and Impulsive Metrics Variables
3.4. Analysis of Intervals Extracted between the Fiducial Points of ECG
3.5. Classification Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, K.S.; Bang, O.Y.; Kang, D.W.; Yu, K.H.; Bae, H.J.; Lee, J.S.; Heo, J.H.; Kwon, S.U.; Oh, C.W.; Lee, B.C.; et al. Stroke statistics in Korea: Part I. epidemiology and risk factors: A report from the Korean stroke society and clinical research center for stroke. J. Stroke 2013, 15, 2–20. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, K.; Kang, J.; Koo, J.; Kim, D.H.; Kim, B.J.; Kim, W.J.; Kim, E.G.; Kim, J.G.; Kim, J.M.; et al. Executive summary of stroke statistics in Korea 2018: A report from the epidemiology research council of the korean stroke society. J. Stroke 2019, 21, 42–59. [Google Scholar] [CrossRef]
- Reddy, H.P.; Jaganath, A.; Nagaraj, N.; Reddy, V.Y.J. A study of age as a risk factor in ischemic stroke of elderly. Int. J. Res. Med. Sci. 2019, 7, 1553–1557. [Google Scholar] [CrossRef]
- Olindo, S.; Cabre, P.; Deschamps, R.; Chatot-Henry, C.; Rene-Corail, P.; Fournerie, P.; Saint-Vil, M.; May, F.; Smadja, D. Acute stroke in the very elderly epidemiological features, stroke subtypes, management, and outcome in matinique, french west Indies. Stroke 2003, 34, 1593–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.J. Agening society issues in Korea. Asian Soc. Work Policy Rev. 2009, 3, 63–83. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.L.; Balami, J.S.; Esiri, M.M.; Chen, L.K.; Buchan, A.M. Ischemic stroke in the elderly: An overview of evidence. Nat. Rev. Neurol. 2010, 6, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Venketasubramanian, N.; Yoon, B.W.; Pandian, J.; Navarro, J.C. Stroke epidemiology in south, east and south-east Asia: A review. J. Stroke 2017, 19, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.; Kim, J.; Lim, J. The use of deep leaning to predict stroke patient mortality. Int. J. Environ. Res. Public Health 2019, 16, 1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serhani, M.A.; Kassabi, T.H.E.; Ismail, H.; Navaz, A.N. ECG monitoring systems: Review, architecture, processes and key challenges. Sensor 2020, 20, 1796. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Yang, H.; Yuan, X.; He, Q.; Zhang, R.; Zhu, Q.; Chu, Z.; Yang, C.; Qin, P.; Yan, C. Stroke prediction from electrocardiograms by deep neural network. Multimed. Tools Appl. 2020. [Google Scholar] [CrossRef]
- Adeoye, A.M.; Ogah, O.S.; Ovbiagele, B.; Akinyemi, R.; Shidali, V.; Agyekum, F. Prevalence and prognostic features of ECG abnormalities in acute stroke: Findings from the SIREN study among africans. Global Heart 2017, 12, 99–105. [Google Scholar] [CrossRef]
- Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.C.; Kording, K.P. The need to approximate the use-case in clinical machine learning. Gigasicence 2017, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, J.N.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine learning–based model for prediction of outcomes in acute stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Chantamit-o-pas, P.; Goyal, M. Prediction of Stroke Using Deep Learning Model. In Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science; Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S., Eds.; Springer: Cham, Switzerland, 2017; Volume 10638, pp. 774–781. [Google Scholar]
- Li, X.; Bian, D.; Yu, J.; Li, M.; Zhao, D. Using machine learning models to improve stroke risk level classification methods of China national stroke screening. BMC Med. Inform. Decis. Mak. 2019, 19, 261. [Google Scholar] [CrossRef] [PubMed]
- Khosla, A.; Cao, Y.; Lin, C.C.Y.; Chiu, H.K.; Hu, J.; Lee, H. An integrated machine learning approach to stroke prediction. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, Washington, DC, USA, 24–28 July 2010; pp. 183–192. [Google Scholar]
- Lyon, A.; Minchole, A.; Martinez, J.P.; Laguna, P.; Rodriguez, B. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. J. R. Soc. Interface 2018, 15, 20170821. [Google Scholar] [CrossRef]
- Liu, S.; Shao, J.; Kong, T.; Malekian, R. ECG Arrhythmia classification using high order spectrum and 2D graph Fourier transform. Appl. Sci. 2020, 10, 4741. [Google Scholar] [CrossRef]
- Purushothaman, S.; Salmani, D.; Prarthana, K.G.; Bandelkar, S.M.G.; Varghese, B.S. Study of ECG changes and its relation to mortality is cases of cerebrovascular accidents. J. Nat. Sc. Biol. Med. 2014, 5, 434–436. [Google Scholar] [CrossRef] [Green Version]
- Syama, S.; Sweta, G.S.; Kavyasree, P.I.K.; Reddy, K.J.M. Classification of ECG signal using machine learning techniques. In Proceedings of the 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, 21–23 August 2019; pp. 122–128. [Google Scholar]
- Samann, F.; Schanze, T. An efficient ECG denoising method using discrete wavelet with Savitzky-Golay filter. Curr. Dir. Biomed. Eng. 2019, 5, 385–388. [Google Scholar] [CrossRef]
- Popov, D.; Gapochkin, A.; Nekrasov, A. An algorithm of Daubechies wavelet transform in the final field when processing speech signal. Electronics 2018, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Jing-yi, L.; Hong, L.; Dong, Y.; Yan-sheng, Z. A new wavelet threshold function and denoising application. Math. Probl. Eng. 2016, 2016, 3195492. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Li, F.; Wang, J.; Sangaiah, A.K.; Sheng, V.S.; Ding, X. An ECG signal de-noising approach based on wavelet energy and sub-band smoothing filter. Appl. Sci. 2019, 9, 4968. [Google Scholar] [CrossRef] [Green Version]
- German-Sallo, Z. Nonlinear wavelet denoising of data signals. UbiCC J. 2011, 6, 895–900. [Google Scholar]
- Ebrahimzadeh, E.; Pooyan, M.; Bijar, A. A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PLoS ONE 2014, 9, e81896. [Google Scholar] [CrossRef] [PubMed]
- Makivic, B.; Mag, P.B. Heart rate variability analysis in sport utility, practical implementation and future perspectives. ASPETAR Sports Med. J. 2015, 4, 326–331. [Google Scholar]
- Lee, S.; Jeong, Y.; Park, D.; Yun, B.J.; Park, K.H. Efficient fiducial point detection of ECG QRS complex based on polygonal approximation. Sensors 2018, 18, 4502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peshave, J.D.; Shastri, R. Feature extraction of ECG signal. In Proceedings of the 2014 International Conference on Communication and Signal Processing, Bangkok, Thailand, 10–12 October 2014; pp. 1864–1868. [Google Scholar]
- Patro, K.K.; Prakash, A.J.; Rao, M.J.; Kumar, P.R. An efficient optimized feature selection with machine learning approach for ECG biometric recognition. IETE J. Res. 2020. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Du, X.; Zhang, P.; Hu, G.; Xie, G.; Guo, S.; Xu, M.; Xie, X. Integrated machine learning approaches for predicting ischemic stroke and thromboembolism in atrial fibrillation. AMIA Annu. Symp. Proc. 2017, 2016, 799–807. [Google Scholar]
- Zhang, Y.; Zhou, Y.; Zhang, D.; Song, W. A stroke risk detection: Improving hybrid feature selection method. J. Med. Internet Res. 2019, 21, e12437. [Google Scholar] [CrossRef]
- Xun, L.; Zheng, G. ECG signal feature selection for emotion recognition. Indonesian J. Electr. Eng. Comput. Sci. 2013, 11, 1363–1370. [Google Scholar] [CrossRef]
- Jabbar, M.A.; Deekshatulu, B.L.; Chandra, P. Classification of heart disease using K-nearest neighbor and genetic algorithm. Proc. Technol. 2013, 10, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Zdrodowska, M. Attribute selection for stroke prediction. Acta Mech. Autom. 2019, 13, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Mythili, T.; Mukherji, D.; Padalia, N.; Naidu, A. A heart disease prediction model using SVM-decision trees-logistic regression (SDL). Int. J. Comput. Appl. 2013, 68, 11–15. [Google Scholar]
- Yu, J.; Park, S.; Lee, H.; Pyo, C.-S.; Lee, Y.S. An elderly health monitoring system using machine learning and In-depth analysis techniques on the NIH stroke scale. Mathematics 2020, 8, 1115. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Tanislav, C.; Milde, S.; Schwartzkopff, S.; Misselwitz, B.; Sieweke, N.; Kaps, M. Baseline characteristics in stroke patients with atrial fibrillation: Clinical trials versus clinical practice. BMC Res. Notes 2015, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fekadu, G.; Chelkeba, L.; Kebede, A. Risk factors, clinical presentations and predictors of stroke among adult patients admitted to stroke unit of Jimma university medical center, south west Ethiopia: Prospective observational study. BMC Neurol. 2019, 19, 187. [Google Scholar]
- Habibi-koolaee, M.; Shahmoradi, L.; Kalhori, S.R.N.; Ghannadan, H.; Younesi, E. Prevalence of stroke risk factors and their distribution based on stroke subtypes in gorgan: A retrospective hospital-based study-2015–2016. Neurol. Res. Int. 2018, 2018, 2709654. [Google Scholar] [CrossRef]
- Tang, S.C.; Jen, H.I.; Lin, Y.H.; Hung, C.S.; Jou, W.J.; Huang, P.W.; Shieh, J.S.; Ho, Y.L.; Lai, D.M.; Wu, A.Y.; et al. Complexity of heart rate variability predicts outcome in intensive care unit admitted patients with acute stroke. J. Neurol. Neurosurg. Psychiatry 2015, 86, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Fyfe-Johnson, A.L.; Muller, C.J.; Alonso, A.; Folsom, A.R.; Gottesman, R.F.; Rosamond, W.D.; Whitsel, E.A.; Agarwal, S.K.; MacLehose, R.F. Hear rate variability and incident stroke the atherosclerosis risk in communities study. Stroke 2016, 47, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Huang, P.W.; Tang, S.C.; Shieh, J.S.; Lai, D.M.; Wu, A.Y.; Jeng, J.S. Complexity of heart rate variability can predict stroke-in-evolution in acute ischemic stroke patients. Sci. Rep. 2015, 5, 17552. [Google Scholar] [CrossRef]
- Huang, J.C.; Chen, C.F.; Chang, C.C.; Chen, S.C.; Hsieh, M.C.; Hsieh, Y.P.; Chen, H.C. Effects of stroke on changes in heart rate variability during hemodialysis. BMC Nephrol. 2017, 18, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantinescu, V.; Matei, D.; Costache, V.; Cuciureanu, D.; Arsenescu-Geogescu, C. Linear and nonlinear parameters of heart rate variability in ischemic stroke patients. Neurol. Neurochir. Pol. 2018, 52, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Tokgozoglu, S.L.; Batur, M.K.; Topcuoglu, M.A.; Saribas, O.; Kes, S.; Oto, A. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke 1999, 30, 1307–1311. [Google Scholar] [CrossRef] [Green Version]
- Colivicchi, F.; Bassi, A.; Santini, M.; Caltagirone, C. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke 2004, 35, 2094–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khane, R.S.; Surdi, A.D.; Bhatkar, R.S. Changes in ECG pattern with advancing age. J. Basic Clin. Physiol. Pharmacol. 2011, 22, 97–101. [Google Scholar] [CrossRef]
- Ebrahim, K.; Mohamadali, A.; Majid, M.; Javad, A. Electrocardiograph changes in acute ischemic cerebral stroke. J. Appl. Res. 2012, 12, 53–58. [Google Scholar]
- Christensen, H.; Christensen, A.F.; Boysen, G. Abnormalities on ECG and telemetry predict stroke outcome at 3 Months. J. Neurol. Sci. 2005, 234, 99–103. [Google Scholar] [CrossRef]
- Asadi, P.; Ziabari, S.M.Z.; Jahan, D.N.; Yazdi, A.J. Electrocardiogram changes as an independent predictive factor of mortality in patients with acute ischemic stroke; a cohort study. Arch. Acad. Emerg. Med. 2019, 7, e27. [Google Scholar]
- Togha, M.; Sharifpour, A.; Ashraf, H.; Moghadam, M.; Sahraian, M.A. Electrocardiographic abnormalities in acute cerebrovascular events in patients with/without cardiovascular disease. Ann. Indian Acad. Neurol. 2013, 16, 66–71. [Google Scholar]
- Kaya, A.; Arslan, Y.; Özdoğan, Ö.; Tokuçoğlu, F.; Şener, U.; Zorlu, Y. Electrocardiographic changes and their prognostic effect in patients with acute ischemic stroke without cardiac etiology. Turk. J. Neurol. 2018, 24, 137–142. [Google Scholar] [CrossRef]
- Povoa, R.; Cavichio, L.; de Almeida, A.L.; Viotti, D.; Ferreira, C.; Galvo, L.; Pimenta, J. Electrocardiographic abnormalities in neurological diseases. Arq. Bras. Cardiol. 2003, 80, 355–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabkin, S.W. Aging effects on QT interval: Implications for cardiac safety of antipsychotic drugs. J Geriatr. Cardiol. 2014, 11, 20–25. [Google Scholar] [PubMed]
- Os, H.J.A.V.; Ramos, L.A.; Hilbert, A.; Leeuwen, M.V.; Walderveen, M.A.A.V.; Kruyt, N.D.; Dippel, D.W.J.; Steyerberg, E.W.; Schaaf, I.C.V.D.; Lingsma, H.F.; et al. Predicting outcome of endovascular treatment for acute ischemic stroke: Potential value of machine learning algorithms. Front. Neurol. 2018, 9, 1–8. [Google Scholar]
- Cuadrado-Godia, E.; Dwivedi, P.; Sharma, S.; Santiago, A.O.; Gonzalez, J.R.; Balcells, M.; Laird, J.; Turk, M.; Suri, H.S.; Nicolaides, A.; et al. Cerebral small vessel disease: A review focusing on pathophysiology, biomarkers, and machine learning strategies. J. Stroke 2018, 20, 302–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xie, Y.; Ye, P.J.; Pang, C.Y. Acute ischaemic stroke prediction from physiological time series patterns. Australas. Med. J. 2013, 6, 280–286. [Google Scholar] [CrossRef]
Variables | Stroke Group (n = 52) | Control Group (n = 80) |
---|---|---|
Age (years) * | 72.7 ± 6.6 | 75.5 ± 3.4 |
Gender (male), n (%) * | 33 (63) | 31 (39) |
Smoking, n (%) | 16 (31) | 17 (21) |
Drinking, n (%) | 12 (23) | 14 (18) |
Family history of stroke, n (%) | 5 (10) | 5 (6) |
Hypertension, n (%) | 18 (35) | 17 (21) |
Dyslipidemia, n (%) * | 3 (6) | 14 (18) |
Diabetes, n (%) | 8 (51) | 14 (18) |
Heart disease, n (%) | 3 (6) | 5 (6) |
BMI (kg/m2) | 24.3 ± 2.7 | 23.9 ± 2.5 |
SBP (mmHg) | 129.3 ± 15.5 | 136.91 ± 16.36 |
DBP (mmHg) | 78.3 ± 9.2 | 79.3 ± 11.5 |
Hemoglobin (g/dL) | 13.5 ± 1.8 | 13.5 ± 1.1 |
TC (mg/dL) | 179.5 ± 37.2 | 183.1 ± 39.9 |
LDL (mg/dL) | 97.1 ± 34.3 | 104.7 ± 35.9 |
HDL (mg/dL) | 54.8 ± 16.4 | 49.7 ± 12.2 |
Baseline NIHSS score | 25 (6) | - |
HRV Variables | Stroke Group (n = 52) | Control Group (n = 80) | p-Value |
---|---|---|---|
Time Domain Variables | |||
RMSSD (ms) | 39.96 ± 9.35 | 61.54 ± 10.60 | 0.129 |
SDSD (ms) | 39.91 ± 9.35 | 61.50 ± 10.60 | 0.129 |
pNN50 (%) | 7.59 ± 2.47 | 10.98 ± 2.10 | 0.298 |
Frequency Domain Variables | |||
HF (ms2) | 464.32 ± 167.47 | 522.61 ± 171.88 | 0.808 |
LF (ms2) | 259.74 ± 84.56 | 267.99 ± 108.84 | 0.952 |
VLF (ms2) | 26.05 ± 8.29 | 29.04 ± 11.84 | 0.836 |
LF/HF | 1.18 ± 0.21 | 0.60 ± 0.079 | 0.014 |
Variables | Stroke Group (n = 52) | Control Group (n = 80) | p-Value |
---|---|---|---|
Kurtosis | 16.0 ± 4.93 | 15.43 ± 5.30 | 0.533 |
Skewness | 1.85 ± 1.40 | 1.75 ± 1.31 | 0.682 |
Peak value | 1.05 ± 0.37 | 1.10 ± 0.47 | 0.525 |
Impulse factor | 12.54 ± 3.30 | 12.46 ± 3.47 | 0.898 |
Crest factor | 6.58 ± 1.23 | 6.65 ± 1.33 | 0.762 |
Features | Stroke Group (n = 52) | Control Group (n = 80) | p-Value |
---|---|---|---|
RR-I (ms) | 890 ± 140 | 920 ± 130 | 0.315 |
HR (bpm) | 68.87 ± 11.7 | 66.51 ± 9.89 | 0.242 |
PRQ (ms) | 179 ± 26 | 182 ± 28 | 0.542 |
QRS (ms) | 113 ± 22 | 107 ± 14 | 0.095 |
P-H (mV) | 72 ± 20 | 74 ± 30 | 0.769 |
R-H (mV) | 720 ± 76 | 690 ± 79 | 0.770 |
QTc (ms) | 543 ± 45 | 557 ± 37 | 0.074 |
QT (ms) | 512 ± 56 | 533 ± 46 | 0.029 |
ST (ms) | 427 ± 59 | 452 ± 49 | 0.014 |
Learning Method | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
KNN | 96.6% | 94.3% | 99.1% | 96.6% |
Random forest | 94.4% | 91.7% | 97.7% | 94.6% |
SVM | 85.4% | 81.5% | 91.7% | 86.3% |
Naïve Bayes | 72.7% | 64.2% | 87.8% | 74.1% |
Logistic regression | 66.9% | 57.1% | 91.7% | 70.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathakrishnan, K.; Min, S.-N.; Park, S.J. Evaluation of ECG Features for the Classification of Post-Stroke Survivors with a Diagnostic Approach. Appl. Sci. 2021, 11, 192. https://doi.org/10.3390/app11010192
Rathakrishnan K, Min S-N, Park SJ. Evaluation of ECG Features for the Classification of Post-Stroke Survivors with a Diagnostic Approach. Applied Sciences. 2021; 11(1):192. https://doi.org/10.3390/app11010192
Chicago/Turabian StyleRathakrishnan, Kalaivani, Seung-Nam Min, and Se Jin Park. 2021. "Evaluation of ECG Features for the Classification of Post-Stroke Survivors with a Diagnostic Approach" Applied Sciences 11, no. 1: 192. https://doi.org/10.3390/app11010192
APA StyleRathakrishnan, K., Min, S. -N., & Park, S. J. (2021). Evaluation of ECG Features for the Classification of Post-Stroke Survivors with a Diagnostic Approach. Applied Sciences, 11(1), 192. https://doi.org/10.3390/app11010192